Aberrant Hedgehog Signaling Represents a Novel Therapeutic Target in B Cell Lymphomas.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3582-3582
Author(s):  
Qiuju Wang ◽  
Craig Peacock ◽  
Kortney Hensley ◽  
Sarah Brennan ◽  
Akil Merchant ◽  
...  

Abstract Aberrant self-renewal is a hallmark of cancer and is central to the initiation, maintenance and relapse of clinical disease. The cellular processes responsible for self-renewal have not been delineated in most human cancers, but it is likely that conserved pathways required for the regulation of normal stem cells are involved. Notably several highly conserved signaling pathways that regulate stem cell fate decisions during embryonic development, such as Notch, Hedgehog (Hh) and Wingless (Wnt), are inappropriately activated in a wide variety of human cancers. We recently demonstrated that the Hh signaling pathway is required for the maintenance of cancer stem cells in the plasma cell malignancy, multiple myeloma. Since myeloma stem cells phenotypically resemble normal B cells, we hypothesized that aberrant Hh signaling is a feature of other B cell malignancies. We studied established human cell lines derived from patients with classical Hodgkin lymphoma (L428, KM-H2), diffuse large B cell NHL (HT, Pfeiffer, RL, and Hs 602), and mantle cell NHL (Granta 519, Jeko-1, Rec-1) and found that expression of the Hh signaling pathway components PATCHED (PTCH), SMOOTHENED (SMO), and GLI1, 2 or 3 by RT-PCR was markedly elevated compared to normal B cells in the majority of cell lines from each subtype of lymphoma. In order to examine the functional role of Hh signaling on human lymphomas, cells were treated with recombinant human sonic Hh ligand (SHh) or the naturally occurring inhibitor of SMO, cyclopamine, followed by evaluation of clonogenic growth in methylcellulose. Resulting colony formation was significantly increased in response to activating SHh ligand, whereas treatment with cyclopamine significantly inhibited clonogenic recovery. Similarly, the inhibition of pathway signaling by neutralizing anti-Hh antibodies limited colony formation suggesting that ligand binding by PTCH was required for pathway activation similar to other non-Gorlins tumors such as small cell lung cancer, pancreatic carcinoma, and metastatic prostate cancer that lack mutation of pathway components. Furthermore, we examined the activity of a novel semi-synthetic cyclopamine analogue, IPI-609, and found that it also limited clonogenic lymphoma growth. The effects of IPI-609 were highly specific as the clonogenic recovery of cell lines lacking expression of Hh pathway components was not affected by treatment. Our previous studies in multiple myeloma have suggested that cancer stem cells can be identified by their relatively higher activity of the intracellular enzyme retinaldehyde dehydrogenase (ALDH) similar to normal hematopoietic and neural stem cells. We found that high ALDH activity could also identify rare cell populations with greater clonogenic growth potential compared to ALDHlow/neg cells in the majority of lines and treatment with cyclopamine or IPI-609 significantly reduced the relative proportion of ALDHhigh cells. Therefore, the Hh signaling pathway may represent a novel therapeutic target in human lymphomas. Moreover, novel Hh inhibitors, such as IPI-609, may inhibit highly clonogenic lymphoma cancer stem cells responsible for disease relapse.

Oncogene ◽  
2017 ◽  
Vol 36 (42) ◽  
pp. 5793-5807 ◽  
Author(s):  
M H Kiyohara ◽  
C Dillard ◽  
J Tsui ◽  
S R Kim ◽  
J Lu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianyu Wang ◽  
Doudou Liu ◽  
Zhiwei Sun ◽  
Ting Ye ◽  
Jingyuan Li ◽  
...  

AbstractIt has been postulated that cancer stem cells (CSCs) are involved in all aspects of human cancer, although the mechanisms governing the regulation of CSC self-renewal in the cancer state remain poorly defined. In the literature, both the pro- and anti-oncogenic activities of autophagy have been demonstrated and are context-dependent. Mounting evidence has shown augmentation of CSC stemness by autophagy, yet mechanistic characterization and understanding are lacking. In the present study, by generating stable human lung CSC cell lines with the wild-type TP53 (A549), as well as cell lines in which TP53 was deleted (H1229), we show, for the first time, that autophagy augments the stemness of lung CSCs by degrading ubiquitinated p53. Furthermore, Zeb1 is required for TP53 regulation of CSC self-renewal. Moreover, TCGA data mining and analysis show that Atg5 and Zeb1 are poor prognostic markers of lung cancer. In summary, this study has elucidated a new CSC-based mechanism underlying the oncogenic activity of autophagy and the tumor suppressor activity of p53 in cancer, i.e., CSCs can exploit the autophagy-p53-Zeb1 axis for self-renewal, oncogenesis, and progression.


2019 ◽  
Vol 41 (4) ◽  
pp. 458-466 ◽  
Author(s):  
Osama A Elkashty ◽  
Ghada Abu Elghanam ◽  
Xinyun Su ◽  
Younan Liu ◽  
Peter J Chauvin ◽  
...  

Abstract Head and neck squamous cell carcinoma (HNSCC) has a poor 5-year survival rate of 50%. One potential reason for treatment failure is the presence of cancer stem cells (CSCs). Several cell markers, particularly CD44, have been used to isolate CSCs. However, isolating a pure population of CSC in HNSCC still remains a challenging task. Recent findings show that normal oral stem cells were isolated using CD271 as a marker. Thus, we investigated the combined use of CD271 and CD44 to isolate an enriched subpopulation of CSCs, followed by their characterization in vitro, in vivo, and in patients’ tissue samples. Fluorescent-activated cell sorting was used to isolate CD44+/CD271+ and CD44+/CD271− from two human HNSCC cell lines. Cell growth and self-renewal were measured with MTT and sphere/colony formation assays. Treatment-resistance was tested against chemotherapy (cisplatin and 5-fluorouracil) and ionizing radiation. Self-renewal, resistance, and stemness-related genes expression were measured with qRT-PCR. In vivo tumorigenicity was tested with an orthotopic immunodeficient mouse model of oral cancer. Finally, we examined the co-localization of CD44+/CD271+ in patients’ tissue samples. We found that CD271+ cells were a subpopulation of CD44+ cells in human HNSCC cell lines and tissues. CD44+/CD271+ cells exhibited higher cell proliferation, sphere/colony formation, chemo- and radio-resistance, upregulation of CSCs-related genes, and in vivo tumorigenicity when compared to CD44+/CD271− or the parental cell line. These cell markers showed increased expression in patients with the increase of the tumor stage. In conclusion, using both CD44 and CD271 allowed the isolation of CSCs from HNSCC. These enriched CSCs will be more relevant in future treatment and HNSCC progression studies.


2009 ◽  
Author(s):  
Li Lin ◽  
Brian Hutzen ◽  
Zhengang Peng ◽  
Huey‐Jen Lin ◽  
Pui‐Kai Li ◽  
...  

2016 ◽  
Author(s):  
Toshiaki Ohara ◽  
Takayuki Ninomiya ◽  
Kazuhiro Noma ◽  
Hajime Kashima ◽  
Yuki Katsura ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3381-3381 ◽  
Author(s):  
Akil A. Merchant ◽  
Giselle A. Joseph ◽  
Evan Jones ◽  
Tara Lin ◽  
B. Doug Smith ◽  
...  

Abstract The Hedgehog (Hh) signaling pathway is critical for normal development and dictates the self-renewal, proliferation and differentiation of normal stem cells and progenitors. Aberrant reactivation of Hh signaling has been described in a wide variety of human cancers and its role in normal stem cells suggest that pathway dysregulation contributes to oncogenesis and influences the cell fate decisions in cancer stem cells (CSC). Like their normal counterparts, CSC appear to undergo self-renewal as well as give rise to differentiated progeny, and these properties implicate that CSC are responsible for continual tumor cell production that underlies the initiation, maintenance and progression of clinical disease. Myeloid leukemias have long served as the model system for human CSC, but the cellular processes responsible for regulating these rare biologically distinct cell populations have remained unclear. We hypothesized that Hh pathway activation contributes to the pathogenesis of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) and studied Hh signaling in these settings. Using both RT-PCR for pathway components and a Gli1 reporter assay, we have found that Hh signaling is active in several human AML derived cell lines (Kasumi-1, KG1, KG1a) and primary AML and MDS samples. Approximately 80% (19/24) of primary AML samples tested express the downstream effectors GLI1 or GLI2 indicative of active Hh signaling. Furthermore, inhibition of Hh signaling with the naturally derived SMOOTHENED antagonist cyclopamine reduces the clonogenic growth of KG1 cells implicating the pathway in self-renewal. In contrast, cyclopamine failed to affect colony growth in the HL-60 cell line that lacks expression of Hh pathway signaling components, confirming that the effect of Hh inhibition is specific. In addition, the ectopic expression of Gli1 in KG1 cells partially rescued the effect of cyclopamine on colony formation further demonstrating the specific nature of this compound. We also studied normal CD34+ bone marrow cells and found that they expressed components of Hh pathway by RT-PCR. However, in contrast to KG1 cells, cyclopamine had little effect on the recovery of either normal hematopoietic progenitors or stem cells in an in vitro long-term culture assay. Therefore, it appears that Hh inhibition may preferentially inhibit myeloid leukemias. We further studied the role of Hh pathway activation on normal hematopoiesis and developed a transgenic mouse model in which SMOOTHENED is conditionally over-expressed in the myeloid lineage via Cre recombinase activity regulated by the Lysozyme promoter. Analysis of these mice demonstrated only subtle changes in peripheral blood counts, but further analysis of cells expressing the transgene revealed a significant reduction in the number of mature myeloid cells. This was confirmed by analyzing blood cells for the granulocyte marker Gr1 and pan-myeloid marker Mac1, both of which were significantly reduced in the SMOOTHENED over-expressing cells. These defects are reminiscent of MDS and further suggest that the Hh signaling pathway plays a role in normal hematopoiesis. Therefore, aberrant Hh pathway activation is a feature of myeloid leukemias and inhibitors such as cyclopamine may have a therapeutic role in the treatment of AML and MDS.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13543-e13543
Author(s):  
Monal Mehta ◽  
Atif J. Khan ◽  
Hatem E. Sabaawy ◽  
Bruce George Haffty

e13543 Background: Glioblastoma (GBM) is the most frequent and deadly brain cancer. Despite tolerance doses of radiation, control of tumor growth within the brain remains a formidable failure. Since the identification of brain cancer stem cells (BCSCs), efforts are underway to target the pathways regulating these cells. The role of Bmi-1 (B-cell specific MMLV insertion site-1), a polycomb member of chromatin-remodeling complex, in BCSCs self-renewal was elucidated. Here we utilize shRNA targeting or pharmacological inhibition of Bmi-1 in GBM cell lines and primary cells as a radiosensitizer to examine the effects of combination therapy on cell death and BCSCs differentiation. Methods: Cells were pre-treated with a Bmi-1 inhibitor before being irradiated. Serial neurosphere assay, a measure of self-renewal potential, was employed to study the effects of radiation, Bmi-1 inhibition, or the combination on BCSCs. The efficacy of this combination on cell death was assessed with MTT and clonogenic assays. Next, the abilities of the inhibitor and radiation to induce differentiation in GBM cell lines and primary cells were quantified. Further, by utilizing a novel zebrafish orthotropic xenograft model, small molecules targeting Bmi-1 and other BCSC pathways can be identified, and used to predict response to combination therapies. Results: Targeting of Bmi-1 in combination with radiation, specifically as a radiosensitizer, induced significant cell death in GBM cells, and was five-fold more effective than radiation only. Importantly, the neurosphere forming ability of BCSCs was severely compromised when the cells were treated with the combination, indicating a potent effect on the stem cell constituency. These effects may be due to loss of BCSC self-renewal potential, increased differentiation, and/or apoptosis as cells treated with the combination exhibited decreased expression of neural stem cell markers and abnormal phenotypes compared to single treatment. Conclusions: Targeting of Bmi-1 may eliminate the subpopulation of radioresistant BCSCs. Bmi-1 inhibition when combined with radiotherapy might provide an effective therapy for GBM patients specifically through its effect on BCSCs by affecting their survival, proliferation, and stem cell features.


2020 ◽  
Vol 472 ◽  
pp. 70-80 ◽  
Author(s):  
Nuozhou Wang ◽  
Ming-yue Li ◽  
Yi Liu ◽  
Jianqing Yu ◽  
Jianwei Ren ◽  
...  

2020 ◽  
Vol 21 (18) ◽  
pp. 6863 ◽  
Author(s):  
Kuo-Shyang Jeng ◽  
I-Shyan Sheen ◽  
Chuen-Miin Leu ◽  
Ping-Hui Tseng ◽  
Chiung-Fang Chang

Smoothened (SMO) belongs to the Hedgehog (HH) signaling pathway, which regulates cell growth, migration, invasion and stem cells in cancer. The HH signaling pathway includes both canonical and noncanonical pathways. The canonical HH pathway functions through major HH molecules such as HH ligands, PTCH, SMO and GLI, whereas the noncanonical HH pathway involves the activation of SMO or GLI through other pathways. The role of SMO has been discussed in different types of cancer, including breast, liver, pancreatic and colon cancers. SMO expression correlates with tumor size, invasiveness, metastasis and recurrence. In addition, SMO inhibitors can suppress cancer formation, reduce the proliferation of cancer cells, trigger apoptosis and suppress cancer stem cell activity. A better understanding of the role of SMO in cancer could contribute to the development of novel therapeutic approaches.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3105-3105
Author(s):  
Ha Yeon Lee ◽  
Mi Ran Lee ◽  
Won Seog Kim ◽  
Seok Jin Kim

Abstract Abstract 3105 Background: Cancer stem cells are considered to initiate cancer development, and such populations might be related with the resistance to treatment and relapse. There are accumulated data supporting the presence of cancer stem cells in several human cancers such as breast and colon cancers. In hematologic malignancy, the presence of cancer stem cells was supported by the previous studies from leukemia. However, there are few reports regarding the possibility of lymphoma stem cells. Side population cells are defined as cells that efficiently extrude the Hoechst 33342 dye, and hence remain negative for this fluorescent marker in flow cytometric analysis. The isolation of SP cells from total tumor cells has been used as a tool for cancer stem cell research. Methods: We performed the side-population analysis to isolate a stem-like cell population. The side population analysis was based on the modified Hoechst 33342 dye efflux assay. Thus, cells expressing ATP binding cassette (ABC) transporter subfamily G number 2 (ABCG2) on their surface efflux Hoechst 33342 dye. On the other hand, cells without ABCG2 expression cannot efflux dye. According to this different nature, we discriminated side population from non-side population. We isolated side population from three lymphoma cell lines, 1A2 (B-cell lymphoblastic lymphoma cell line), Raji (Burkitt lymphoma cell line), and Toledo (Diffuse large B-cell lymphoma cell line). We compared the SP cells with NSP cells from each cell line via in vitro propagation and colony forming assay. We also evaluated the ability of tumorigenesis in NOD/SCID mice and compared the gene expression via performing microarray. Results: We isolated a subset of cells (side population) from three cell lines. The number of side population was extremely small, so the ratio of SP to NSP was from 0.01% to 0.25% regardless of the type of lymphoma cell lines. The in vitro propagation for 3 weeks showed that the growth rate of the side population was significantly higher than non-side population in three cell lines. The life span of non-side population was limited while side population could continuously proliferate. Thus, non-side population could not be cultured over four weeks, and the proportion of viable cells was higher in the side population (≥95%) than non-side population (≤80%). The RT-PCR and confocal microscopy demonstrated the higher expression of ABCG2 in the side population compared to the non-side population. The inoculation of lymphoma cells (200 – 1000) into NOD/SCID mice showed the tumor formation in mice inoculated with side population cells while there was no tumor in non-side population. The hierarchical clustering of differentially expressed genes showed the different pattern of gene expression between side and non-side population in each cell line. Conclusion: This study suggests that the side population may contain a cell population highly capable of proliferation, and this population may have the characteristics of lymphoma stem-like cells. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document