In Vitro Chemosensitivity of Leukaemic Stem and Progenitor Cells to Gemtuzumab Ozogamicin (Mylotarg) in AML.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 650-650
Author(s):  
Mays Jawad ◽  
Ullas Mony ◽  
Nigel H. Russell ◽  
Monica Pallis

Abstract Preliminary data from 1115 patients entered into the MRC AML 15 trial indicated that the addition of Gemtuzumab Ozogamicin (GO) to induction chemotherapy improved disease free survival (Abstract #13, ASH 2006). We hypothesised that this improved survival may be underpinned by the specific therapeutic targeting of leukaemic stem and progenitor cells (LSPC). The LSPC subset of AML cells contains those cells capable of self-renewal in culture and of recapitulating leukaemia in animal models. Successful chemotherapeutic targeting of this subset is essential for complete eradication of leukaemia. We have devised a flow cytometric assay which allows us to measure the in vitro chemosensitivity of the LSPC (CD34+CD38-CD123+) subset in as few as 100 cells and we have used the assay to screen the effectiveness of GO against LSPC. CD123 expression is a determining cell surface marker for leukaemic versus normal stem cells and we were able to demonstrate a significant difference in CD123 MFI values between CD34+CD38- of leukaemic (n= 16) versus normal CD34+ CD38- cells (n= 5; p=0.03), demonstrating the sensitivity of our flow cytometric assay in detecting this leukaemic subset. Blast cells from 14 AML samples were treated with GO (10ng/ml) for 48 hours in an in vitro culture system that maintains LSPC viability. A significant reduction in the number of LSPC (n=14; median 46% cell kill; p= 0.002) as well as AML bulk cells (n=14; median 16% cell kill; p= 0.005) was achieved. This data demonstrates the chemosensitivity of AML cells to GO, particularly to the LSPC subset (p=0.001). Also, the total percentage of LSPC at the start of the assay was found to be positively correlated with GO chemosensitivity (p<0.0001) at 48 hours in in vitro culture (n=14). We have extended culture time for up to 96 hours and preliminary data suggest a further achievable LSPC kill (median 51% cell kill; n= 8). CD33 expression in bulk and CD34+ CD38- populations was explored in the same AML patients. Although CD33 MFI values were highly variable (n= 16; Median = 34.82 and range= 3.7 – 116.54 in bulk fraction and median = 13.69 and range= 0.47 – 436.73 in CD34+ CD38- fraction), we found a significant correlation in CD33 MFI values between bulk and CD34+ CD38- cells (p< 0.0001). Also, the total percentage of CD34+CD38-CD33+ cells was found to be positively correlated with LSPC GO chemosensitivity (n= 14; p= 0.04) after 48 hours of in vitro culture. The GO chemosensitivity of mononuclear cells from mobilised healthy donors was investigated and these were found to be insensitive to this agent both at the bulk cell level and in the CD34+ CD38- subset (mean % cell kill of 10% and 5%, respectively; n=3) after 48 hour in vitro culture. This data establishes the specific targeting of GO to CD123+ CD34+ CD38- and CD33+CD34+ CD38- LSPC, while sparing normal stem and progenitor cells. In conclusion, with many novel agents and drug combinations available for research, we have developed an assay for screening drug effectiveness against LSPC and have demonstrated that GO targets this subset effectively. Combination drugs with GO now need to be further investigated for the complete eradication of LSPC.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2047-2047
Author(s):  
Wendy Pang ◽  
Elizabeth Price ◽  
Irving L. Weissman ◽  
Stanley L. Schrier

Abstract Abstract 2047 Anemia is both a highly prevalent and clinically important condition that causes significant morbidity and mortality in the elderly population. While anemia in the elderly can be attributed to a number of causes, approximately 30% of elderly subjects with anemia have no overt etiology and fall under the category of unexplained anemia of the elderly (UA). There is increasing evidence to suggest that changes in the frequency and/or function of hematopoietic stem and progenitor cells may contribute to the onset and pathophysiology of age-associated hematological conditions, such as UA. Hematopoietic stem cells (HSC) reside at the top of the hematopoietic hierarchy and can differentiate, via increasingly committed downstream progenitors, into all the mature cells of the hematopoietic system. Human myelo-erythroid development proceeds through a set of oligopotent progenitors: HSC give rise to multipotent progenitors (MPP), which give rise to common myeloid progenitors (CMP), which in turn give rise to granulocyte-macrophage progenitors (GMP) and megakaryocyte-erythrocyte progenitors (MEP). We use flow cytometry and in vitro culture of sorted human HSC (Lin-CD34+CD38-CD90+CD45RA-), MPP (Lin-CD34+CD38-CD90-CD45RA-), CMP (Lin-CD34+CD38+CD123+CD45RA-), GMP (Lin-CD34+CD38+CD123+CD45RA+), and MEP (Lin-CD34+CD38+CD123-CD45RA-) from hematologically normal young (23 samples; age 20–35) and elderly (11 samples; age 65+) and UA (5 samples; age 65+) bone marrow samples in order to characterize the changes in the distribution and function of hematopoietic stem and progenitor populations during the aging process and, in particular, in the development of UA. We found that UA patients contain higher frequencies of HSC compared to both elderly normal (1.5-fold; p<0.03) and young normal samples (2.8-fold; p<10-5). We also found increased frequencies of MPP from UA patients compared to MPP from elderly normal (2.6-fold; p<0.002) and young normal samples (5.8-fold; p<0.04). While we observed similar frequencies of CMP among the three groups, we found a notable trend suggesting decreased frequencies of GMP and corresponding increased frequencies of MEP in UA patients. Functionally, HSC from the three groups exhibit statistically insignificant differences in the efficiency of colony formation under the myeloid differentiation-promoting methylcellulose-based in vitro culture conditions; however, on average, HSC from elderly bone marrow samples, regardless of the presence or absence of anemia, tend to form fewer colonies in methylcellulose. Interestingly, HSC from UA patients produce more granulocyte-monocyte (CFU-GM) colonies and fewer erythroid (CFU-E and BFU-E) colonies, compared to HSC from normal samples (p<0.001). Similarly, CMP from UA patients, compared to normal CMP, yield skewed distributions of myeloid-erythroid colonies when plated in methylcellulose, significantly favoring production of CFU-GM colonies over CFU-E and BFU-E colonies (p<0.003). Additionally, MEP from UA patients form both CFU-E and BFU-E colonies in methylcellulose albeit at a significantly lower efficiency than MEP from normal bone marrow samples (p<0.01). This is the first study to examine the changes in hematopoietic stem and progenitor populations in UA patients. The changes in the distribution of hematopoietic stem and progenitor cells in UA patients indicate that the HSC and MPP populations, and possibly also the MEP population, expand in the context of anemia, potentially in response to homeostatic feedback mechanisms. Nevertheless, these expanded populations are functionally impaired in their ability to differentiate towards the erythroid lineage. Our data suggest that there are intrinsic defects in the HSC population of UA patients that lead to poor erythroid differentiation, which can be readily observed even in the earliest committed myelo-erythroid progenitors. We have generated gene expression profiling data from these purified hematopoietic stem and progenitor populations from UA patients to try to identify biological pathways and markers relevant to disease pathogenesis and potential therapeutic targets. Disclosures: Weissman: Amgen, Systemix, Stem cells Inc, Cellerant: Consultancy, Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Schrier:Celgene: Research Funding.


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Carola Ingrid Weidner ◽  
Thomas Walenda ◽  
Qiong Lin ◽  
Monika Martina Wölfler ◽  
Bernd Denecke ◽  
...  

2001 ◽  
Vol 38 (2) ◽  
pp. 139-147
Author(s):  
Jan W. Gratama ◽  
D. Robert Sutherland ◽  
Michael Keeney

Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1517-1524 ◽  
Author(s):  
MB Kastan ◽  
KD Stone ◽  
CI Civin

Abstract Relative levels of the nuclear oncoproteins c-myb, c-myc, and c-fos were determined in selected subpopulations of normal human bone marrow (BM) cells using a flow cytometric assay which simultaneously detects a cell-surface antigen (as a marker of lineage and stage of maturation) and levels of an intracellular protein. At least two monoclonal antibodies directed against each oncoprotein and specific peptide inhibition controls were used for these determinations. Hematopoietic progenitor cells (CD34+) express the highest levels of c-myb and c-myc, whereas c-fos levels in CD34+ progenitor cells are similar to c-fos levels in mature monocytes and granulocytes. Granulocytes are the only hematopoietic cells examined which do not express detectable levels of c-myb and c-myc. The levels of these oncoproteins in these normal, unstimulated BM cell populations were more closely linked to lineage and maturation stage than to the proliferative status of the given population, as determined by either DNA staining or expression of the cell-cycle specific nuclear protein, Ki67. This flow cytometric assay helps in interpreting the significance of oncoprotein levels in leukemia cells by allowing direct comparisons of a leukemia with the phenotypically similar “normal counterpart control” cell population in normal BM.


2014 ◽  
Vol 29 (4) ◽  
pp. 457-469 ◽  
Author(s):  
Federica Riva ◽  
Claudia Omes ◽  
Roberto Bassani ◽  
Rossella E Nappi ◽  
Giuliano Mazzini ◽  
...  

Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


Sign in / Sign up

Export Citation Format

Share Document