CIB1 Positively Regulates Outside-In Signaling through αIIbβ3 by Enhancing FAK and Src Activity.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3917-3917
Author(s):  
Meghna U. Naik ◽  
Ulhas P. Naik

Abstract Integrin αIIbβ3, the platelet fibrinogen receptor, mediates outside-in signaling upon fibrinogen binding. Calcium- and integrin-binding protein 1 (CIB1) specifically interacts with the cytoplasmic domain of αIIb and is involved in platelet spreading. Here we show that CIB1 binding to αIIb is an essential step in the propagation of outside-in signaling through integrin αIIbβ3. Incorporation of BAPTA-AM completely blocked outside-in signaling and CIB-1 binding to aIIb, suggesting that an intracellular Ca2+ rise induced by fibrinogen binding is required for CIB1 interaction with αIIb. When CIB1-binding to αIIb was inhibited by introduction of a function blocking antibody or a synthetic peptide corresponding to αIIb tail, CIB1 localization at the tip of the filopodia, but filopodia formation was not blocked. This result suggests that interaction of CIB1 with αIIb is not required for filopodia formation, but is needed for CIB1 accumulation at the filopodia, as well as platelet spreading. Immunoprecipitation experiments showed that during outside-in signaling, CIB1 associates with FAK. Although association of FAK and CIB1 does not require dynamic rearrangement of the cytoskeleton, their accumulation at the filopodia and the activation of FAK is dependent on cytoskeletal rearrangement, as treatment with cytochalasin D after the platelets form filopodia affects CIB1 localization. Interestingly, the interaction of CIB1 with αIIb upon fibrinogen binding is also necessary for FAK and Src activation. However, Src activity is not required for CIB1 accumulation at the filopodia since this accumulation was not stopped by the Src inhibitor PP2, despite blocking platelet spreading. Our results suggest that during outside-in signaling an intracellular Ca2+ rise occurs that facilitates CIB1 interaction with αIIb. CIB1 recruits FAK to this complex and is localized to the filopodia dependent upon dynamic cytoskeletal rearrangement. Furthermore, activation of Src and FAK requires interaction of CIB1 with αIIb. Although Src activity is not required for the accumulation of CIB1 at the filopodia, it is required for platelet spreading on immobilized fibrinogen. Thus we provide evidence for initial sequence of outside-in signaling in platelets.

Author(s):  
Ana Marín-Quílez ◽  
Ignacio García-Tuñón ◽  
Cristina Fernández-Infante ◽  
Luis Hernández-Cano ◽  
Verónica Palma-Barqueros ◽  
...  

Abstract RUNX1-related disorder (RUNX1-RD) is caused by germline variants affecting the RUNX1 gene. This rare, heterogeneous disorder has no specific clinical or laboratory phenotype, making genetic diagnosis necessary. Although international recommendations have been established to classify the pathogenicity of variants, identifying the causative alteration remains a challenge in RUNX1-RD. Murine models may be useful not only for definitively settling the controversy about the pathogenicity of certain RUNX1 variants, but also for elucidating the mechanisms of molecular pathogenesis. Therefore, we developed a knock-in murine model, using the CRISPR/Cas9 system, carrying the RUNX1 p.Leu43Ser variant (mimicking human p.Leu56Ser) to study its pathogenic potential and mechanisms of platelet dysfunction. A total number of 75 mice were generated; 25 per genotype (RUNX1WT/WT, RUNX1WT/L43S, and RUNX1L43S/L43S). Platelet phenotype was assessed by flow cytometry and confocal microscopy. On average, RUNX1L43S/L43S and RUNX1WT/L43S mice had a significantly longer tail-bleeding time than RUNX1WT/WT mice, indicating the variant's involvement in hemostasis. However, only homozygous mice displayed mild thrombocytopenia. RUNX1L43S/L43S and RUNX1WT/L43S displayed impaired agonist-induced spreading and α-granule release, with no differences in δ-granule secretion. Levels of integrin αIIbβ3 activation, fibrinogen binding, and aggregation were significantly lower in platelets from RUNX1L43S/L43S and RUNX1WT/L43S using phorbol 12-myristate 13-acetate (PMA), adenosine diphosphate (ADP), and high thrombin doses. Lower levels of PKC phosphorylation in RUNX1L43S/L43S and RUNX1WT/L43S suggested that the PKC-signaling pathway was impaired. Overall, we demonstrated the deleterious effect of the RUNX1 p.Leu56Ser variant in mice via the impairment of integrin αIIbβ3 activation, aggregation, α-granule secretion, and platelet spreading, mimicking the phenotype associated with RUNX1 variants in the clinical setting.


2015 ◽  
Vol 113 (02) ◽  
pp. 290-304 ◽  
Author(s):  
Róisín Moriarty ◽  
Ciara A. McManus ◽  
Matthew Lambert ◽  
Thea Tilley ◽  
Marc Devocelle ◽  
...  

SummaryThe integrin αIIbβ3 on resting platelets can bind to immobilised fibrinogen resulting in platelet spreading and activation but requires activation to bind to soluble fibrinogen. αIIbβ3 is known to interact with the general integrin-recognition motif RGD (arginine–glycine–aspartate) as well as the fibrinogen-specific γ-chain dodecapeptide; however, it is not known how fibrinogen binding triggers platelet activation. NGR (asparagine–glycine–arginine) is another integrin-recognition sequence present in fibrinogen and this study aims to determine if it plays a role in the interaction between fibrinogen and αIIbβ3. NGR-containing peptides inhibited resting platelet adhesion to fibrinogen with an IC50 of 175 μM but failed to inhibit the adhesion of activated platelets to fibrinogen (IC50 > 500 μM). Resting platelet adhesion to mutant fibrinogens lacking the NGR sequences was reduced compared to normal fibrinogen under both static and shear conditions (200 s-1). However, pre-activated platelets were able to fully spread on all types of fibrinogen. Thus, the NGR motif in fibrinogen is the site that is primarily responsible for the interaction with resting αIIbβ3 and is responsible for triggering platelet activation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2873-2873 ◽  
Author(s):  
Ulhas Pandurang Naik ◽  
Meghna Ulhas Naik

Abstract Platelets play an important role in the processes of hemostasis and thrombosis. Platelet integrin αIIbβ3 mediates bi-directional signaling during these processes. Agonist-dependent activation of integrin αIIbβ3 through inside-out signaling results in high-affinity binding of soluble ligands, such as fibrinogen. Fibrinogen binding induces a cascade of signaling through the integrin, termed outside-in signaling that results in platelet aggregation and clot retraction. Previously, we have characterized CIB1, a calcium- and integrin-binding protein that specifically interacts with the cytoplasmic domain of αIIb. Previous reports using in vitro and ex vivo studies implicated that CIB1 is involved in maintaining αIIbβ3 in its resting state, agonist-induced activation of the integrin, and outside-in signaling resulting in platelet spreading. Here, we show that platelet filopodia formation induced by fibrinogen binding to integrin αIIbβ3 needs Ca2+, but is independent of the Ca2+-dependent interaction of CIB1 with αIIb. Additionally, dynamic rearrangement of the cytoskeleton is required for the recruitment of FAK to the CIB1-αIIb complex at the filopodia and FAK activation. Moreover, disruption of the association of CIB1 and αIIb by incorporation of αIIb peptide or CIB1 antibody inhibited FAK activation. Furthermore, Cib1 null platelets acquired a spiky morphology and failed to fully spread on immobilized fibrinogen. Interestingly, FAK activation was significantly reduced in Cib1 null platelets exposed to immobilized fibrinogen. Our results suggest that during outside-in signaling, a rise in the intracellular Ca2+ level and filopodia formation occurs prior to the interaction of CIB1 with αIIb. Additionally, Ca2+ bound CIB1 recruits FAK to the αIIbβ3 complex at the filopodia, where FAK is activated, resulting in platelet spreading. Thus, our results have provided a mechanism through which CIB1 regulates outside-in signaling through integrin αIIbβ3.


2020 ◽  
Vol 120 (10) ◽  
pp. 1432-1441 ◽  
Author(s):  
Chuanbin Shen ◽  
Ming Liu ◽  
Huiwen Tian ◽  
Jiameng Li ◽  
Runjia Xu ◽  
...  

AbstractBleeding and thrombocytopenia to readministration are the most serious side effects of clinical integrin αIIbβ3 antagonists such as RGD-containing peptides. Here we show that a non-RGD peptide ZDPI, identified from skin secretions of Amolops loloensis, inhibited platelet aggregation induced by agonists, such as adenosine diphosphate, collagen, arachidonic acid, PAR1AP, and integrin αIIbβ3 allosteric activator, and reduces soluble fibrinogen binding to activated platelets without perturbing adhesion numbers on immobilized fibrinogen. Further study showed that ZDPI preferred to bind to the active conformation of integrin αIIbβ3, and thus inhibited c-Src-mediated integrin signaling transduction. In contrast to currently used clinical blockers of integrin αIIbβ3, which are all conformation-unspecific blockers, ZDPI conformation specifically binds to activated integrin αIIbβ3, subsequently suppressing platelet spreading. In vivo study revealed that ZDPI inhibited carotid arterial thrombosis with limited bleeding and thrombocytopenia. A non-RGD peptide which targets the active conformation of integrin αIIbβ3, such as ZDPI, might be an excellent candidate or template to develop antithrombotics without significant bleeding and thrombocytopenia side effects.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Masaru Niki ◽  
Hong Jin ◽  
Anil K Chauhan ◽  
Steven R Lentz

Background Platelet agonists activate integrin αIIbβ3 to allow the binding of soluble fibrinogen (a process known as inside-out signaling). Subsequent platelet aggregation leads to αIIbβ3 outside-in signaling, which results in tyrosine phosphorylation of β3 and other proteins, cytoskeletal reorganization, and platelet spreading. It has been reported that the adapter protein Dok-1 binds to the cytoplasmic tail of β3 and inhibits αIIbβ3 activation, but the specific role of Dok-1 in regulating inside-out or outside-in platelet signaling remains undefined. Methods We assessed the effects of Dok-1 on platelet signaling and thrombosis in Dok-1 null (Dok-1-/-) mice. Inside-out signaling was assessed by measuring αIIbβ3 activation (using the JON/A antibody) and fibrinogen binding by flow cytometry after stimulation of platelets with thrombin, ADP, and/or the thromboxane A2 receptor agonist U46619. Outside-in signaling was examined by measuring platelet spreading and clot retraction. Tail-transection bleeding time and susceptibility to thrombotic occlusion of the carotid artery in response to photochemical injury (rose bengal) were also measured. Results No significant differences in JON/A or fibrinogen binding were detected between wild-type (Dok-1+/+) and Dok-1-/- platelets, suggesting that Dok-1 does not regulate inside-out signaling. In contrast, Dok-1-/- platelets exhibited increased clot retraction and enhanced spreading on fibrinogen upon thrombin stimulation compared to Dok-1+/+ platelets (P<0.05), suggesting that Dok-1 negatively regulates outside-in signaling. Compared with Dok-1+/+ mice, Dok-1-/- mice had shorter bleeding times (181±168 vs. 379±193 seconds; P<0.001) and Dok-1-/- mice had shorter times to stable occlusion times of the carotid artery after photochemical injury compared with Dok-1+/+ mice (16.4±6.1 vs. 25.0±8.1 minutes; P<0.05). Conclusions The adaptor protein Dok-1 functions to negatively regulate integrin αIIbβ3 outside-in signaling. Deficiency of Dok-1 results in a prothrombotic phenotype, with shorten bleeding times and enhanced arterial thrombosis.


Author(s):  
Kerstin Jurk ◽  
Katharina Neubauer ◽  
Victoria Petermann ◽  
Elena Kumm ◽  
Barbara Zieger

AbstractSeptins (Septs) are a widely expressed protein family of 13 mammalian members, recognized as a unique component of the cytoskeleton. In human platelets, we previously described that SEPT4 and SEPT8 are localized surrounding α-granules and move to the platelet surface after activation, indicating a possible role in platelet physiology. In this study, we investigated the impact of Sept8 on platelet function in vitro using Sept8-deficient mouse platelets. Deletion of Sept8 in mouse platelets caused a pronounced defect in activation of the fibrinogen receptor integrin αIIbβ3, α-granule exocytosis, and aggregation, especially in response to the glycoprotein VI agonist convulxin. In contrast, δ-granule and lysosome exocytosis of Sept8-deficient platelets was comparable to wild-type platelets. Sept8-deficient platelet binding to immobilized fibrinogen under static conditions was diminished and spreading delayed. The procoagulant activity of Sept8-deficient platelets was reduced in response to convulxin as determined by lactadherin binding. Also thrombin generation was decreased relative to controls. Thus, Sept8 is required for efficient integrin αIIbβ3 activation, α-granule release, platelet aggregation, and contributes to platelet-dependent thrombin generation. These results revealed Sept8 as a modulator of distinct platelet functions involved in primary and secondary hemostatic processes.


1997 ◽  
Vol 77 (01) ◽  
pp. 143-149 ◽  
Author(s):  
Annelies Schootemeijer ◽  
Gijsbert van Willigen ◽  
Hans van der Vuurst ◽  
Leon G J Tertoolen ◽  
Siegfried W De Laat ◽  
...  

SummaryThe migration of integrins to sites of cell-cell and cell-matrix contact is thought to be important for adhesion strengthening. We studied the lateral diffusion of integrin αIIbβ3 (glycoprotein Ilb/IIIa) in the plasma membrane of a cultured human megakaryocyte by fluorescence recovery after photobleaching of FITC-labelled monovalent Fab fragments directed against the P3 subunit. The diffusion of P3 on the unstimulated megakaryocyte showed a lateral diffusion coefficient (D) of 0.37 X10'9 cm2/s and a mobile fraction of about 50%. Stimulation with ADP (20 μM) or α-thrombin (10 U/ml) at 22° C induced transient decreases in both parameters reducing D to 0.21 X 10‘9 cm2/s and the mobile fraction to about 25%. The fall in D was observed within 1 min after stimulation but the fall in mobile fraction showed a lag phase of 5 min. The lag phase was absent in the presence of Calpain I inhibitor, whereas cytochalasin D completely abolished the decrease in mobile fraction. The data are compatible with the concept that cell activation induces anchorage of 50% of the mobile αIIbβ3 (25% of the whole population of receptor) to the cytoplasmic actin filaments, although, as discussed, other rationals are not ruled out.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2648-2656 ◽  
Author(s):  
Juan A. Rosado ◽  
Else M. Y. Meijer ◽  
Karly Hamulyak ◽  
Irena Novakova ◽  
Johan W. M. Heemskerk ◽  
...  

Abstract Effects of the occupation of integrin αIIbβ3 by fibrinogen on Ca++signaling in fura-2–loaded human platelets were investigated. Adding fibrinogen to washed platelet suspensions inhibited increases in cytosolic [Ca++] concentrations ([Ca++]i) evoked by adenosine diphosphate (ADP) and thrombin in a concentration-dependent manner in the presence of external Ca++ but not in the absence of external Ca++ or in the presence of the nonselective cation channel blocker SKF96365, indicating selective inhibition of Ca++entry. Fibrinogen also inhibited store-mediated Ca++ entry (SMCE) activated after Ca++ store depletion using thapsigargin. The inhibitory effect of fibrinogen was reversed if fibrinogen binding to αIIbβ3 was blocked using RDGS or abciximab and was absent in platelets from patients homozygous for Glanzmann thrombasthenia. Fibrinogen was without effect on SMCE once activated. Activation of SMCE in platelets occurs through conformational coupling between the intracellular stores and the plasma membrane and requires remodeling of the actin cytoskeleton. Fibrinogen inhibited actin polymerization evoked by ADP or thapsigargin in control cells and in cells loaded with the Ca++ chelator dimethyl BAPTA. It also inhibited the translocation of the tyrosine kinase p60src to the cytoskeleton. These results indicate that the binding of fibrinogen to integrin αIIbβ3 inhibits the activation of SMCE in platelets by a mechanism that may involve modulation of the reorganization of the actin cytoskeleton and the cytoskeletal association of p60src. This action may be important in intrinsic negative feedback to prevent the further activation of platelets subjected to low-level stimuli in vivo.


1998 ◽  
Vol 201 (4) ◽  
pp. 599-608 ◽  
Author(s):  
D J Hill ◽  
A F Rowley

The involvement of a putative integrin-like fibrinogen receptor in the aggregatory and phagocytic behaviour of thrombocytes (platelet equivalents of fish) from the rainbow trout Oncorhynchus mykiss was studied. Aggregation of trout thrombocytes was induced by the thromboxane mimetic U-46619 in the presence of trout fibrinogen. Thrombocyte aggregation was inhibited by the tetrapeptide RGDS, but not by RGES or fibrinogen binding inhibitor peptide (HHLGGAKQAGDV). A range of monoclonal antibodies against the human platelet integrin alphaIIbbeta3 (anti-CD41a, anti-beta3 and LK7r) showed no reactivity with trout thrombocytes. Subsequently, a panel of monoclonal antibodies was raised against thrombocyte membrane preparations in an attempt to obtain an antibody against the putative integrin fibrinogen receptor. Of these monoclonal antibodies, four were found to inhibit thrombocyte aggregation, namely 12G2, 30D8, 32F8 and 32H10. The antibody 32H10 was shown significantly to inhibit the attachment of thrombocytes to immobilised trout fibrinogen, suggesting that it and the other antibodies recognise the putative fibrinogen receptor on trout thrombocytes. FITC-labelled Bacillus cereus were employed as test particles to prove that thrombocytes internalise bacteria via an active process and not simply by passive sequestration into the open canalicular system. Preincubation of bacteria with trout fibrinogen resulted in a significant increase in the number of thrombocytes exhibiting phagocytosis. This enhancement of phagocytosis by preincubation of B. cereus with trout fibrinogen could be inhibited by the tetrapeptide RGDS, but not by RGES, hence implicating the putative fibrinogen receptor in the internalisation of microorganisms. The relevance of these findings to the possible existence of an integrin-like receptor on trout thrombocytes is discussed.


1994 ◽  
Vol 5 (1) ◽  
pp. 36-46
Author(s):  
M P Gawaz ◽  
G Dobos ◽  
M Späth ◽  
P Schollmeyer ◽  
H J Gurland ◽  
...  

Impaired platelet function and a bleeding tendency are well-recognized complications of chronic renal failure. Because the fibrinogen receptor GPIIb-IIIa plays a central role in platelet aggregation and adhesion to the subendothelium, it was reasoned that a defect in this receptor may underlie the impaired platelet function in uremia. To test this hypothesis, the function of this receptor in the platelets of 11 uremic patients was studied. Aggregation studies were performed with flow cytometric techniques with anti-GPIIb-IIIa conformation-specific monoclonal antibodies (mAb) (anti-LIBS1 and anti-PMI-1). Antifibrinogen and antithrombospondin mAb were used to characterize fibrinogen binding to GPIIb-IIIa and the release of alpha-granules, respectively. Platelets from patients with chronic renal failure showed significantly decreased binding of conformation-dependent anti-LIBS1 mAb after ADP, phorbol myristate acetate, or RGD-peptide stimulation compared with normal controls, suggesting a defect related to the ability of the fibrinogen receptor to undergo a conformational change. Moreover, antifibrinogen and antithrombospondin binding to activated platelets were reduced in uremic patients, implying impairment of both ligand-binding and alpha-granule release. Hemodialysis partially restored GPIIb-IIIa function, which may account for the observed effects of this therapy in restoring platelet aggregation. These findings indicate that platelets of patients with chronic renal failure reveal an aggregation defect at least partially due to an intrinsic GPIIb-IIIa dysfunction and the presence of a putative uremic toxin that inhibits fibrinogen binding to GPIIb-IIIa.


Sign in / Sign up

Export Citation Format

Share Document