Kinetic of Iron Absorption and Expression of Iron Related Genes in Beta-Thalassemia.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3846-3846
Author(s):  
Laura Breda ◽  
Sara Gardenghi ◽  
Ella Guy ◽  
Ninette Amariglio ◽  
Konstantin Adamsky ◽  
...  

Abstract We generated the first transplantable adult mouse models of beta-thalassemia intermedia and major by infusing mouse hematopoietic-fetal-liver cells (HFLC) heterozygous or homozygous for a deletion of the beta-globin gene (respectively with th3/+ and th3/th3 cells) into lethally irradiated congenic C57BL/6 mice. Six to 8 weeks post transplantation, mice transplanted with th3/+ HFLCs show 7 to 9 g/dL of hemoglobin levels, splenomegaly, abnormal red cells and increased iron overload. Mice transplanted with th3/th3 HFLCs, unless blood transfused, die 8 to 10 weeks after engraftment showing profound anemia, massive splenomegaly and very rapid and dramatic iron overload. For this reason, we began a systematic study to compare iron content and the expression level of iron related genes in normal and thalassemic mice of varying ages and sex in different organs (liver, duodenum, spleen, kidney and heart). In liver, we observed that iron content increases proportionally with the level of anemia, age and if the blood transfusion is included. We are currently analyzing the other organs. The expression of hepcidin, ferroportin, Hfe, ferritin, transferrin, transferrin-receptor 1 and 2, ceruloplasmin, divalent metal transporter 1 and hemojuvelin are being tested also in all these organs. In particular, we observed that hepcidin is dramatically downregulated in liver of beta-thalassemic animals. Our hypothesis is that low expression of this gene leads to high iron content in these animals. We intend to demonstrate that administration or increasing hepcidin levels of this peptide can prevent iron absorption in beta-thalassemia. We developed two alternative strategies to test our hypothesis. In the first one, we synthesized the active form of the mouse hepcidin peptide that will be administered intraperitoneally to mice affected by beta-thalassemia. In the second, lentiviral vectors have been generated in order to constitutively secrete hepcidin in the bloodstream of animals affected by beta-thalassemia. These vectors were introduced into hematopoietic stem cells derived from mouse embryos of normal and mice affected by beta-thalassemia and engrafted in myeolablated normal mice. The engrafted mice express hepcidin 6 weeks post transplantation by RT PCR. These animals, along with the animals in which hepcidin will be administrated intraperitoneally, will be analyzed at the endpoint of the experiment (> 4 months) for their hematological values and iron content to see if the use of hepcidin can be used to prevent excessive iron absorption in beta-thalassemia.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3586-3586
Author(s):  
Iolascon Achille ◽  
d’Apolito Maria ◽  
Servedio Veronica ◽  
De Falco Luigia ◽  
Piga Antonio ◽  
...  

Abstract Divalent metal transporter 1 (DMT1) is involved in dietary iron uptake on the luminal side of duodenal enterocytes and transfers iron from the endosome to the cytosol in the marrow erythroblasts. Spontaneous (mk mice and Belgrade rats) or acquired (DMT1 -/- mice) inactivation of DMT1 in rodents produces a severe microcytic anemia at birth, caused by inefficient intestinal iron absorption and defective iron utilization in erythroid cells. The first reported patient with DMT1 mutations had microcytic anemia and iron overload in adult life. We here report the hematological phenotype of a newborn with a severe mycrocytic anemia (Hb 4 g/dL, MCV 71 fL) at birth and during the first months of life. Serum iron, transferrin saturation and serum ferritin were 160 microg/L, 100% and 846 ng/ml respectively at 3 months of age. Hepatic iron overload wad documented at the age of 5 years by both non invasive SQUID and liver biopsy. Sequence analysis of genomic DNA of the family revealed that the child was compound heterozygote for two novel DMT1 mutations, inherited by the asymptomatic parents. The first change deleted 3 bp (c.310 - 3_5del CTT) in intron 4 resulting in a splicing abnormality and the skipping of exon 5. The second was C>T 1246 substitution that causes arginine > cysteine replacement at position 416 (p. R416C) in the protein. This missense affects an highly conserved residue in one of the putative transmembrane domains. A striking reduction of the protein in peripheral blood cells of the proband was demonstrated by western blot using an anti-DMT1 antibody. The child required blood transfusions at birth and in the first two months of life. Thereafter, treatment with subcutaneous erythropoietin mantained hemoglobin levels between 7.5–9.5 g/dL, allowing transfusion-independence. The haematological phenotype of this patient highlights the essential role of DMT1 in erythropoiesis. The early and significant hepatic iron accumulation indicates that, as in animal models, DMT1 is dispensable for liver iron uptake. Finally DMT1 inactivation in the gut is likely bypassed by other pathways of iron absorption.


Author(s):  
Yu-Qian Liu ◽  
Yan-Zhong Chang ◽  
Bin Zhao ◽  
Hai-Tao Wang ◽  
Xiang-Lin Duan

Some athletes are diagnosed as suffering from sports anemia because of iron deficiency, but the regulatory mechanism remains poorly understood. It is reported that hepcidin may provide a way to illuminate the regulatory mechanism of exercise-associated anemia. Here the authors investigate the hepcidin-involved iron absorption in exercise-associated anemia. Twelve male Wistar rats (300 ± 10 g) were randomly divided into 2 groups, 6 in a control group (CG) and 6 in an exercise group (EG, 5 wk treadmill exercise of different intensities with progressive loading). Serum samples were analyzed for circulating levels of IL-6 by means of enzyme-linked immunosorbent assay (ELISA). The expression of hepatic hepcidin mRNA was examined by real-time polymerase chain reaction analysis. The protein levels of divalent metal transporter 1 (DMT1), ferroportin1 (FPN1), and heme-carrier protein 1 (HCP1) of duodenum epithelium were examined by Western blot. The results showed that the amount of iron and ferritin in serum were lower in EG than in CG (p < .05). The levels of IL-6 and white blood cells were greater in EG than in CG (p < .01). The expression of DMT1, HCP1, and FPN1 was significantly lower in EG than in CG (p < .01). The mRNA expressions of hepatic hepcidin and hemojuvelin in skeletal muscle were remarkably higher in EG than in CG. The data indicated that inflammation was induced by strenuous exercise, and as a result, the transcriptional level of the hepatic hepcidin gene was increased, which further inhibited the expression of iron-absorption proteins and led to exercise-associated anemia.


Author(s):  
Shaukat Ali ◽  
Shumaila Mumtaz ◽  
Hafiz Abdullah Shakir ◽  
Hafiz Muhammad Tahir ◽  
Tafail Akbar Mughal

Thalassemia is genetic blood disease cause by absence or decrease of one or more of the globin chain synthesis. Beta thalassemia is characterized by one or more mutations in beta globin gene. Absence or reduced amount the of beta globin chains cause ineffective erythropoiesis which leads to anemia. Beta thalassemia has been further divided into three main forms: Thalassemia minor/silent carrier, major and intermedia. More severe form is thalassemia major in which patients depend upon blood transfusion for survival and high level of iron occur as a consequence of consistent blood transfusion. Over loaded iron invokes the synthesis of reactive oxygen species that are toxic in redundancy and triggering the impairment to vascular, endocrine and hepatic system. Thalassemia can be diagnosed and detected through various laboratory tests such as blood smear, prenatal testing (genetic testing of amniotic fluid), DNA analysis (genetic testing) and complete blood count. Treatment of thalassemia intermedia is symptomatic but it can also be managed by splenectomy and folic supplementation. While thalassemia major can be treated by transplantation of bone marrow, regular transfusion of blood and iron chelation treatment, stimulation of fetal hemoglobin production, hematopoietic stem cell transplantation and gene therapy.


2019 ◽  
Vol 24 ◽  
pp. 102058 ◽  
Author(s):  
Renzo Manara ◽  
Sara Ponticorvo ◽  
Immacolata Tartaglione ◽  
Gianluca Femina ◽  
Andrea Elefante ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1184 ◽  
Author(s):  
Peng Guan ◽  
Zhi-Min Sun ◽  
Li-Fei Luo ◽  
Ya-Shuo Zhao ◽  
Sheng-Chang Yang ◽  
...  

Iron-induced oxidative stress has been found to be a central player in the pathogenesis of kidney injury. Recent studies have indicated H2 can be used as a novel antioxidant to protect cells. The present study was designed to investigate the protective effects of H2 against chronic intermittent hypoxia (CIH)-induced renal injury and its correlation mechanism involved in iron metabolism. We found that CIH-induced renal iron overloaded along with increased apoptosis and oxidative stress. Iron accumulates mainly occurred in the proximal tubule epithelial cells of rats as showed by Perl’s stain. Moreover, we found that CIH could promote renal transferrin receptor and divalent metal transporter-1 expression, inhibit ceruloplasmin expression. Renal injury, apoptosis and oxidative stress induced by CIH were strikingly attenuated in H2 treated rats. In conclusion, hydrogen may attenuate CIH-induced renal injury at least partially via inhibiting renal iron overload.


2020 ◽  
Vol 318 (2) ◽  
pp. C263-C271 ◽  
Author(s):  
Emily A. Minor ◽  
Justin T. Kupec ◽  
Andrew J. Nickerson ◽  
Karthikeyan Narayanan ◽  
Vazhaikkurichi M. Rajendran

Iron deficiency anemia is a common complication of ulcerative colitis (UC) that can profoundly impact quality of life. Most iron absorption occurs in the duodenum via divalent metal transporter 1 (DMT1)-mediated uptake and ferroportin-1 (FPN1)-mediated export across the apical and basolateral membranes, respectively. However, the colon also contains iron transporters and can participate in iron absorption. Studies have shown increased duodenal DMT1 and FPN1 in patients with UC, but there is conflicting evidence about whether expression is altered in UC colon. We hypothesized that expression of colonic DMT1 and FPN1 will also increase to compensate for iron deficiency. Quantitative RT-PCR and Western blot analyses were performed on duodenal and colonic segmental (right colon, transverse colon, left colon, and rectum) biopsies obtained during colonoscopy. DMT1 mRNA and protein abundances in colonic segments were approximately equal to those in the duodenum, whereas colonic FPN1 mRNA and protein abundances of colonic segments were about one-quarter of those of the duodenum. DMT1 specific mRNA and protein abundances were increased twofold, whereas FPN1 mRNA and protein expressions were increased fivefold in UC distal colon. Immunofluorescence studies revealed enhanced expression of apical membrane- and basolateral membrane-localized DMT1 and FPN1 in UC human colon, respectively. Increased DMT1 expression was associated with enhanced 2-(3-carbamimidoylsulfanylmethyl-benzyl)-isothiourea (CISMBI, DMT1 specific inhibitor)-sensitive 59Fe uptake in UC human colon. We conclude from these results that patients with active UC have increased expression of colonic iron transporters and increased iron absorption, which may be targeted in the treatment of UC-related anemia.


Author(s):  
James C. Barton ◽  
Corwin Q. Edwards ◽  
Pradyumna D. Phatak ◽  
Robert S. Britton ◽  
Bruce R. Bacon

2002 ◽  
Vol 30 (4) ◽  
pp. 724-726 ◽  
Author(s):  
G.J. Anderson ◽  
D. M. Frazer ◽  
S.J. Wilkins ◽  
E. M. Becker ◽  
K. N. Millard ◽  
...  

Hepcidin is an anti-microbial peptide predicted to be involved in the regulation of intestinal iron absorption. We have examined the relationship between the expression of hepcidin in the liver and the expression of the iron-transport molecules divalent-metal transporter 1, duodenal cytochrome b, hephaestin and Ireg1 in the duodenum of rats switched from an iron-replete to an iron-deficient diet or treated to induce an acute phase response. In each case, elevated hepcidin expression correlated with reduced iron absorption and depressed levels of iron-transport molecules. These data are consistent with hepcidin playing a role as a negative regulator of intestinal iron absorption.


Sign in / Sign up

Export Citation Format

Share Document