Perforin Gene Mutations in Patients with Acquired Aplastic Anemia.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 998-998
Author(s):  
Elena E. Solomou ◽  
Federica Gibellini ◽  
Stephen J. Chanock ◽  
Daniela Malide ◽  
Maria Berg ◽  
...  

Abstract Perforin is a cytolytic protein expressed mainly in activated cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. In T and NK cells perforin is stored in cytoplasmic granules and is essential for killing via non-Fas-mediated mechanisms. Perforin regulates the translocation of granzyme B from cytotoxic cells into target cells; after entering the target-cell granzyme B migrates to the target cell nucleus to participate in triggering apoptosis. Functional perforin is essential for normal CTL and NK cell function; without perforin CTL and NK cells show reduced or no cytolytic effect. Inherited perforin mutations account for 20–40% of familial hemophagocytic lymphohistiocytosis, an autosomal recessive fatal disease of early childhood characterized by uncontrolled accumulation of activated T cells and macrophages in many organs, increased Th1 cytokines and absent functional perforin. Acquired aplastic anemia (AA), the paradigm of immune mediated bone marrow failure syndromes, is characterized by hematopoietic stem cell destruction by activated T cells and Th1 cytokines. We examined whether mutations in Prf1 occur in AA; peripheral blood DNA samples from 75 patients and 302 controls were analyzed. Three novel nonsynonymous Prf1 mutations among five unrelated patients (ages: 21, 31, 33, 75, and 77 years old), not present in controls, were discovered; two polymorphisms were also identified (H300H, A274A). The mutations were in the coding region of Prf1 gene. In exon 2, arginine was replaced by histidine in one patient (CGT/CAT, R4H) and in 3 patients the same A91V mutation was identified (GCG/GTG, alanine to valine substitution). In exon 3, serine was replaced by isoleucine (S388I; AGC/ATC) in one patient. Germ-line origin of the Prf1 mutations was established by their presence also in DNA from buccal mucosa obtained from affected AA patients. Four of five patients with mutations showed some hemophagocytosis in the bone marrow examination when first diagnosed, but there were no other typical features of hemophagocytic syndrome such as hepatosplenomegaly or altered liver function tests. None of the patients with Prf1 mutations experienced hematologic recovery with immunosuppressive treatment. Perforin protein levels in all patients carrying mutations were very low or absent. By confocal microscopy, CD8 cells from patients with Prf1 mutations had complete absence of perforin granules (perforin and cathepsin D showed the expected pattern of co-localization in controls’ cytotoxic granules). NK cell killing efficiency from patients carrying mutations in a standard Cr51-release cytolytic assay was significantly decreased compared to controls. Prf1 gene mutations may be related to a more severe phenotype of AA associated with marrow hemophagocytosis and failure to respond to immunosuppression. Mutations in the immune regulatory mechanisms identified in young children can manifest in adults without typically associated clinical findings or a suggestive family history. Mechanistically, Prf1 gene mutations help explain the aberrant proliferation and activation of cytotoxic T cells that are destructive of hematopoietic stem cells in AA and may be useful as predictive factors for responses to immunosuppressive treatments and the decision to rapidly undertake stem cell replacement. Prf1 gene mutations are genetic risk factors for bone marrow failure syndromes.

Blood ◽  
2007 ◽  
Vol 109 (12) ◽  
pp. 5234-5237 ◽  
Author(s):  
Elena E. Solomou ◽  
Federica Gibellini ◽  
Brian Stewart ◽  
Daniela Malide ◽  
Maria Berg ◽  
...  

Abstract Perforin is a cytolytic protein expressed mainly in activated cytotoxic lymphocytes and natural killer cells. Inherited perforin mutations account for 20% to 40% of familial hemophagocytic lymphohistiocytosis, a fatal disease of early childhood characterized by the absence of functional perforin. Aplastic anemia, the paradigm of immune-mediated bone marrow failure syndromes, is characterized by hematopoietic stem cell destruction by activated T cells and Th1 cytokines. We examined whether mutations in the perforin gene occurred in acquired aplastic anemia. Three nonsynonymous PRF1 mutations among 5 unrelated patients were observed. Four of 5 patients with the mutations showed some hemophagocytosis in the bone marrow at diagnosis. Perforin protein levels in these patients were very low or absent, and perforin granules were completely absent. Natural killer (NK) cell cytotoxicity from these patients was significantly decreased. Our data suggest that PRF1 genetic alterations help explain the aberrant proliferation and activation of cytotoxic T cells and may represent genetic risk factors for bone marrow failure.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3906-3906
Author(s):  
Lixia Sheng ◽  
Huarui Fu ◽  
Yongxian Hu ◽  
Shan Fu ◽  
Yamin Tan ◽  
...  

Abstract In murine models, donor natural killer cells(NK) exhibit immunoregulatory functions to alloreactive T cells during the initiation of acute graft versus host disease(aGVHD). The immunoregulatory role of NK cells in human aGVHD remains unclear. Here we compared the regulation of alloreactive donor T cell response by donor CD56+NK cells in 63 patients receiving allogeneic hematopoietic stem cell transplantation(allo-HSCT) and their donors. We found that NK cells from donors effectively suppressed T cell proliferation in response to Allo-DCs, showing cytotoxicity against activated proliferating T cells but not resting T cells. Subgroup of NK cells influenced the cytotoxicity against allo-reactive T cells, NKG2A-CD57+ NK cells degranulated to activated auto-T cells more potently than NKG2A+CD57- subgroup, suggesting NKG2A and CD57 expression patterns influenced NK cytotoxicity against activated T cells. When we analyzed the alteration in potential ligands for NK activating receptors on CD3+T cells during stimulated by allo-antigens, we found that activated T cells expressed higher levels of NKG2D-L(MICA/B,ULBP-1/ 2/ 4), DNAM1-L(PVR), and LFA-L(ICAM-1 and ICAM-2). Using neutralizing antibodies to block the interaction between NK receptors and correspondence ligands, we found that both activating receptor(LFA-1,NKG2D and DNAM-1) and inhibited receptor(NKG2A and TIM-3) participated this process. In the first 3 months post HSCT, reconstituted NK cells were mainly CD56bright and NKG2A+ CD57- subgroup, and percent of CD11b+CD27+ subgroup was significantly higher than in health donors, indicating relative immature subgroup predominated the early reconstituted NK cells after transplantation. By evaluating the dynamic restitution regularity of NK cell receptoires after Allo-HSCT, we found that the early reconstituted NK cells had a notably decreased surface expression of DNAM-1 and NKG2D compared with their corresponding donors. Furthermore, we compared the expression of receptors on CD56+NK cells from patients who developed aGVHD (group GVHD) with those without aGVHD (group non-GVHD) at 4 weeks after transplantation. Interestingly, we found that decreased expression of DNAM-1 and NKG2D and enhanced NKG2A expression are associated with aGVHD. When we assessed the expression of ligands for activating NK-cell receptors on activated T cells in aGVHD and non-aGVHD patients, we found that T cells in aGVHD patients expressed higher level of PVR(ligand for DNAM-1) and MICA/B(ligand for NKG2D) when compared with no-aGVHD patients or donors. To explore whether the subgroup alteration and reduced activating receptors expression on NK cells in aGVHD patients affected their capacity of GVHD regulation, we next examined NK-cell degranulation and cytotoxicity to allogeneic antigen activated T cells. The results demonstrated that the ability of donor NK cells to inhibit and lyse autologous activated T cells is impaired during human GVHD. Of clinical relevance, the tyrosine kinase inhibitor(TKI) dasatinib enhanced NK cytotoxicity towards activated T cells by up-regulating the expression of CD226 and NKG2D and enhancing the proportion of CD57+NKG2A- subgroup. This study demonstrates for the first time that the ability of donor NK cells to inhibit alloreactive T cells response is impaired during human GVHD and dasatinib may reinforced the GVHD-regulation function of NK cells, which potentially may provide an opportunity for therapeutic treatment of GVHD. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Mamiko Noda ◽  
Yoshiki Omatsu ◽  
Tatsuki Sugiyama ◽  
Shinya Oishi ◽  
Nobutaka Fujii ◽  
...  

Abstract Natural killer (NK) cells are granular lymphocytes that are generated from hematopoietic stem cells and play vital roles in the innate immune response against tumors and viral infection. Generation of NK cells is known to require several cytokines, including interleukin-15 (IL-15) and Fms-like tyrosine kinase 3 ligand, but not IL-2 or IL-7. Here we investigated the in vivo role of CXC chemokine ligand-12 (CXCL12) and its primary receptor CXCR4 in NK-cell development. The numbers of NK cells appeared normal in embryos lacking CXCL12 or CXCR4; however, the numbers of functional NK cells were severely reduced in the bone marrow, spleen, and peripheral blood from adult CXCR4 conditionally deficient mice compared with control animals, probably resulting from cell-intrinsic CXCR4 deficiency. In culture, CXCL12 enhanced the generation of NK cells from lymphoid-primed multipotent progenitors and immature NK cells. In the bone marrow, expression of IL-15 mRNA was considerably higher in CXCL12-abundant reticular (CAR) cells than in other marrow cells, and most NK cells were in contact with the processes of CAR cells. Thus, CXCL12-CXCR4 chemokine signaling is essential for NK-cell development in adults, and CAR cells might function as a niche for NK cells in bone marrow.


2020 ◽  
Vol 4 (21) ◽  
pp. 5540-5546
Author(s):  
Laurent Schmied ◽  
Patricia A. Olofsen ◽  
Pontus Lundberg ◽  
Alexandar Tzankov ◽  
Martina Kleber ◽  
...  

Abstract Acquired aplastic anemia and severe congenital neutropenia (SCN) are bone marrow (BM) failure syndromes of different origin, however, they share a common risk for secondary leukemic transformation. Here, we present a patient with severe aplastic anemia (SAA) evolving to secondary chronic neutrophilic leukemia (CNL; SAA-CNL). We show that SAA-CNL shares multiple somatic driver mutations in CSF3R, RUNX1, and EZH2/SUZ12 with cases of SCN that transformed to myelodysplastic syndrome or acute myeloid leukemia (AML). This molecular connection between SAA-CNL and SCN progressing to AML (SCN-AML) prompted us to perform a comparative transcriptome analysis on nonleukemic CD34high hematopoietic stem and progenitor cells, which showed transcriptional profiles that resemble indicative of interferon-driven proinflammatory responses. These findings provide further insights in the mechanisms underlying leukemic transformation in BM failure syndromes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3244-3244
Author(s):  
Gabriele Multhoff ◽  
Catharina Gross ◽  
Anne Dickinson ◽  
Ernst Holler

Abstract Purpose: Hsp70 was frequently found on the plasma membrane of bone marrow-derived leukemic blasts, but not on normal bone marrow cells. Hsp70 membrane expression could be correlated with protection against therapy-induced apoptosis (Nylandsted et al 2004). In contrast, these tumor cells have been found to be highly sensitive to the cytolytic attack mediated by NK cells. In vitro, Hsp70-activated NK cells efficiently lysed autologous Hsp70 membrane-positive leukemic blasts (Gehrmann et al 2003). Granzyme B release served as a surrogate marker for estimating the cytolytic response of NK cells against Hsp70 membrane-positive tumor target cells (Gross et al 2003). Here, we studied the development of NK and T cells in AML patients (n=6) after allogeneic SCT at different time points (days 14–20, 45, 90, 180, 1 year) after allogeneic stem cell transplantation (SCT). Methods: HLA class I, HLA-E and Hsp70 surface expression was determined on all patient-derived leukemic blasts of the bone marrow by flow cytometry. The amount of NK and T cells was investigated by multicolor flow cytometry using CD3/ CD16 and CD56 and CD94/ CD56 antibody-combinations detecting NK cell specific markers. Effector cell function was tested in a granzyme B ELISPOT assay against patient-derived leukemic blasts and K562 cells. Results: All tested leukemic blasts were positive for HLA class I, HLA-E, and Hsp70. After induction therapy the amount of CD3-negative, CD56/CD94-positive NK cells was 28±16%, that of CD3-positive T cells was 58±3%. On days 14–21 after allogeneic SCT, 58±9% of the donor-derived peripheral blood lymphocytes (PBL) were CD3-negative, CD56/CD94-positive NK cells; the amount of CD3-positive T cells was 26±7.5%. On day 45, the amount of NK cells further increased up to 68±7.9%; that of T cells further decreased down to 16±5.6%. On day 90 and day 180 the amount of NK cells was still 41±10%; that of T cells was 29±12%. Interestingly, high NK cell counts correlated with an increased cytolytic response against leukemic blast and K562 cells. One year after allogeneic SCT, NK (20±1%) and T cell (52±18%) ratios were comparable to that of healthy human individuals. Conclusions: Between days 14 and 180 after allogeneic SCT, the amount of NK cells was significantly elevated if compared to that of T cells. Concomitantly, cytolytic function against leukemic blasts was significantly elevated. Normal levels, in the composition of NK and T cells were reached 1 year after SCT. Project funded by EU-TRANS-EUROPE grant QLK3-CT-2002-01936.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2827-2827
Author(s):  
Akiko Nakamura ◽  
Tsutomu Shichishima ◽  
Hideyoshi Noji ◽  
Kazuhiko Ikeda ◽  
Yukio Maruyama

Abstract PNH is one disorder of bone marrow failure syndromes, including aplastic anemia and myelodysplastic syndrome. It is considered that immunologic mechanisms by cytotoxic T lymphocytes (CTLs) and interferon-γ (IFN-γ) contribute to hypoplastic bone marrow of these disorders. In addition, PNH is an acquired clonal disorder of the hematopoietic stem cell. Recently, it has been reported that analysis of T cell-antigen receptor (TCR)-Vβ repertoires, especially TCR-Vβ CDR3 (complementarity- determining region 3) spectrotypes, is an effective tool to study immunologic mechanisms by CTLs in pathophysiology of PNH (Karadimitris et al, Blood, 2000; Kook et al, Blood, 2002; Risitano et al, Blood, 2002). In the present study, we investigated 21 kinds of TCR-Vβ repertoires by flow cytometry in CD4 and CD8 lymphocytes from 5 PNH patients and a healthy volunteer and the TCR-Vβ CDR3 spectrotypes using polymerase chain reaction assay in CD4 and CD8 lymphocytes from 3 of 5 PNH patients and the control. We also quantitated intracellular IFN-γ in CD4 and CD8 lymphocytes from 5 PNH patients and the control according to the method by Sloand et al (Blood, 2002). We found no specific TCR-Vβ repertoires in CD4 and CD8 lymphocytes from PNH patients compared with the control. The TCR-Vβ repertoires with relative increase of CD4 or CD8 lymphocytes (over 10 of ratio of the proportion of each TCR-Vβ repertoire in a PNH patient/the proportion of the same TCR-Vβ repertoire in a healthy volunteer) were 13.6 or 4 and 22 in Case 1, 3 and 11 or 1 in Case 2, 3 and 13.6 or 3 in Case 3, 5.3 and 7.2 or 2, 3, 7, and 18 in Case 4, and 4, 5.2, 13.6, 16, and 23 or 1 and 14 in Case 5, respectively. TCR-Vβ CDR3 spectrotyping showed that in CD4 lymphocytes most CDR3 patterns were chiefly polyclonal, except for one oligoclonal (Case 1) and one monoclonal (Case 3) patterns of TCR-Vβ25; in CD8 lymphocytes most CDR3 consisted of polyclonal, oligoclonal, and/or monoclonal patterns, suggesting the possibility that CD8 lymphocytes recognize much more antigens of abnormal cells, probably including PNH clones, than CD4 lymphocytes. Unfortunately, we found the same patterns as described above in CD8 lymphocytes from the control, although CD4 lymphocytes from the control presented only polyclonal pattern of CDR3. Quantitative analyses of IFN-γ showed that index values of IFN-γ in CD4 and CD8 lymphocytes from PNH patients were higher than those from the control. However, we did not find any significant correlations between the spectrotypes of TCR-Vβ CDR3 and the index values of IFN-γ in PNH patients, suggesting that TCR-Vβ repertoires with monoclonal and oligoclonal CDR3 patterns do not necessarily produce much IFN-γ. In conclusion, our findings suggest that TCR-Vβ CDR3 spectrotyping is more effective tool to resolve some immune mechanisms of pathophysiology in PNH, especially by auto-reactive CTLs.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4858-4858
Author(s):  
Guanghua Chen ◽  
De Pei Wu ◽  
Ming Zhen Yang ◽  
Xiao Wen Tang ◽  
Ai-ning Sun

Abstract Natural killer(NK) cells are innate effector cells of the immune system, believed to limit viremia and tumor burden before the onset of adaptive T and B cell immunity. NK cells are potent effector cells in allogeneic bone marrow transplantation. NK cell activity is partially controlled through interactions between killer Ig-like receptors on NK cells and their respective HLA class I ligands. Immunosuppressive agents including cyclosporin, FK506 and Rapamune are utilized in clinical hematopoietic stem cell transplantation. Little is known about the effects of immunosuppressive agents on NK cells post bone marrow transplantation. The in vivo effects of Rapamune on NK cells were determined in an allogeneic bone marrow transplantation model. Splenic NK cell levels in recipients treated with Rapamune decrease markedly. NK cell proliferation and function are significantly decreased in the presence of Rapamune. Studying the differential effects of immunosuppressive drugs on NK cell function is critical in clinical hematopoietic stem cell transplantation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1489-1489
Author(s):  
Takamasa Katagiri ◽  
Zhirong Qi ◽  
Yu Kiyu ◽  
Naomi Sugimori ◽  
J. Luis Espinoza ◽  
...  

Abstract Abstract 1489 Poster Board I-512 The hematopoietic stem cell (HSC) differentiation pathway in humans remains largely unknown due to the lack of an appropriate in vivo assay allowing the growth of HSCs as well as of clonal markers that enable the tracing of their progenies. Small populations of blood cells deficient in glycosylphosphatidylinositol-anchored proteins (GPI-APs) such as CD55 and CD59 are detectable in approximately 50% of patients with aplastic anemia (AA) and 15% of patients with refractory anemia (RA) of myelodysplastic syndrome defined by the FAB classification. Such blood cells with the paroxysmal nocturnal hemoglobinuria (PNH) phenotype (PNH-type cells) are derived from single PIGA mutant HSCs and their fate depends on the proliferation and self-maintenance properties of the individual HSCs that undergo PIG-A mutation by chance (Blood 2008;112:2160, Br J Haematol 2009 in press) Analyses of the PNH-type cells from a large number of patients on the diversity of lineage combination may help clarify the HSC differentiation pathway in humans because PIG-A mutant HSCs in patients with bone marrow failure appear to reflect the kinetics of healthy HSCs. Therefore, different lineages of peripheral blood cells were examined including glycophorin A+ erythrocytes (E), CD11b+ granulocytes (G), CD33+ monocytes (M), CD3+ T cells (T), CD19+ B cells (B), and NKp46+ NK cells (Nk) from 527 patients with AA or RA for the presence of CD55−CD59− cells in E and G, and CD55−CD59−CD48− cells in M,T, B, Nk with high sensitivity flow cytometry. Two hundred and twenty-eight patients (43%) displayed 0.003% to 99.1% PNH-type cells in at least one lineage of cells. The lineage combination patterns of PNH-type cells in these patients included EGM in 71 patients (31%), EGMTBNk in 43 (19%), EG in 37 (16%), T alone 14 (6%), EGMBNk in 11 (5%), G alone in 10 (4%), GM in 10 (4%), EGMNk in 7 (3%), EGMT in 7 (3%), EGMB in 6 (3%), EM in 5 (2%), EGMTB in 3 (1%), EGNk in 1 (0.4%), EGMTNk in 1 (0.4%), GMTB in 1 (0.4%), and GT in 1 (0.4%) (Table). All patterns included G or M, except for 14 patients displaying PNH-type T cells alone. No patients showed TB or TBNk patterns suggestive of the presence of common lymphoid progenitor cells. Peripheral blood specimens from 123 patients of the 228 patients possessing PNH-type cells were examined again after 3 to 10 months and all patients showed the same combination patterns as those revealed by the first examination. PIG-A gene analyses using sorted PNH-type cells from 3 patients revealed the same mutation in G and Nk for 1 patient and in G and T for 2 patients. These findings indicate that human HSCs may take a similar differentiation pathway to that of murine HSCs, the ‘myeloid-based model’ that was recently proposed by Kawamoto et al. (Nature 2008; 10:452), though the cases with PNH-type T cells alone remain to be elucidated. Table. Lineages of cells containing PNH-type cells in patients with AA or RA. The number in the parenthesis denotes the proportion of patients showing each combination pattern in the total patients possessing PNH-type cells. (+ ; presence of PNH-type cells) Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4617-4617
Author(s):  
Mei Zhang ◽  
Di Wu ◽  
Pengcheng He ◽  
Jing Li ◽  
Jieying Xi ◽  
...  

Abstract Allogeneic haemopoietic stem-cell transplantation (HSCT) is a definitive cure for many malignant blood diseases. Ideal donors for transplantation are those with completely matched human leukocyte antigen (HLA), kin-relative or no-kin-relative. However only about 25% to 30% people could find HLA matched related-donor and there is only 1/100,000 opportunity to find a matched HLA in unrelated group. Recent years HLA haploidentical transplantation play more and more important role in across the histocompatibility barrier and make about 90% patients possible to get transplantation. However GVHD is still main problem during the transplantation. Recent studies show that natural killer (NK) cells could specially attack recipient antigen-presenting cells (APCs), shown to be responsible for decreasing and improving GVHD. To explore the effect of NK cell on GVHD after H-2 haploidentical bone marrow transplantation(BMT) in mice, we purified NK cells by positive selection with CD49b (DX5) MicroBeads (Miltenyi Biotec product) from donor mice as ingredient in the conditioning regimens, and observed the influence of donor NK cells on GVHD and evaluated the potential role of donor NK cells in protecting against GVHD. Murine model of H-2 haploidentical BMT was established by using Balb/c(H-2d) mouse as recipient, and Balb/c (H-2d)×C57BL/6 (H-2b)(H-2d/b) mouse as donor. Lethally irradiated Balb/c(H-2d) mice were transplanted with Balb/c(H-2d)×C57BL/6(H-2b)(H-2d/b) bone marrow containing donor peripheral T cells and/or NK cells. GVHD and survival rate were studied by observing clinical manifestations and pathological changes. In the group with bone marrow plus T cells, GVHD was induced in 90% mice; but in the group plus with low concentration of NK cells, GVHD was induced in 20% mice; and in the group transplanted with high concentration of NK cells, GVHD was induced only in 10% mice. Compared with the group transplanted only with T cells, the incidences of GVHD in the latter two groups decreased obviously (P<0.01) and the survival rate at 15, 30, 45 and 60 days increased obviously (P<0.01). In mouse H-2 haploidentical BMT, alloreactive NK cells can reduce the incidence of GVHD and increase the survival rate after transplantation in mice.


Sign in / Sign up

Export Citation Format

Share Document