scholarly journals Self Antigens Expressed by Solid Tumors Do Not Efficiently Stimulate Naive or Activated T Cells: Implications for Immunotherapy

1997 ◽  
Vol 186 (5) ◽  
pp. 645-653 ◽  
Author(s):  
Daniel E. Speiser ◽  
Renata Miranda ◽  
Arsen Zakarian ◽  
Martin F. Bachmann ◽  
Kim McKall-Faienza ◽  
...  

Induction and maintenance of cytotoxic T lymphocyte (CTL) activity specific for a primary endogenous tumor was investigated in vivo. The simian virus 40 T antigen (Tag) expressed under the control of the rat insulin promoter (RIP) induced pancreatic β-cell tumors producing insulin, causing progressive hypoglycemia. As an endogenous tumor antigen, the lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) was introduced also under the control of the RIP. No significant spontaneous CTL activation against GP was observed. However, LCMV infection induced an antitumor CTL response which efficiently reduced the tumor mass, resulting in temporarily normalized blood glucose levels and prolonged survival of double transgenic RIP(GP × Tag2) mice (137 ± 18 d) as opposed to control RIP-Tag2 mice (88 ± 8 d). Surprisingly, the tumor-specific CTL response was not sustained despite the facts that the tumor cells continued to express MHC class I and LCMV-GP–specific CTLs were present and not tolerized. Subsequent adoptive transfer of virus activated spleen cells into RIP(GP × Tag2) mice further prolonged survival (168 ± 11 d), demonstrating continued expression of the LCMV-GP tumor antigen and MHC class I. The data show that the tumor did not spontaneously induce or maintain an activated CTL response, revealing a profound lack of immunogenicity in vivo. Therefore, repetitive immunizations are necessary for prolonged antitumor immunotherapy. In addition, the data suggest that the risk for induction of chronic autoimmune diseases is limited, which may encourage immunotherapy against antigens selectively but not exclusively expressed by the tumor.

1999 ◽  
Vol 91 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Y. C. Xie ◽  
C. Hwang ◽  
W. Overwijk ◽  
Z. Zeng ◽  
M. H. Eng ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2868-2868
Author(s):  
Marta Gomez-Nunez ◽  
Javier Pinilla-Ibarz ◽  
Tao Dao ◽  
Victoriya Zakhaleva ◽  
Tatyana Korontsvit ◽  
...  

Abstract Intracellular processing of the breakpoint products of the bcr-abl fusion gene may generate novel peptides that, if capable of binding to HLA class I molecules, would be potential targets for a cytotoxic T lymphocyte (CTL) response. In humans, peptides derived from the e1a2 p190 breakpoint have generated peptide-specific MHC class II proliferative responses. Short peptides have shown binding to MHC class I molecules, although processing and presentation of endogenous p190 protein has not been shown. In a Kd Balb/c mouse model, we tested the hypothesis that single, key amino acids near the breakpoint could be the reason of lack of immunogenicity of the p190 breakpoint peptides. We synthesized a native peptide from the 190 breakpoint (AFHGDAEAL) as well as a synthetic mutated peptide (AYHGDAEAL), which showed excellent predicted binding on the BIMAS algorithm (1152 and 2880 respectively), although in vivo experiments did not show any specific CTL response. In order to assess if the lack of immunogenicity in vivo was due to the absence of binding to the MHC class I molecule rather than to poor TCR interactions, we designed a series of peptides where neutral amino acid, alanine, substitutions were introduced at different potential binding sites in the synthetic peptide: at position three (AYAGDAEAL), position four (AYHADAEAL), position five (AYHGAAEAL) and position seven (AYHGDAAAL). The binding of these altered peptides to H2 class I was assessed using a MHC stabilization assay on T2-Kd cells (TAP deficient cells). In spite of the good computer prediction for binding the MHC stabilization assay did not show evidence of binding of the native and synthetic peptides (<1.9 over the background). In contrast, alanine substitution in position five resulted in the best binding (3.5x over the background). Alanine substitutions in positions three, four and seven also showed improved binding to Kd molecules (2.6x, 3.1x and 3x over the background respectively). These results were confirmed by immunization in vivo with these altered peptides. Only the peptide with the alanine substitution in position five generated a immune response in a CD8 gamma-IFN Elispot assay. Since the altered peptides with the alanine substitutions in positions three, four and seven have shown binding to the Kd molecules, but not a CTL response, change of the aspartic acid in position five near to the fusion breakpoint allows appropriate presentation and recognition of the sequence by the TCR.


1997 ◽  
Vol 8 (1) ◽  
pp. 47-57 ◽  
Author(s):  
E Stang ◽  
J Kartenbeck ◽  
R G Parton

Simian virus 40 (SV40) has been shown to enter mammalian cells via uncoated plasma membrane invaginations. Viral particles subsequently appear within the endoplasmic reticulum. In the present study, we have examined the surface binding and internalization of SV40 by immunoelectron microscopy. We show that SV40 associates with surface pits which have the characteristics of caveolae and are labeled with antibodies to the caveolar marker protein, caveolin-1. SV40 is believed to use major histocompatibility complex (MHC) class I molecules as cell surface receptors. Using a number of MHC class I-specific monoclonal antibodies, we found that both viral infection and association of virus with caveolae were strongly reduced by preincubation with anti-MHC class I antibodies. Because binding of SV40 to MHC class I molecules may induce clustering, we investigated whether antibody cross-linked class I molecules also redistributed to caveolae. Clusters of MHC class I molecules were indeed shown to be specifically associated with caveolin-labeled surface pits. Taken together, the results suggest that SV40 may make use of MHC class I molecule clustering and the caveolae pathway to enter mammalian cells.


1995 ◽  
Vol 182 (3) ◽  
pp. 885-889 ◽  
Author(s):  
D Arnold ◽  
S Faath ◽  
H Rammensee ◽  
H Schild

Vaccination of mice with heat shock proteins isolated from tumor cells induces immunity to subsequent challenge with those tumor cells the heat shock protein was isolated from but not with other tumor cells (Udono, H., and P.K. Srivastava. 1994. J. Immunol. 152:5398-5403). The specificity of this immune response is caused by tumor-derived peptides bound to the heat shock proteins (Udono., H., and P.K. Srivastava. 1993. J. Exp. Med. 178:1391-1396). Our experiments show that a single immunization with the heat shock protein gp96 isolated from beta-galactosidase (beta-gal) expressing P815 cells (of DBA/2 origin) induces cytotoxic T lymphocytes (CTLs) specific for beta-gal, in addition to minor H antigens expressed by these cells. CTLs can be induced in mice that are major histocompatibility complex (MHC) identical to the gp96 donor cells (H-2d) as well as in mice with a different MHC (H-2b). Thus gp96 is able to induce "cross priming" (Matzinger, P., and M.J. Bevan. 1977. Cell. Immunol. 33:92-100), indicating that gp96-associated peptides are not limited to the MHC class I ligands of the gp96 donor cell. Our data confirm the notion that samples of all cellular antigens presentable by MHC class I molecules are represented by peptides associated with gp96 molecules of that cell, even if the fitting MHC molecule is not expressed. In addition, we extend previous reports on the in vivo immunogenicity of peptides associated gp96 molecules to two new groups of antigens, minor H antigens, and proteins expressed in the cytosol.


1987 ◽  
Vol 7 (10) ◽  
pp. 3694-3704
Author(s):  
C Prives ◽  
Y Murakami ◽  
F G Kern ◽  
W Folk ◽  
C Basilico ◽  
...  

Cell extracts of FM3A mouse cells replicate polyomavirus (Py) DNA in the presence of immunoaffinity-purified Py large T antigen, deoxynucleoside triphosphates, ATP, and an ATP-generating system. This system was used to examine the effects of mutations within or adjacent to the Py core origin (ori) region in vitro. The analysis of plasmid DNAs containing deletions within the early-gene side of the Py core ori indicated that sequences between nucleotides 41 and 57 define the early boundary of Py DNA replication in vitro. This is consistent with previously published studies on the early-region sequence requirements for Py replication in vivo. Deleting portions of the T-antigen high-affinity binding sites A and B (between nucleotides 57 and 146) on the early-gene side of the core ori led to increased levels of replication in vitro and to normal levels of replication in vivo. Point mutations within the core ori region that abolish Py DNA replication in vivo also reduced replication in vitro. A mutant with a reversed orientation of the Py core ori region replicated in vitro, but to a lesser extent that wild-type Py DNA. Plasmids with deletions on the late-gene side of the core ori, within the enhancer region, that either greatly reduced or virtually abolished Py DNA replication in vivo replicated to levels similar to those of wild-type Py DNA plasmids in vitro. Thus, as has been observed with simian virus 40, DNA sequences needed for Py replication in vivo are different from and more stringent than those required in vitro.


Sign in / Sign up

Export Citation Format

Share Document