TLR Agonist Induced Cytokine Production in Human Multipotent Mesenchymal Stromal Cells: A Potential Mechanism How Hematopoiesis Is Enhanced during Generalized Inflammatory Conditions.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1411-1411
Author(s):  
Steffen Boettcher ◽  
Patrick Ziegler ◽  
Markus G. Manz

Abstract Toll-like receptors (TLRs) function as receptors for different conserved pathogen associated products as well as certain host derived molecules. TLRs are expressed in several hematopoietic and non-hematopoietic cells. Their activation plays a key role in innate and adaptive immune responses to infectious agents, as well as in the development of pathologic conditions like tissue damage and cancer. Human multipotent mesenchymal stromal cells (MSCs) have been shown to differentiate into various mesenchymal tissues such as bone, cartilage, and fat, as well as marrow and lymphoid organ stroma cells. Human MSCs are able to maintain CD34+ cells to some extent in vitro. Furthermore, it has been demonstrated that upon intra bone marrow transplantation into adult immunodeficient mice MSC derived cells support human hematopoiesis in vivo. We hypothesized that MSCs express TLRs and are capable to respond to TLR agonists by changing their cytokine expression pattern in order to more efficiently support hematopoiesis according to respective needs in inflammatory conditions. MSCs from human bone marrow, cord blood, and umbilical cord whartons jelly were cultured by plastic adherence in IMDM 20% FCS, 1–8M dexamethasone (only during first 3 weeks), expanded for 2 passages, and subsequently analyzed. MSCs expressed gene-transcripts for IL-6, IL-7, IL-11, IL-15, SCF, TPO, FLT3L, M-CSF, GM-CSF, LIF, and SDF-1, while G-CSF was rarely detectable. Consistently, respective cytokines were measured in supernatants at the following, declining levels (pg/ml): IL-6 (10000–10E6) > SDF-1 > IL-11 > M-CSF > IL-7 > LIF > SCF, whereas GM-CSF was rarely detectable, G-CSF, FLT3-L, and TPO were not detectable by ELISA. MSCs were further analyzed for expression of TLRs by semiquantitative RT-PCR. TLR 1, 3, 4, 5, 6, and 9 expression, but not TLR 2, 7, 8, and 10 expression was detectable. Compared to human conventional (BDCA-1+, CD14−, CD19−) and plasmacytoid (BDCA-4+,CD14−,CD19−) blood dendritic cells, MSCs expressed TLR-3 and TLR-4 at levels up to 2 log higher than did conventional DCs, while TLR 9 expression was low. Upon in vitro stimulation with LPS (TLR-4 agonist), MSCs produced previously undetectable G-CSF and GM-CSF, and M-CSF levels increased about 4 fold compared to untreated MSCs, whereas stimulation with CpG motifs (TLR-9 agonists) did not lead to changes in cytokine release detected in supernatants. In co-culture experiments using MSCs as a feeder layer for cord blood CD34+ cells, MSCs supported hematopoiesis and the development of myeloid cells. Importantly, MSC preconditioning with LPS led to an 1,7 fold increase in total hematopoietic cell number, while preconditioning with CpG had no measurable effect. These results demonstrate that MSCs express certain TLRs, and are capable to respond to pathogen associated molecules with an increase in secretion of hematopoiesis-relevant cytokines, and thus reveal a potential mechanism how hematopoiesis is enhanced during generalized inflammatory conditions, supporting e.g. in case of gram-negative sepsis efficient innate immune responses.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1652-1652
Author(s):  
Patrick Ziegler ◽  
Steffen Boettcher ◽  
Hildegard Keppeler ◽  
Bettina Kirchner ◽  
Markus G. Manz

Abstract We recently demonstrated human T cell, B cell, dendritic cell, and natural interferon producing cell development and consecutive formation of primary and secondary lymphoid organs in Rag2−/−gc−/− mice, transplanted as newborns intra-hepatically (i.h.) with human CD34+ cord blood cells (Traggiai et al., Science 2004). Although these mice support high levels of human cell engraftment and continuous T and B cell formation as well as CD34+ cell maintenance in bone marrow over at least six month, the frequency of secondary recipient reconstituting human hematopoietic stem and progenitor cells within the CD34+ pool declines over time. Also, although some human immune responses are detectable upon vaccination with tetanus toxoid, or infection with human lymphotropic viruses such as EBV and HIV, these responses are somewhat weak compared to primary human responses, and are inconsistent in frequency. Thus, some factors sustaining human hematopoietic stem cells in bone marrow and immune responses in lymphoid tissues are either missing in the mouse environment, or are not cross-reactive on human cells. Human mesenchymal stem cells (MSCs) replicate as undifferentiated cells and are capable to differentiate to multiple mesenchymal tissues such as bone, cartilage, fat, muscle, tendon, as well as marrow and lymphoid organ stroma cells, at least in vitro (e.g. Pittenger et al., Science 1999). Moreover, it was shown that MSCs maintain CD34+ cells to some extend in vitro, and engraft at low frequency upon transplantation into adult immunodeficient mice or fetal sheep as detected by gene transcripts. We thus postulated that co-transplantation of cord blood CD34+ cells and MSCs into newborn mice might lead to engraftment of both cell types, and to provision of factors supporting CD34+ maintenance and immune system function. MSCs were isolated and expanded by plastic adherence in IMDM, supplemented with FCS and cortisone (first 3 weeks) from adult bone marrow, cord blood, and umbilical vein. To test their potential to support hemato-lymphopoiesis, MSCs were analyzed for human hemato-lymphotropic cytokine transcription and production by RT-PCR and ELISA, respectively. MSCs from all sources expressed gene-transcripts for IL-6, IL-7, IL-11, IL-15, SCF, TPO, FLT3L, M-CSF, GM-CSF, LIF, and SDF-1. Consistently, respective cytokines were detected in supernatants at the following, declining levels (pg/ml): IL-6 (10000-10E6) > SDF-1 > IL-11 > M-CSF > IL-7 > LIF > SCF > GM-CSF (0–450), while FLT3L and TPO were not detectable by ELISA. Upon i.h. transplantation of same passage MSCs (1X10E6) into sublethally irradiated (2x2 Gy) newborn Rag2−/−gc−/− mice, 2-week engraftment was demonstrated by species specific b2m-RT-PCR in thymus, spleen, lung, liver and heart in n=7 and additionally in thymus in n=3 out of 13 animals analyzed. Equally, GFP-RNA transcripts were detectable in the thymus for up to 6 weeks, the longest time followed, upon co-transplantation of same source CD34+ cells and retrovirally GFP-transduced MSCs in n=2 out of 4 animals. Further engraftment analysis of ongoing experiments will be presented. Overall, these results demonstrate that human MSC produce hemato-lymphoid cytokines and engraft in newborn transplanted Rag2−/−gc−/− mice, at least at early time-points analyzed. This model thus might allow studying hematopoietic cell and MSC-derived cell interaction, and might serve as a testing system for MSC delivered gene therapy in vivo.


Blood ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 1560-1565 ◽  
Author(s):  
Kenji Takai ◽  
Junichi Hara ◽  
Kunio Matsumoto ◽  
Gaku Hosoi ◽  
Yuko Osugi ◽  
...  

Bone marrow (BM) stromal cells are required for normal hematopoiesis. A number of soluble factors secreted by these cells that mediate hematopoiesis have been characterized. However, the mechanism of hematopoiesis cannot be explained solely by these known factors, and the existence of other, still unknown stromal factors has been postulated. We showed that hepatocyte growth factor (HGF ) is one such cytokine produced by human BM stromal cells. BM stromal cells were shown to constitutively produce HGF and also to express the c-MET/HGF receptor. The production of HGF was enhanced by addition of heparin and phorbol ester. Dexamethasone and tumor growth factor-β (TGF-β) inhibited the production of HGF. Interleukin-1α (IL-1α) tumor necrosis factor-α (TNF-α), and N6,2′-o-dibutyryl-adenosine-3′:5′-cyclic monophosphate (dbc-AMP) showed no obvious influence on HGF production. Western blot analysis of HGF derived from BM stromal cells showed two bands at 85 and 28 kD corresponding to native and variant HGF, respectively. Addition of recombinant HGF significantly promoted the formation of burst-forming unit-erythroid (BFU-E) and colony-forming unit-granulocyte erythroid macrophage (CFU-GEM) by BM mononuclear cells in the presence of erythropoietin and granulocyte-macrophage colony-stimulating factor (GM-CSF ), but the formation of CFU-GM was not modified. However, HGF had no effects on colony formation by purified CD34+ cells. Within BM mononuclear cells, c-MET was expressed on a proportion of cells (CD34−, CD33+, CD13+, CD14+, and CD15+), but was not found on CD34+ cells. We conclude that HGF is constitutively produced by BM stromal cells and that it enhances hematopoiesis. In addition, expression of c-MET on the stromal cells suggests the presence of an autocrine mechanism, operating through HGF, among stromal cells.


2006 ◽  
Vol 141 (4) ◽  
pp. 530-535 ◽  
Author(s):  
N. S. Sergeeva ◽  
I. K. Sviridova ◽  
V. A. Kirsanova ◽  
S. A. Akhmedova ◽  
N. V. Marshutina ◽  
...  

2014 ◽  
Vol 93 (5) ◽  
pp. 384-391 ◽  
Author(s):  
Luisa Milazzo ◽  
Francesca Vulcano ◽  
Alessandra Barca ◽  
Giampiero Macioce ◽  
Emanuela Paldino ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2888-2888
Author(s):  
Ana Frias ◽  
Christopher D. Porada ◽  
Kirsten B. Crapnell ◽  
Joaquim M.S. Cabral ◽  
Esmail D. Zanjani ◽  
...  

Abstract The in vitro culture of a hematopoietic stem cell (HSC) graft with either media containing animal-derived components or a feeder layer with ill-defined pathogenic potential such as xenogeneic cell lines or cells modified by viral transformation poses risks that concern scientists and regulatory agencies. In the present studies, we avoided these risks by evaluating the ability of a human stromal-based serum free culture system (hu-ST) to support the ex-vivo expansion/maintenance of human CB HSC. CB CD34+ enriched cells were cultured in serum free medium in the presence of hu-ST with SCF, bFGF, LIF and Flt-3, and the cultures were analyzed for expansion, phenotype and clonogenic ability. We have previously reported the ability of this culture system to allow the successful expansion/maintenance of HSC along the myeloid pathway. In the present study, we investigated whether we could further develop this culture system to simultaneously expand myelopoiesis and lymphopoiesis in vitro. To this end, cord blood CD34+ cells were cultured for a total of 28 days and analyzed every 3 days for expansion and phenotype. There was a progressive increase in CD34 cell number with time in culture. The differentiative profile was primarily shifted towards the myeloid lineage with the presence of CD33, CD15, and CD14. However, a significant number of CD7+ cells were also generated. At week 2 of culture, we observed that 30% of the cells in the culture were CD7 positive. These CD7+CD2-CD3-CD5-CD56-CD16-CD34- cells were then sorted and either plated on top of new irradiated hu-ST layers in the presence of SCF, FLT-3, IL-7, IL-2, and IL-15, or cultured with IL-4, GM-CSF, and FLT-3 in the absence of stroma. Both of these cultures were maintained for an additional 2 weeks. In both sets of cultures, further expansion in the total cell number occurred with the time in culture, and by the end of the week 2, we observed that 25.3±4.18% of the cells had become CD56+ CD3-, a phenotype consistent with that of NK cells. Furthermore, cytotoxicity assays were performed and showed cytotoxic activity that increased in an E:T ratio-dependent fashion. 38.6% of the CD7+ cells grown in the presence of IL-4, GM-CSF, and FLT-3 became CD123+CD11c-, a phenotype characteristic of nonactivated dendritic cells, while 7.3–12.1% adopted an activitated dendritic cell phenotype CD83+CD1a+. In summary, we developed an in vitro culture system that reproducibly allows the effective ex vivo expansion of human cord blood HSCs while maintaining the capability of generating both myeloid and lymphoid hematopoiesis in vitro.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2701-2701
Author(s):  
Akihito Fujimi ◽  
Takuya Matsunaga ◽  
Masayoshi Kobune ◽  
Yutaka Kawano ◽  
Ikuta Tanaka ◽  
...  

Abstract New sources of red blood cells (RBC) would improve the transfusion capacity of blood centers. Several investigators have previously reported that erythroblasts could be obtained from hematopoietic stem cells including those of cord blood (CB) by in vitro culture. However, transfusion of erythroblasts may not be suitable for supplementation of acute blood loss because it should need some time lag until hemoglobin (RBC) boost in circulation due to the fact that transfused erythroblasts once lodged at bone marrow where they undergo maturation into RBCs which are bound to be released into circulation. We have developed a culture system for producing large quantity of enucleated RBCs (e-RBCs) as well as erythroblasts from CB in vitro: one unit e-RBCs (2 x 1012 RBCs) was obtained from one standard CB unit (corresponding to 2 x 106 CD34+ cells) using a coculture system with hTERT-transfected human stromal cells at early phase followed by with activated macrophage in liquid culture (American Society of Hematology 45th Annual Meeting, SanDiego, 2003). In the present study, we first analyzed the function of those manufactured e-RBCs in comparison of that of adult peripheral blood RBCs (PB-RBCs) or that of eryhthroblasts. The hemoglobin (Hb) content of the e-RBCs quantified by photometric determination was almost equivalent to that of adult PBRBC. A Hb A/Hb F ratio of e-RBC analyzed by high-performance liquid chromatography (HbA: HbF = 35: 65) was between those of CB RBCs (10: 90) and adult PB-RBC (99: 1). Oxygen dissociation curves of e-RBCs measured by Hemox-Analyzer was comparable to that of fresh adult PB-RBCs. The erythroblasts showed adhesive property to stromal cells in vitro but e-RBC did not. When we injected e-RBCs into NOD/SCID mice, they were detectable in circulation while erythroblasts were not. In conclusion, the e-RBCs produced by large-scale culturing system from CB CD34+ cells may be useful for acute blood loss.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2322-2322
Author(s):  
Takashi Yoshikubo ◽  
Yoshihiro Matsumoto ◽  
Masahiko Nanami ◽  
Takayuki Sakurai ◽  
Hiroyuki Tsunoda ◽  
...  

Abstract Thrombopoietin (TPO, the ligand for c-mpl) is a key factor for megakaryopoiesis. Several clinical trials of TPO have been conducted for thrombocytopenia without much success due to, in part, the production of neutralized antibodies against endogenous TPO, which causes thrombocytopenia. To overcome this problem, we previously demonstrated that mouse type minibody against c-mpl, with an amino acid sequence totally different from TPO, showed megakaryopoiesis and increased platelet numbers in monkey. This time, using CDR grafting, we generated a humanized sc(Fv)2VB22B minibody (huVB22B) against c-mpl for therapeutic use. The new minibody showed almost the same activity in vitro as TPO and the mouse type minibody, confirmed by both a human megakaryocyte cell (CD41+) differentiation assay and a proliferation assay with TPO-dependent cell line, M-07e. Single sc or iv administration of huVB22B to cynomolgus monkeys showed a dose-dependent increase in platelet numbers. Pharmacokinetic analysis showed that the plasma half-life (T1/2) of huVB22B at iv and sc administration to cynomolgus monkeys was 7–8 h and 11–16 h, respectively. After administration of huVB22B, the platelets of these monkeys increased and showed functional aggregation in response to ADP in vitro. Repeated administration of huVB22B (0.2, 2 and 20mg/kg/week) revealed that the increase in platelet level in cynomolgus monkeys was maintained for a month. Very slight reticular fibers in bone marrow were detected in a high dose group (20mg/ kg). No overt changes were detected by toxicity evaluations including clinical pathology and histopathology in 0.2 and 2mg/kg groups. No neutralized activities in plasma were observed during these experiments. Next, we examined the activities of huVB22B on human bone marrow-derived CD34-positive cells (BM-CD34+) and umbilical cord blood-derived CD34-positive cells (UCB-CD34+) in vitro. BM-CD34+ and UCB-CD34+ cells were cultured with huVB22B in serum free medium. HuVB22B induced differentiation of CD41+ cells from BM-CD34+ or UCB-CD34+ cells in a similar dose-dependent manner. However, UCB-CD34+ cells showed greater proliferation in response to huVB22B compared to BM-CD34+ cells. We then examined the in vivo activities of huVB22B on UCB CD34+ cells by treating NOD/SCID mice transplanted with human UCB-CD34+ cells with huVB22B and examining the bone marrow cells of the mice. The results showed that, compared with the control, administration of huVB22B showed an increase in the number of human hematopoietic progenitor cells (CD34+), lymphoid lineage cells (CD19+), and myeloid lineage cells (CD33+) in addition to human CFU-Meg cells (CD41+). These results suggest that c-mpl stimulation in vivo after transplantation might increase engraftment of progenitor cells in the bone marrow microenvironment and subsequently induce differentiation to multilineage cells. Umbilical cord blood transplantation faces frequent complications including a low-level stem/progenitor cell engraftment and delayed platelet recovery. Our results suggest that c-mpl stimulation might be used to increase the engraftment of UCB stem/progenitor cells and shorten the time of platelet recovery following UCB transplantation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 143-143 ◽  
Author(s):  
Saar Gill ◽  
Sarah K Tasian ◽  
Marco Ruella ◽  
Olga Shestova ◽  
Yong Li ◽  
...  

Abstract Engineering of T cells with chimeric antigen receptors (CARs) can impart novel T cell specificity for an antigen of choice, and anti-CD19 CAR T cells have been shown to effectively eradicate CD19+ malignancies. Most patients with acute myeloid leukemia (AML) are incurable with standard therapies and may benefit from a CAR-based approach, but the optimal antigen to target remains unknown. CD123, the IL3Rα chain, is expressed on the majority of primary AML specimens, but is also expressed on normal bone marrow (BM) myeloid progenitors at lower levels. We describe here in vitro and in vivostudies to evaluate the feasibility and safety of CAR-based targeting of CD123 using engineered T cells (CART123 cells) as a therapeutic approach for AML. Our CAR consisted of a ScFv derived from hybridoma clone 32716 and signaling domains from 4-1-BB (CD137) and TCR-ζ. Among 47 primary AML specimens we found high expression of CD123 (median 85%, range 6-100%). Quantitative PCR analysis of FACS-sorted CD123dim populations showed measurable IL3RA transcripts in this population, demonstrating that blasts that are apparently CD123dim/neg by flow cytometry may in fact express CD123. Furthermore, FACS-sorted CD123dimblasts cultured in methylcellulose up-regulated CD123, suggesting that anti-CD123 immunotherapy may be a relevant strategy for all AML regardless of baseline myeloblast CD123 expression. CART123 cells incubated in vitro with primary AML cells showed specific proliferation, killing, and robust production of inflammatory cytokines (IFN-α, IFN-γ, RANTES, GM-CSF, MIP-1β, and IL-2 (all p<0.05). In NOD-SCID-IL2Rγc-/- (NSG) mice engrafted with the human AML cell line MOLM14, CART123 treatment eradicated leukemia and resulted in prolonged survival in comparison to negative controls of saline or CART19-treated mice (see figure). Upon MOLM14 re-challenge of CART123-treated animals, we further demonstrated robust expansion of previously infused CART123 cells, consistent with establishment of a memory response in animals. A crucial deficiency of tumor cell line models is their inability to represent the true clonal heterogeneity of primary disease. We therefore engrafted NSG mice that are transgenic for human stem cell factor, IL3, and GM-CSF (NSGS mice) with primary AML blasts and treated them with CART123 or control T cells. Circulating myeloblasts were significantly reduced in CART123 animals, resulting in improved survival (p = 0.02, n=34 CART123 and n=18 control animals). This observation was made regardless of the initial level of CD123 expression in the primary AML sample, again confirming that apparently CD123dimAML may be successfully targeted with CART123 cells. Given the potential for hematologic toxicity of CART123 immunotherapy, we treated mice that had been reconstituted with human CD34+ cells with CART123 cells over a 28 day period. We observed near-complete eradication of human bone marrow cells. This finding confirmed our finding of a significant reduction in methylcellulose colonies derived from normal cord blood CD34+ cells after only a 4 hour in vitro incubation with CART123 cells (p = 0.01), and was explained by: (i) low level but definite expression of CD123 in hematopoietic stem and progenitor cells, and (ii) up-regulation of CD123 upon myeloid differentiation. In summary, we show for the first time that human CD123-redirected T cells eradicate both primary human AML and normal bone marrow in xenograft models. As human AML is likely preceded by clonal evolution in normal or “pre-leukemic” hematopoietic stem cells (Hong et al. Science 2008, Welch et al. Cell 2012), we postulate that the likelihood of successful eradication of AML will be enhanced by myeloablation. Hence, our observations support CART-123 as a viable therapeutic strategy for AML and as a novel cellular conditioning regimen prior to hematopoietic cell transplantation. Figure 1. Figure 1. Disclosures: Gill: Novartis: Research Funding; American Society of Hematology: Research Funding. Carroll:Leukemia and Lymphoma Society: Research Funding. Grupp:Novartis: Research Funding. June:Novartis: Research Funding; Leukemia and Lymphoma Society: Research Funding. Kalos:Novartis: Research Funding; Leukemia and Lymphoma Society: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document