Mucosal Epithelial Cells Initiate Frontline Immunoglobulin Class Switching through an SLPI-Regulated Pathway.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3898-3898
Author(s):  
Andrea Cerutti ◽  
Bing He ◽  
April Chiu ◽  
Meimei Shan ◽  
Paul Santini ◽  
...  

Abstract Introduction. Class switching from IgM to IgG and IgA is central to immunity against microbes and usually occurs in draining lymph nodes and requires activation of B cells by CD4+ T cells expressing CD40 ligand. Growing evidence indicates that B cells can mount frontline IgG and IgA responses at mucosal sites of entry through an alternative CD40-independent pathway involving B cell-activating factor of the TNF family (BAFF, also known as BLyS) and a proliferation-inducing ligand (APRIL). These innate factors are usually produced by dendritic cells and stimulate B cells through at least three distinct receptors. Together with dendritic cells, epithelial cells have a key position at the host-environment interface. Therefore, we asked whether epithelial cells play a role in frontline antibody production. Methods. Tonsillar tissue sections from healthy donors were analyzed for expression of activation-induced cytidine deaminase (AID) by immunohistochemistry and in situ hybridization. A simplified in vitro model reproducing the geometry of mucosal surfaces was used to evaluate the role of epithelial cells in class switching. Briefly, primary epithelial cells and B cells were cultured in the upper and lower chambers, respectively, of a trans-well system. Monocyte-derived dendritic cells were positioned on a filter separating the two chambers. Various microbial product analogues were used to mimic infection. RNA interference was performed to knockdown BAFF in epithelial cells. AID expression, CSR, antibody production and signaling were evaluated in B cells as reported (Litinsky et al., Nat. Immunol.2002, 3:822–829; Qiao et al., Nat. Immunol.2006, 7:302–310). Results. We found that the upper respiratory mucosa of healthy subjects comprised intraepithelial pockets filled with B cells expressing AID, a DNA-editing enzyme associated with ongoing class switch DNA recombination (CSR). Epithelial cells released innate class switch-inducing factors, including BAFF, after sensing microbial products through TLRs, thereby inducing AID expression, CSR, and ultimately IgG and IgA production in neighboring B cells. Epithelial cell-induced antibodies comprised polyreactive IgG and IgA capable of recognizing multiple microbial determinants. Intraepithelial class switching was enhanced by thymic stromal lymphopoietin (TSLP), an epithelial IL-7-like cytokine that augments the innate B cell-licensing functions of dendritic cells, and restrained by secretory leukocyte protease inhibitor (SLPI), an epithelial alarm antiprotease that suppresses AID expression in activated B cells. Conclusions. The present findings indicate that epithelial cells function as non-immune sentinels capable to autonomously orchestrate compartmentalized IgG and IgA responses at the interface between host and environment. This implies that mucosal vaccines should activate both epithelial and immune cells to elicit optimal antibody production.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1359-1359
Author(s):  
Jitra Kriangkum ◽  
Brian J. Taylor ◽  
Erin R. Strachan ◽  
Steven P. Treon ◽  
Michael J. Mant ◽  
...  

Abstract Clonotypic B cells of Waldenstrom’s macroglobulinemia (WM) are characterized as CD20+IgM+IgD+ cells that are usually somatically mutated in IgH VDJ but for some patients, the clonotypic IgH VDJ is germline (unmutated).For both mutated and unmutated clones, WM lack ongoing somatic hypermutation (SHM) and class switch recombination (CSR). This may be due to abnormalities in switching and/or mutator genes. To understand the nature of unswitched tumor B cells, uracil DNA glycosylase (UDG) and activation-induced cytidine deaminase (AID), the two essential elements for CSR, were analysed in WM. Analysis of 12 WM clones characterized by somatic hypermutation showed that the mutation profile of VH genes had normal transition/transversion ratios at C or G, and thus did not suggest UDG abnormalities. Expression of AID was determined by single stage RT-PCR. Out of 14 patients studied (2 unmutated and 12 mutated VH clones), two of them (WM1-01 and WM1-08,with mutation rates of 0% and 6.2% respectively) gave positive bands. In WM1-01, despite having a germline IgH VDJ, AID is consistently expressed in two bone marrow samples collected three years apart and from which the identical unmutated clonotypic VDJ sequence was isolated. Full-length (FL) AID transcripts of WM have a conserved sequence, thus ruling out the possibility of functional defects due to point mutation. In addition, detection of AID in an unmutated VH clone suggested that lack of SHM does not result from an inability to produce AID. In addition to FL transcripts, three other splice variants were identified in both patients. Single cell analysis indicated that only a small compartment (10% or less), not all, of clonotypic B cells expressed AID, and multiple isoforms may be detectable in individual cells. Whether these splice variants that contain truncated C-terminal ends play a role in the regulation of CSR in WM remains to be investigated. Splice variants, nevertheless, may not characterize tumor B cells since up to 10% of AID-expressing normal activated B cells (n=3) also carried them. In vitro activation of clonotypic WM B cells by CD40L and IL4, using conditions that induced CSR in normal B cells, did not yield detectable class switching in WM B cells. In cultures of B cells from WM, the number of non-clonal B cells increased but the clonotypic B cells did not appear to expand, as indicated by the reduction of clonotypic IgM transcript at 5-days of culture. Thus, as well as failing to undergo somatic mutation or class switching, WM tumor B cells appear unresponsive to CD40L+IL4. They may be fundamentally unresponsive to signals for class switching and their clonal expansion may depend upon alternate signaling pathways.


1998 ◽  
Vol 187 (12) ◽  
pp. 2081-2089 ◽  
Author(s):  
John P. Manis ◽  
Yansong Gu ◽  
Rusty Lansford ◽  
Eiichiro Sonoda ◽  
Roger Ferrini ◽  
...  

Immunoglobulin (Ig) heavy chain (HC) class switch recombination (CSR) is a late B cell process that involves intrachromosomal DNA rearrangement. Ku70 and Ku80 form a DNA end-binding complex required for DNA double strand break repair and V(D)J recombination. Ku70−/− (K70T) mice, like recombination activating gene (RAG)-1– or RAG-2–deficient (R1T or R2T) mice, have impaired B and T cell development at an early progenitor stage, which is thought to result at least in part from defective V(D)J recombination (Gu, Y., K.J. Seidl, G.A. Rathbun, C. Zhu, J.P. Manis, N. van der Stoep, L. Davidson, H.L. Cheng, J.M. Sekiguchi, K. Frank, et al. 1997. Immunity. 7:653–665; Ouyang, H., A. Nussenzweig, A. Kurimasa, V.C. Soares, X. Li, C. Cordon-Cardo, W. Li, N. Cheong, M. Nussenzweig, G. Iliakis, et al. 1997. J. Exp. Med. 186:921–929). Therefore, to examine the potential role of Ku70 in CSR, we generated K70T mice that carry a germline Ig HC locus in which the JH region was replaced with a functionally rearranged VH(D)JH and Ig λ light chain transgene (referred to as K70T/HL mice). Previously, we have shown that B cells from R1T or R2T mice carrying these rearranged Ig genes (R1T/HL or R2T/HL mice) can undergo CSR to IgG isotypes (Lansford, R., J. Manis, E. Sonoda, K. Rajewsky, and F. Alt. 1998. Int. Immunol. 10:325–332). K70T/HL mice had significant numbers of peripheral surface IgM+ B cells, which generated serum IgM levels similar to those of R2T/HL mice. However, in contrast to R2T/HL mice, K70T/HL mice had no detectable serum IgG isotypes. In vitro culture of K70T/HL B cells with agents that induce CSR in normal or R2T/HL B cells did lead to the induction of germline CH transcripts, indicating that initial signaling pathways for CSR were intact in K70T/HL cells. However, treatment with such agents did not lead to detectable CSR by K70T/HL B cells, and instead, led to cell death within 72 h. We conclude that Ku70 is required for the generation of B cells that have undergone Ig HC class switching. Potential roles for Ku70 in the CSR process are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paolo Casali ◽  
Shili Li ◽  
Grecia Morales ◽  
Cassidy C. Daw ◽  
Daniel P. Chupp ◽  
...  

IgA is the predominant antibody isotype at intestinal mucosae, where it plays a critical role in homeostasis and provides a first line of immune protection. Dysregulation of IgA production, however, can contribute to immunopathology, particularly in kidneys in which IgA deposition can cause nephropathy. Class-switch DNA recombination (CSR) to IgA is directed by TGF-β signaling, which activates Smad2 and Smad3. Activated Smad2/Smad3 dimers are recruited together with Smad4 to the IgH α locus Iα promoter to activate germline Iα-Cα transcription, the first step in the unfolding of CSR to IgA. Epigenetic factors, such as non-coding RNAs, particularly microRNAs, have been shown to regulate T cells, dendritic cells and other immune elements, as well as modulate the antibody response, including CSR, in a B cell-intrinsic fashion. Here we showed that the most abundant miRNA in resting B cells, miR-146a targets Smad2, Smad3 and Smad4 mRNA 3’UTRs and keeps CSR to IgA in check in resting B cells. Indeed, enforced miR-146a expression in B cells aborted induction of IgA CSR by decreasing Smad levels. By contrast, upon induction of CSR to IgA, as directed by TGF-β, B cells downregulated miR-146a, thereby reversing the silencing of Smad2, Smad3 and Smad4, which, once expressed, led to recruitment of Smad2, Smad3 and Smad4 to the Iα promoter for activation of germline Iα-Cα transcription. Deletion of miR-146a in miR-146a–/– mice significantly increased circulating levels of steady state total IgA, but not IgM, IgG or IgE, and heightened the specific IgA antibody response to OVA. In miR-146a–/– mice, the elevated systemic IgA levels were associated with increased IgA+ B cells in intestinal mucosae, increased amounts of fecal free and bacteria-bound IgA as well as kidney IgA deposition, a hallmark of IgA nephropathy. Increased germline Iα-Cα transcription and CSR to IgA in miR-146a–/– B cells in vitro proved that miR-146a-induced Smad2, Smad3 and Smad4 repression is B cell intrinsic. The B cell-intrinsic role of miR-146a in the modulation of CSR to IgA was formally confirmed in vivo by construction and OVA immunization of mixed bone marrow μMT/miR-146a–/– chimeric mice. Thus, by inhibiting Smad2, Smad3 and Smad4 expression, miR-146a plays an important and B cell intrinsic role in modulation of CSR to IgA and the IgA antibody response.


2022 ◽  
Vol 8 ◽  
Author(s):  
Tanyaporn Pattarabanjird ◽  
Jeffrey M. Wilson ◽  
Loren D. Erickson ◽  
Lisa J. Workman ◽  
Hui Qiao ◽  
...  

Background: Recent studies have suggested that IgE sensitization to α-gal is associated with coronary artery disease (CAD). However, the B cell subtype(s) responsible for production of IgE to α-gal and mechanisms mediating this production remain elusive.Methods: Single cell multi-omics sequencing, was utilized to phenotype B cells obtained from 60 subjects that had undergone coronary angiography in whom serum IgE was evaluated by ImmunoCAP. Bioinformatics approaches were used to identify B cell subtype(s) and transcriptomic signatures associated with α-gal sensitization. In vitro characterization of chemokine/chemokine receptor pairs on switched memory B cells associated with IgE to α-gal was performed.Results: Of the 60 patients, 17 (28%) were positive for IgE to α-gal. CITESeq identified CCR6+ class-switched memory (SWM) B cells and CXCR4 expresssion on these CCR6+ SWM B cells as significantly associated with IgE sensitization to α-gal but not to other common allergens (peanut or inhalants). In vitro studies of enriched human B cells revealed significantly greater IgE on SWM B cells with high CCR6 and CXCR4 expression 10 days after cells were treated with IL-4 and CD40 to stimulate class switch recombination. Both CCL20 (CCR6 ligand) and CXCL12 (ligand for CXCR4) increased the expression of IgE on SWM B cells expressing their receptors. However, they appeared to have unique pathways mediating this effect as only CCL20 increased activation-induced cytidine deaminase (AID), while CXCL12 drove proliferation of CXCR4+ SWM B cells. Lastly, correlation analysis indicated an association between CAD severity and the frequency of both CCR6+ SWM and CXCR4+ SWM B cells.Conclusions: CCR6+ SWM B cells were identified as potential producers of IgE to α-gal in CAD patients. Additionally, our findings highlighted non-chemotaxis roles of CCL20/CCR6 and CXCL12/CXCR4 signaling in mediating IgE class switching and cell proliferation of SWM B cells respectively. Results may have important implications for a better understanding and better therapeutic approaches for subjects with IgE sensitization to α-gal.


Rheumatology ◽  
2019 ◽  
Vol 58 (12) ◽  
pp. 2230-2239
Author(s):  
Anouk von Borstel ◽  
Wayel H Abdulahad ◽  
Jan Stephan Sanders ◽  
Jasper Rip ◽  
Stefan F H Neys ◽  
...  

Abstract Objectives To determine Bruton’s tyrosine kinase (BTK) protein and phosphorylation levels in B cell subsets of granulomatosis with polyangiitis (GPA) patients and to investigate the effect of BTK blockade on in vitro B cell cytokine production, subset distribution and (auto)antibody production. Methods BTK protein and phosphorylation levels were determined by flow cytometry in peripheral blood B cells of 29 untreated GPA patients [9 active and 20 remission GPA patients (10 ANCA– and 10 ANCA+)], 9 age- and sex-matched healthy controls (HCs) and 9 untreated active RA patients. The effect of BTK blockade on in vitro B cell cytokine production, subset distribution and (auto)antibody production was determined in the same donors in peripheral blood mononuclear cell cultures. Results BTK protein levels were significantly increased in transitional and naïve B cells of active GPA and RA patients compared with remission GPA patients and HCs. Both B cell subsets of active patients were more sensitive to B cell receptor stimulation, as BTK and phospholipase Cγ2 phosphorylation were increased in these patients. In vitro BTK blockade had profound effects on B cell cytokine production, plasma cell formation and (auto)antibody production in both GPA patients and HCs. Interestingly, the effect of BTK blockade was less pronounced in active GPA patients, possibly due to increased activation of B cells. Conclusion We show that BTK protein and phosphorylation levels are most profoundly increased in newly emerging B cells of active GPA patients compared with remission patients. BTK blockade greatly inhibits in vitro B cell effector functions in GPA patients and HCs. These promising data identify BTK as an interesting novel therapeutic target in the treatment of GPA.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 22-22 ◽  
Author(s):  
April Chiu ◽  
Xugang Qiao ◽  
Bing He ◽  
Elizabeth Hyjjek ◽  
Joong Lee ◽  
...  

Abstract Introduction. B cell-activating factor of the TNF family (BAFF) and a proliferation-inducing ligand (APRIL), a BAFF-related molecule, play a key role in the survival and proliferation of mature B cells. In addition, BAFF and APRIL cooperate with IL-4 to induce class switch DNA recombination (CSR) from IgM (or IgG) to IgG, IgA or IgE. This process requires activation-induced-cytidine deaminase (AID), a DNA-editing enzyme involved also in Ig somatic hypermutation and lymphomagenesis. BAFF and APRIL are usually produced by myeloid cells, including dendritic cells, macrophages and granulocytes, and engage three receptors preferentially expressed on B cells, including transmembrane activator and calcium modulator and cyclophylin ligand interactor (TACI), B cell maturation antigen (BCMA), and BAFF receptor (BAFF-R). Our previous studies show that BAFF and APRIL are EBV-inducible molecules implicated in B cell non-Hodgkin’s lymphoma (NHL). The scope of the present studies was to elucidate the expression and function of BAFF, APRIL, TACI, BCMA and BAFF-R in Hodgkin lymphoma (HL). Methods. Tissue sections from 5 primary EBV+ HL cases and 5 primary EBV− HL cases were analyzed for BAFF, APRIL, TACI, BCMA, and BAFF-R expression through immunohistochemistry. RS cells from 6 primary cases were microdissected and analyzed for the expression of AID and CSR byproducts by RT-PCR. The expression of BAFF, APRIL, TACI, BCMA, BAFF-R, AID, and CSR byproducts was also analyzed in 5 HL cell lines cultured in the presence or absence of recombinant BAFF, APRIL and cytokines as previously described1,2,3. Results. We found that the reactive infiltrate of primary HL tumors comprises non-malignant elements, such as macrophages, granulocytes and plasma cells, expressing BAFF and APRIL. Also a variable proportion of malignant CD30+ Reed-Sternberg (RS) cells from both EBV+ and EBV− HL cases express BAFF and APRIL. Unlike NHL B cells, which usually express BAFF-R, primary RS cells and RS cell lines lack BAFF-R, but express TACI and BCMA. In the presence of BAFF or APRIL, RS cell lines are rescued from spontaneous or induced apoptosis. This effect is associated with activation of NF-κB through a classical pathway. Increased RS cell survival is also associated with up-regulation of the pro-survival BCL-2 and BCL-XL proteins, and down-regulation of the pro-apoptotic BAX protein. Finally, in the presence of BAFF or APRIL and IL-4, RS cell lines up-regulate AID expression and increase their spontaneous CSR activity. Of note, AID expression extends to primary RS cells and is associated with ongoing CSR. Conclusions. Our studies indicate that BAFF and APRIL stimulate malignant RS cells through both autocrine and paracrine pathways. Engagement of TACI and BCMA receptors by BAFF and APRIL may enhance the expansion of RS cells by attenuating apoptosis through a mechanism involving NF-κB and BCL family proteins. By up-regulating AID, signals emanating from TACI and BCMA receptors might also introduce genomic instability. Finally, considering that TACI, BCMA and AID are B cell-specific molecules and that CSR is a process confined to B cells, our findings consolidate the notion that RS cells derive from a B cell precursor.


2005 ◽  
Vol 202 (6) ◽  
pp. 733-738 ◽  
Author(s):  
Vasco M. Barreto ◽  
Qiang Pan-Hammarstrom ◽  
Yaofeng Zhao ◽  
Lennart Hammarstrom ◽  
Ziva Misulovin ◽  
...  

Class switch recombination was the last of the lymphocyte-specific DNA modification reactions to appear in the evolution of the adaptive immune system. It is absent in cartilaginous and bony fish, and it is common to all tetrapods. Class switching is initiated by activation-induced cytidine deaminase (AID), an enzyme expressed in cartilaginous and bony fish that is also required for somatic hypermutation. Fish AID differs from orthologs found in tetrapods in several respects, including its catalytic domain and carboxy-terminal region, both of which are essential for the switching reaction. To determine whether evolution of class switch recombination required alterations in AID, we assayed AID from Japanese puffer and zebra fish for class-switching activity in mouse B cells. We find that fish AID catalyzes class switch recombination in mammalian B cells. Thus, AID had the potential to catalyze this reaction before the teleost and tetrapod lineages diverged, suggesting that the later appearance of a class-switching reaction was dependent on the evolution of switch regions and multiple constant regions in the IgH locus.


2000 ◽  
Vol 165 (2) ◽  
pp. 786-794 ◽  
Author(s):  
Andrea Cerutti ◽  
Andràs Schaffer ◽  
Raymond G. Goodwin ◽  
Shefali Shah ◽  
Hong Zan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhangguo Chen ◽  
Jing H. Wang

Mature B cells express B cell antigen receptor (BCR), toll-like receptors (TLR) and TNF family receptors including CD40 and B-cell activating factor receptor (BAFFR). These receptors transduce cellular signals to govern the physiological and pathological processes in B cells including B cell development and differentiation, survival, proliferation, and antibody-mediated immune responses as well as autoimmune diseases and B cell lymphomagenesis. Effective antibody-mediated immune responses require class switch recombination (CSR), a somatic DNA recombination event occurring at the immunoglobulin heavy chain (Igh) gene locus. Mature B cells initially express IgM as their BCR, and CSR enables the B cells to switch from expressing IgM to expressing different classes of antibodies including IgG, IgA or IgE that exhibit distinct effector functions. Here, we briefly review recent findings about how the signaling crosstalk of the BCR with TLRs, CD40 and BAFFR regulates CSR, antibody-mediate immune responses, and B cell anergy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2330-2330
Author(s):  
Tamar Aprahamian ◽  
ED Keniston ◽  
Jane Branca ◽  
Muneer G Hasham ◽  
Melinda Day ◽  
...  

Activation Induced Cytidine Deaminase (AICDA/AID) is a DNA-directed cytidine deaminase that is normally only expressed in activated B-cells to promote somatic hypermutations and immunoglobulin class switching. In cancer cells, AID causes significant genotoxic stress through DNA replication fork damage, creating a dependency upon the homologous recombination repair factor, RAD51, for survival. We have demonstrated anti-cancer activity through disruption of this axis in multiple preclinical lymphoid cancer models. Autoreactive B cells depend on RAD51 for survival and are chronically auto-stimulated and therefore continually re-express AID. It has been shown that ectopic expression of AID in autoreactive B-cells causes genome-wide DNA damage (similar to cancers). Given the role of autoreactive B cells and autoantibodies in autoimmune disorders, we hypothesize that immunomodulation of B cells via the RAD51/AID axis will remediate inflammatory disease processes. Our previous data suggests that RAD51 modulation enhances the CD73+ B cell population and reduces antibody diversity in T1D mice, indicating precise effects on AID-mediated antibody diversification. CYT-0853 is a novel RAD51 inhibitor that sensitizes cells to AID activity. Here, we assessed the in vivo effect of CYT-0853 on primary B cells and antibody production. Wild-type C57BL/6 mice were treated with 40mg/kg CYT-0853 or vehicle for five weeks. One-week post-treatment start, mice were immunized with DNP-KLH antigen mixed with Complete Freund's Adjuvant. A second booster with DNP-KLH antigen mixed with Incomplete Freund's Adjuvant was administered two weeks later. At termination, blood, spleen, and bone marrow was collected for analysis by flow cytometry. Surface expression of CD45, CD19, IgM, and IgG1 was assessed to determine white blood cell count, B cells, and pre- and post-class switch recombination (CSR), respectively. While no significant changes to B cell populations were observed in bone marrow or spleen, we demonstrate that CYT-0853 significantly decreases the median number of circulating CD45+ and IgG1 (post-CSR) B cells (61.8% vs. 31.6% and 8.7% vs. 4.4%, respectively). In addition, we observed a modest, significant increase in the amount of IgM+ (pre-CSR) B cells. These results were complemented by an associated overall significant decrease in circulating IgM levels. Of note, no adverse effects were observed in these mice over this treatment period. Based on these data and the role of B cells not only in antibody production, but also as antigen-presenting cells in multiple sclerosis, we tested our molecule in the myelin oligodendrocyte glycoprotein35-55-experimental autoimmune encephalomyelitis model of multiple sclerosis. Prophylactic treatment using 40mg/kg CYT-0853 did not affect disease activity or circulating cytokine production, however we observed a significant decrease in the spleen. Based on these results, further exploration is warranted to harness the power of CYT-0853 on the AID/RAD51 axis. This specific targeting may elicit beneficial therapeutic changes to B-lymphocyte populations and provide a novel immunomodulatory target to treat immunity and inflammation. Taken together, these data provide a foundation for continued preclinical development of CYT-0853 with applicability towards autoimmune diseases. Disclosures Aprahamian: Cyteir Therapeutics: Consultancy. Day:Cyteir Therapeutics: Employment. Mills:Cyteir Therapeutics: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document