The Morphology and Cellular Characterization of Thrombocytes in Adult Xenopus laevis.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3947-3947
Author(s):  
Takako Ishida ◽  
Miyako Obuchi-Shimoji ◽  
Takeshi Kuribara ◽  
Nami Nogawa ◽  
Tomoyuki Tahara ◽  
...  

Abstract In primates and rodents, platelets originate from the bone marrow megakaryocytes through a unique differentiation process with nuclear polyploidization, cytoplasmic maturation and proplatelet formation. In contrast, circulating thrombocytes of most non-mammalian vertebrates are particularly distinctive; the cells are large and nucleated. Adult Xenopus laevis may be an useful non-mammalian model for analyzing dynamic hematopoiesis because they are individually tolerable for time lapse analysis in vivo with sequential blood sampling, whereas classification of cell types has not been established yet. Microstructures of Xenopus thrombocytes observed with electron microscope exhibited structural characteristics largely resembling zebrafish thrombocytes with nucleated spindle cellular features (Thattaliyath et al., Blood 2005), and they had lobulated nuclear chromatin, granules, microparticles and open canalicular system-like-structures as in mammalian megakaryocytes. Since thrombocyte identification based on the morphological aspect was not sufficient, chemical staining with acetylecholinesterase and thiazole orange were performed. Additionally, mice were immunized by Xenopus peripheral blood cells to generate monoclonal antibodies, and two hybridomas producing IgG, respectively T12 and T5, were screened. T12+ (T12 positive) cells were morphologically typical thrombocytes. Flow cytometric analysis revealed that T12+ cells were also positive to anti-human GpIIb/IIIa polyclonal antibodies, and approximately 2-3% of whole peripheral blood cells were T12+/GpIIb/IIIa+ that distributed in FSClow/SSClow fraction. When T12 was injected into Xenopus to deplete T12+ cells in vivo, the detectable level of T12 in the circulation lasted for more than several weeks. Peripheral thrombocyte counts predominantly began to decrease immediately and reached their nadir at day 3, but white blood cell counts were not changed. RNA-rich blood cells considered as younger cells were then increasingly appeared, and finally the cell counts recovered to normal levels at day 10–15, indicating that in vivo depletion of T12+ cells induced thrombopoiesis and/or release of mature thrombocytes from the pool. T5 recognizing cells were classified into two populations by immunostaining and flow cytometry; T5+/GpIIb/IIIa+ cells were morphologically thrombocytic as the cells recognized by T12, while T5+/GpIIb/IIIa− cells were spherical and similar appearance to lymphocytic cells. These observations raised some possibilities e.g.; antigen of T5 was a membrane protein common to both lymphocytes and thrombocytes, or T5+/GpIIb/IIIa− cells were thrombocyte progenitors at earlier development stage than T12+/GpIIb/IIIa+ cells. Nevertheless only a few percent of T12+ and T5+ cells resided in peripheral blood, immunostaining revealed that the proportions of T12+/T5+ and T5+ cells in spleen were 10% and 70%, and T12+/T5+ and T5+ cells in liver were 5% and 20%, respectively. These suggest that spleen is predominantly involved in thrombopoiesis and/or thrombocyte storage in adult Xenopus. As T12 and T5 can be used successfully in flow cytometry and magnetic cell sorting, they should contribute us directly to elucidate the origin of circulating Xenopus thrombocytes and their cellular development process.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3036-3036
Author(s):  
Veronika Bachanova ◽  
Linda J. Burns ◽  
David H. McKenna ◽  
Julie Curtsinger ◽  
Sarah Cooley ◽  
...  

Abstract Abstract 3036 Poster Board II-1012 The potential role of allogeneic natural killer (NK) cells for therapy of refractory lymphoma is supported by the curative potential of allogeneic transplantation for lymphoid malignancies. Haploidentical donor derived NK cells may overcome Class I MHC Ag mediated inhibition and deliver an NK versus lymphoma effect. In a Phase II study we evaluated allogeneic NK cell infusions with Rituximab and IL-2 in a non-transplant setting to determine the expansion of NK cells in vivo and the clinical response in patients with refractory B-cell non-Hodgkin lymphoma (NHL). Six patients with advanced NHL received conditioning with Rituximab 375mg/m2 days -8,-1,+6,+15; Cyclophosphamide 60 mg/kg IV day -5; Fludarabine 25 mg/m2 IV days -6 through -2 as immunosupression to permit homeostatic expansion of allogeneic donor NK cells. Peripheral blood cells were obtained by lymphapheresis from unmobilized, HLA-haploidentical donors and selected for “killer immunoglobulin receptor” (KIR) ligand mismatch when available (3 out of 6 patients). Donor peripheral blood cells were enriched for NK cells with the Miltenyi CliniMACS device by depletion of T (CD3+) cells. The donor NK cells were then activated by overnight incubation with IL-2 (1,000 U/mL) and infused at a median nucleated cell dose of 2.27 ±0.4 × 107/kg. Subcutaneous IL-2 10×106 units (qod x 6 doses) was given to facilitate NK cell survival and expansion. All patients were evaluable for toxicity and efficacy. Patients tolerated the NK infusion well with only transient grade 1-2 toxicity and 5 received all 6 scheduled doses of IL-2. IL-2 activated donor NK cell products showed > 55% cytotoxicity against K562 targets. After IL-2 therapy, we observed a median absolute lymphocyte count of 980 ±440/μL. All cells were of recipient origin with no detectable donor NK cells. Importantly, in all patients the median number of host regulatory T cells (T regs phenotype CD4+Foxp3+CD127−) post treatment was significantly increased compared to pre-treatment (day 14 T regs: 134 ±141 cells/μL versus pre-treatment T regs: 24 ±12 cells/μL; P=0.06). To investigate the possibility of NK trafficking to affected lymph nodes, we performed fine needle aspiration of palpable tumor in 1 patient and demonstrated a low level of donor DNA by RFLP testing (2.5% donor chimerism). Simultaneous absence of NK cells in peripheral blood in the same patient suggested NK cell tissue homing to lymphoma-bearing nodes. Three patients achieved a partial remission (PR), one of whom proceeded to non-myeloablative cord blood allograft 2 month after NK cell infusion; two remain in partial remission after 1 and 4 months of follow-up. The trial failed to achieve prospective statistical parameters established to detect circulating NK cell expansion rate and will be modified. Conclusions This “proof of principle” study demonstrated lack of in vivo expansion of haploidentical NK cells in peripheral blood of patients with lymphoma. However, we identified host factors that interfered with NK cell expansion, including T reg proliferation and possibly inadequate immunosupression, and additionally, the finding of donor DNA in sites of tumor suggested donor NK cell localization to extravascular or tumor sites. Novel approaches to adoptive NK cell therapy trials should incorporate strategies to eliminate or prevent T reg expansion using alternate lymphodepleting regimens. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 69 (4) ◽  
pp. 1141-1147 ◽  
Author(s):  
JC. Ribeiro ◽  
SF. Andrade ◽  
JK. Bastos ◽  
EL. Maistro

The genotoxic effect of the Austroplenckia populnea chloroform fraction from barkwood extract was tested in vivo on peripheral blood cells of Swiss mice with the comet assay (SCGE), and the clastogenic effect was investigated on peripheral blood cells of Swiss mice and bone marrow cells of Wistar rats, with the micronucleus and chromosome aberrations tests. The animals were treated by gavage with 3 concentrations of the extract: 300, 600 and 900 mg.kg-1. Peripheral blood cells of Swiss mice were collected 4 and 24 hours after the treatment to the SCGE assay and 48 and 72 hours to the micronucleus test. Bone marrow cells of Wistar rats were collected 24 hours after the treatment to the micronucleus and chromosome aberration tests. The results showed that the A. populnea chloroform fraction induced an increase in the average number of DNA damage in peripheral blood cells at the three concentrations tested, but this increase was not statistically significant. In the micronucleus and chromosome aberrations test, no significant increase was observed in the mean number of micronucleated polychromatic erythrocytes (MNPCE) of Swiss mice or MNPCE or chromosome aberrations for the rat bone marrow cells, for any of the tested doses. Our findings enable us to conclude that by the comet assay, A. populnea chloroform fraction from barkwood extract showed no genotoxic effects, and by the micronucleus and chromosome aberration tests, the extract fraction showed no clastogenic/aneugenic effects on the rodent cells tested.


PEDIATRICS ◽  
1966 ◽  
Vol 38 (3) ◽  
pp. 490-493
Author(s):  
B. E. Barker ◽  
P. Farnes ◽  
P. H. LaMarche

MITOGENIC properties of extracts from Phytolacca americana (pokeweed, scoke, inkberry) for human peripheral blood cells in vitro have been reported from this laboratory. Subsequently, the appearance of leukocytes typical of early and late members of the plasmacytic series was described in the peripheral bloods of two of the authors (P.F. and B.E.B.), who received accidental systemic exposure to the mitogen. Effects of phytomitogens on human cells in vivo are not established, although a number of investigators have administered phytohemagglutinin from Phaseolus vulgaris to patients with aplastic anemia, hoping that the "transformed" lymphocytes might possess hematopoietic potentialities and repopulate the marrow with useful cells. Interpretations of such studies have been complicated by the small numbers of patients studied, the natural course of this group of anemias, simultaneous use of other therapy, and other variables. More information has been accumulated about the effects of phytomitogens on peripheral blood cells in vitro. The process of "transformation" or blastogenesis of lymphocytes, whether induced by plant extracts or specific antigenic stimuli, appears to involve an immune mechanism, although morphologic differentiation toward the plasmacytic series is not seen in the in vitro environment. Recently, we have had the opportunity to study serial blood films from children who received systemic exposure to pokeberry, either through proven oral ingestion (berries recovered from vomitus), or by exposure of fresh cuts and abrasions to pokeberry juice in the course of handling the berries. In each of these instances large cells morphologically typical of plasmablasts and proplasmacytes, and mature plasma cells were found in the peripheral blood films for periods up to 2 weeks following exposure. Mitotic cells were present in the peripheral blood during the first 10 days after exposure (Fig. 1 and 2).


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2012-2012
Author(s):  
Yuta Tanizaki ◽  
Ayaka Tahara ◽  
Sayaka Kinoshita ◽  
Motoki Yamauchi ◽  
Mizue Meguro ◽  
...  

Abstract Abstract 2012 In the biology of thrombopoiesis, several challenging issues such as polyploidy induction, proplatelet formation with endomitotic maturation and tubular cytoplasmic projections, and ability of cell division as reported in human platelets, have not been elucidated sufficiently. Comparative characterization of thrombocyte developments in animals may bring about a new perspective. Characteristics of thrombocyte precursors as megakaryocytes (MKs) and mature thrombocytes in most vertebrates, however, remain poorly defined. Most non-mammalian vertebrates have nucleated and spindle thrombocytes instead of platelets. Since african clawed frog, Xenopus laevis, is one of the most popular species providing various animal models in embryology and physiology, we attempt to establish an adult Xenopus model for analyses of hematopoiesis. We clarified peripheral thrombocytes by various staining methods, and searched immature thrombocytic cells in Xenopus organs. When peripheral blood cells were subjected to acetylcholinesterase staining, thrombocytes in the circulation, i.e. mature thrombocytes were positively identified. The size of elliptical mature thrombocytes was approx. 20.5±0.6 μm by 7.6±1.1 μm in diameters on cytocentrifuge preparations. We produced monoclonal antibody to Xenopus mature thrombocytes (T12) previously. The subsequent flow cytometry with a FACSAria II cell sorter revealed that the proportion of the peripheral T12-positive thrombocytes in lower FSC and SSC ranges were 1.5±0.3% of whole peripheral blood cells, and the expression of Xenopus c-Mpl (xlMpl) mRNA in the sorted cells was detected by RT-PCR. The mRNA expressions of Xenopus TPO (xlTPO) and xlMpl were also detected predominantly in the spleen and the liver, indicating that the sites of thrombocyte progenitor-residing organ and thrombopoietic activity-releasing organ were coincident in adult Xenopus. This resembled the relationship between Xenopus erythropoietin (EPO) and EPO receptor-expressing erythrocytic progenitors, as we have reported (Nogawa-Kosaka et al, 2010, Exp Hematol). Next, immunohistochemical analysis with T12 antibody revealed that thrombocytic cells were localized in sinusoid of the liver and the spleen. We then performed a thrombocytic colony assay in the presence of recombinant xlTPO expressed in E. coli. Hepatic and splenic cells composed of respective 80,000 cells in 1mL were incubated in 35mm dishes at 23°C under 5% CO2 with 0.87% methylcellulose-based semi-solid medium containing 20% FCS and xlTPO (5 ng/ml). The xlTPO-induced colonies derived from the spleen, including T12 positive thrombocytic colonies, emerged after 2 days, and the number reached to 65±2 in the culture (1 mL). The number of liver-derived colonies was smaller than that of spleen-derived ones, indicating that the density of thrombocyte progenitors in Xenopus was higher in the spleen, but the total mass of thrombocyte progenitors in the body is mostly distributed in the liver based on ratio by organ weights. In Xenopus, moderate thrombocytopenia, as well as anemia, was induced by phenylhydrazine (PHZ). The nadir of circulating thrombocyte counts was observed 4 days after PHZ-administration. When we culture cells of the liver or the spleen in the presence of the PHZ-induced thrombocytopenic serum, colonies composed of white cells and red cells were developed, suggesting that multiple or bipotent hematopoietic progenitors existed. When the hepatic cells were stimulated by xlTPO (5 ng/ml) for 2 days in the liquid culture, T12-positive megakaryocytic larger cells with multinucleated spherical shapes (approx. 30 ±3 μm in diameter) appeared, and such cells did not appear under EPO stimulation. On the other hand, the size of megakaryocytic cells derived from the spleen was smaller. Regardless of the origin of the thrombocyte progenitors, the cells stimulated by xlTPO in the liquid cultures expressed mRNAs of c-Mpl, CD41 and Fli-1, demonstrating that thrombocyte progenitors at different development stages resided in the liver and the spleen. It is still a missing piece of the puzzle whether Xenopus thrombocyte progenitors or mature thrombocytes undergo endomitosis to generate higher polyploid cells under the stimulation by TPO; however the unique megakaryocytic cells observed in this study have a clue to reveal the cellular evolution of platelets/MKs. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 13 (5) ◽  
pp. 1016-1026 ◽  
Author(s):  
Shanbao Cai ◽  
Jennifer R. Hartwell ◽  
Ryan J. Cooper ◽  
Beth E. Juliar ◽  
Emi Kreklau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document