Suppression of Angiogenesis and Resistance to Doxorubicin by the Thyroid Hormone Tetraiodothyroacetic Acid.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4209-4209
Author(s):  
Shaker A. Mousa ◽  
Laura O’Connor ◽  
Ahmad Aljada ◽  
Paul Davis ◽  
Abdelhadi Rebbaa

Abstract Thyroid hormone has been recently shown to induce tumor growth and angiogenesis. These angiogenesis modulating activities are initiated at endothelial cell plasma membrane receptor via the integrin αVβ3, at or near the Arg-Gly-Asp (RGD) recognition site on the integrin. In the present study, we have investigated the effect of tetraiodothyroacetic acid (tetrac), a deaminated thyroid hormone analog that inhibits thyroid hormone-binding to the cell surface integrin, on angiogenesis and cancer cell resistance to doxorubicin both in vitro and in vivo. Two angiogenesis models were studied in which vascular endothelial growth factor, VEGF165 or basic fibroblast growth factor, FGF2 (1–2 μg/ml) or thyroid hormone, thyroxin (L-T4 or T3) were used either to induce tube formation in the human dermal micro-vascular endothelial cells (HDMEC), or to stimulate new blood vessel branch formation in the chick chorioallantoic membrane (CAM) models. In both models, Tetrac (0.1–10 μM) inhibited the pro-angiogenesis activity of VEGF, FGF2, L-T4 or T3 by more than 50% at 1.0 uM RT-PCR revealed that tetrac (1–3 μM) decreased abundance of angiopoietin-2 mRNA but did not affect the mRNA levels of angiopoietin-1, in VEGF-exposed endothelial cells, suggesting that specific angiogenic pathways are targeted by this compound. Additionally, microarray was used to examine changes in expression of Matrix Metalloproteinases (MMP) and Tissue Inhibitor of Metalloproteinases (TIMP) following VEGF treatment with and without tetrac. HDMEC cells treated with VEGF exhibited 3–5-fold increase in MMP-15 and MMP-19 expression and tetrac (3μM), inhibited expression of MMP-15 and MMP-19 by 3–9-fold, respectively. Expression of TIMP-3 was increased 5.4-fold following VEGF and tetrac treatment when compared to treatment with VEGF alone. This finding suggests that part of the mechanism by which tetrac inhibits VEGF-stimulated angiogenesis involves inhibition of certain MMPs and increase in TIMP expression. Investigation of the anti-proliferative function of tetrac was carried out using the αVβ3 expressing breast cancer cells MC7 and their drug resistant counterparts. Interestingly, proliferation of both cell lines was inhibited similarly by tetrac suggesting that this analog may circumvent drug resistance. In fact, tetrac was able to reverse resistance to doxorubicin in vitro and to suppress growth of doxorubicin resistant tumors in nude mice. Inhibition of the drug transporter p-glycoprotein was found to play a key role in mediating the action of tetrac. Taken together, findings presented in this study provide evidence that the anticancer function of tetrac can be attributed to its anti-angiogenic and drug resistance reversal activities.

1996 ◽  
Vol 316 (3) ◽  
pp. 703-707 ◽  
Author(s):  
Ralf BIRKENHÄGER ◽  
Bernard SCHNEPPE ◽  
Wolfgang RÖCKL ◽  
Jörg WILTING ◽  
Herbert A. WEICH ◽  
...  

Vascular endothilial growth factor (VEGF) and placenta growth factor (PIGF) are members of a dimeric-growth-factor family with angiogenic properties. VEGF is a highly potent and specific mitogen for endothelial cells, playing a vital role in angiogenesis in vivo. The role of PIGF is less clear. We expressed the monomeric splice forms VEGF-165, VEGF-121, PIGF-1 and PlGF-2 as unfused genes in Escherichia coli using the pCYTEXP expression system. In vitro dimerization experiments revealed that both homo- and hetero-dimers can be formed from these monomeric proteins. The dimers were tested for their ability to promote capillary growth in vivo and stimulate DNA synthesis in cultured human vascular endothelial cells. Heterodimers comprising different VEGF splice forms, or combinations of VEGF/PlGF splice forms, showed mitogenic activity. The results demonstrate that four different heterodimeric growth factors are likely to have as yet uncharacterized functions in vivo.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4039-4045
Author(s):  
Giovanni Bernardini ◽  
Gaia Spinetti ◽  
Domenico Ribatti ◽  
Grazia Camarda ◽  
Lucia Morbidelli ◽  
...  

Several chemokines have been shown to act as angiogenic molecules or to modulate the activity of growth factors such as fibroblast growth factor 2 (FGF-2) and vascular endothelial growth factor (VEGF). The detection of the CC chemokine receptor (CCR) 8 message in human umbilical vein endothelial cells (HUVECs) by reverse transcription– polymerase chain reaction (RT-PCR) and RNase protection assay (RPA), prompted us to investigate the potential role exerted by the CC chemokine I-309, a known ligand of such receptor, in both in vitro and in vivo angiogenesis assays. We show here that I-309 binds to endothelial cells, stimulates chemotaxis and invasion of these cells, and enhances HUVEC differentiation into capillary-like structures in an in vitro Matrigel assay. Furthermore, I-309 is an inducer of angiogenesis in vivo in both the rabbit cornea and the chick chorioallantoic membrane assay (CAM).


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4039-4045 ◽  
Author(s):  
Giovanni Bernardini ◽  
Gaia Spinetti ◽  
Domenico Ribatti ◽  
Grazia Camarda ◽  
Lucia Morbidelli ◽  
...  

Abstract Several chemokines have been shown to act as angiogenic molecules or to modulate the activity of growth factors such as fibroblast growth factor 2 (FGF-2) and vascular endothelial growth factor (VEGF). The detection of the CC chemokine receptor (CCR) 8 message in human umbilical vein endothelial cells (HUVECs) by reverse transcription– polymerase chain reaction (RT-PCR) and RNase protection assay (RPA), prompted us to investigate the potential role exerted by the CC chemokine I-309, a known ligand of such receptor, in both in vitro and in vivo angiogenesis assays. We show here that I-309 binds to endothelial cells, stimulates chemotaxis and invasion of these cells, and enhances HUVEC differentiation into capillary-like structures in an in vitro Matrigel assay. Furthermore, I-309 is an inducer of angiogenesis in vivo in both the rabbit cornea and the chick chorioallantoic membrane assay (CAM).


2001 ◽  
Vol 193 (5) ◽  
pp. 607-620 ◽  
Author(s):  
Gabriela L. Hernández ◽  
Olga V. Volpert ◽  
Miguel A. Íñiguez ◽  
Elisa Lorenzo ◽  
Sara Martínez-Martínez ◽  
...  

Cyclosporin A (CsA) is an immunosuppressive drug that inhibits the activity of transcription factors of the nuclear factor of activated T cells (NFAT) family, interfering with the induction of cytokines and other inducible genes required for the immune response. Here we show that CsA inhibits migration of primary endothelial cells and angiogenesis induced by vascular endothelial growth factor (VEGF); this effect appears to be mediated through the inhibition of cyclooxygenase (Cox)-2, the transcription of which is activated by VEGF in primary endothelial cells. Consistent with this, we show that the induction of Cox-2 gene expression by VEGF requires NFAT activation. Most important, the CsA-mediated inhibition of angiogenesis both in vitro and in vivo was comparable to the Cox-2 inhibitor NS-398, and reversed by prostaglandin E2. Furthermore, the in vivo corneal angiogenesis induced by VEGF, but not by basic fibroblast growth factor, was selectively inhibited in mice treated with CsA systemically. These findings involve NFAT in the regulation of Cox-2 in endothelial cells, point to a role for this transcription factor in angiogenesis, and may provide a novel mechanism underlying the beneficial effects of CsA in angiogenesis-related diseases such as rheumatoid arthritis and psoriasis.


2004 ◽  
Vol 89 (3) ◽  
pp. 1415-1422 ◽  
Author(s):  
Olin D. Liang ◽  
Thomas Korff ◽  
Jessica Eckhardt ◽  
Jasmin Rifaat ◽  
Nelli Baal ◽  
...  

Abstract The molecular coordination between angiogenesis and vascular remodeling is a critical step for the development of a functional vasculature in the placenta and the uterus during pregnancy. The oncodevelopmental albumin homolog α-fetoprotein (AFP) is mainly synthesized in the developing fetus, and its expression has been found to be associated with highly vascularized tumors in the adult. In this study, we investigated the angiogenic activity of AFP and its possible role in the fetomaternal unit. Immunohistochemical studies revealed that the AFP-binding protein(s) is expressed in blood vessels of chorionic villi from placentae of the second and the third but not of the first trimester during pregnancy. At low concentrations, AFP directly stimulates or enhances, respectively, vascular endothelial growth factor-induced proliferation and sprout formation of endothelial cells isolated from the placenta and the uterus possibly by a MAPK-dependent pathway. Furthermore, AFP enhances blood vessel formation in a chick chorioallantoic membrane assay in vivo. Interestingly, AFP has no proliferative or migratory effects on endothelial cells isolated from the umbilical vein in the absence of vascular endothelial growth factor. These data indicate that AFP may act as a specific proangiogenic factor of endothelial cells within the fetomaternal unit during advanced stages in pregnancy.


Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 4816-4822 ◽  
Author(s):  
Shunli Ding ◽  
Tatyana Merkulova-Rainon ◽  
Zhong Chao Han ◽  
Gérard Tobelem

Abstract Hepatocyte growth factor (HGF) is a mesenchyme-derived pleiotropic growth factor and a powerful stimulator of angiogenesis, which acts on cells by binding to the c-met receptor. The exact role of the endogenous HGF/c-met system in one or more steps of the angiogenic process is not completely understood. To contribute to this question we used immunocytochemical analysis, Western blotting, and reverse transcription–polymerase chain reaction to study the expression of c-met in endothelial cells cultured in different growth conditions. We found that c-met is not colocalized with vascular endothelial (VE)–cadherin in cell-cell junctions. c-met and VE-cadherin were shown to be inversely regulated by cell density, at both the protein and the mRNA levels. We established that c-met is up-regulated during the in vitro recapitulation of several steps of angiogenesis. The c-met expression was increased shortly after switching to angiogenic growth conditions and remained high during the very first steps of angiogenesis, including cell migration, and cell proliferation. The endothelial cells in which the expression of c-met was up-regulated were more responsive to HGF and exhibited a higher rate of morphogenesis. Moreover, the antibody directed against the extracellular domain of the c-met inhibited angiogenesis in vitro. Our results suggest that c-met is a marker of angiogenic phenotype for endothelial cells and represents an attractive target for the development of new antiangiogenic therapies.


Blood ◽  
2010 ◽  
Vol 115 (26) ◽  
pp. 5418-5426 ◽  
Author(s):  
Frederic Larrieu-Lahargue ◽  
Alana L. Welm ◽  
Kirk R. Thomas ◽  
Dean Y. Li

Abstract Netrin-4, a laminin-related secreted protein is an axon guidance cue recently shown essential outside of the nervous system, regulating mammary and lung morphogenesis as well as blood vascular development. Here, we show that Netrin-4, at physiologic doses, induces proliferation, migration, adhesion, tube formation and survival of human lymphatic endothelial cells in vitro comparable to well-characterized lymphangiogenic factors fibroblast growth factor-2 (FGF-2), hepatocyte growth factor (HGF), vascular endothelial growth factor-A (VEGF-A), and vascular endothelial growth factor-C (VEGF-C). Netrin-4 stimulates phosphorylation of intracellular signaling components Akt, Erk and S6, and their specific inhibition antagonizes Netrin-4–induced proliferation. Although Netrin receptors Unc5B and neogenin, are expressed by human lymphatic endothelial cells, suppression of either or both does not suppress Netrin-4–promoted in vitro effects. In vivo, Netrin-4 induces growth of lymphatic and blood vessels in the skin of transgenic mice and in breast tumors. Its overexpression in human and mouse mammary carcinoma cancer cells leads to enhanced metastasis. Finally, Netrin-4 stimulates in vitro and in vivo lymphatic permeability by activating small GTPases and Src family kinases/FAK, and down-regulating tight junction proteins. Together, these data provide evidence that Netrin-4 is a lymphangiogenic factor contributing to tumor dissemination and represents a potential target to inhibit metastasis formation.


Sign in / Sign up

Export Citation Format

Share Document