Anemia and Iron Deficiency in Strenuously Trained Adolescents.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 961-961
Author(s):  
Drorit Merkel ◽  
Michael Huerta ◽  
Itamar Grotto ◽  
Eliezer A. Rachmilewitz ◽  
Eitan Fibach ◽  
...  

Abstract Background: Healthy soldiers serving in combat units have a higher prevalence of anemia than age- and sex-matched civilians. This may be a “pseudo-anemia” caused by the hemodilution typical among training athletes, or a “true anemia” due to reduced total body iron stores. Objective: To investigate the incidence of iron-deficiency anemia in recruits to the Israel Defence Forces during their first 6 months of intense combat training. This is a follow-up study to previous publication of measured values on induction. Methods: Blood was collected from new recruits to an elite infantry unit before training. After 6 months, 153 paired samples were collected from the initial group. Total blood count and serum iron, transferrin and ferritin were measured at both time points. Soluble transferrin receptor (sTfR) was measured in 119 of the paired samples, and sTfR/log ferritin ratio was calculated. Results: At recruitment, mean hemoglobin concentration was 14.7±0.9 g/dL (range 11.5–16.8). Iron-transferrin saturation was 34.1±13.6%, and mean ferritin concentration was 53.6±33.2 ng/mL. Twenty-seven participants (17.6%) were anemic (Hb<14g/dL), and 14.9% were iron-deficient (ferritin level <22 mg/dL). At the end of the follow-up period, 50.3% of the soldiers examined were anemic, and 27.3% had signs of iron-store depletion. Analysis of the paired samples showed an average reduction of 0.83 g/dL in hemoglobin level, and of 9.8mg/dL in ferritin levels (p<0.001 for both). sTfR increased slightly from 1.9 to 2.1mg/dL (p<0.003) among the recruits who became anemic during the follow-up period. Conclusion: Nearly half the new recruits studied endure mild anemia after the first 6 months of training. Iron store depletion was observed among 24.5% of the cohort after 6 months, as opposed to 15% at recruitment. Overall, these changes were not accompanied by a significant increase in sTfR, but among the subset of anemic soldiers, there was a slight increase in this index. From the iron status analyses it can be concluded that in half the cases, the observed new-onset anemia was attributable to iron deficiency, and in the remainder, to hemodilution. The high incidence of iron deficiency in young healthy recruits is an important issue. The therapeutic implications of these findings require further evaluation.

Anemia ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Betelihem Terefe ◽  
Asaye Birhanu ◽  
Paulos Nigussie ◽  
Aster Tsegaye

Iron deficiency anemia among pregnant women is a widespread problem in developing countries including Ethiopia, though its influence on neonatal iron status was inconsistently reported in literature. This cross-sectional study was conducted to compare hematologic profiles and iron status of newborns from mothers with different anemia status and determine correlation between maternal and neonatal hematologic profiles and iron status in Ethiopian context. We included 89 mothers and their respective newborns and performed complete blood count and assessed serum ferritin and C-reactive protein levels from blood samples collected from study participants. Maternal median hemoglobin and serum ferritin levels were 12.2 g/dL and 47.0 ng/mL, respectively. The median hemoglobin and serum ferritin levels for the newborns were 16.2 g/dL and 187.6 ng/mL, respectively. The mothers were classified into two groups based on hemoglobin and serum ferritin levels as iron deficient anemic (IDA) and nonanemic (NA) and newborns of IDA mothers had significantly lower levels of serum ferritin (P=0.017) and hemoglobin concentration (P=0.024). Besides, newborns’ ferritin and hemoglobin levels showed significant correlation with maternal hemoglobin (P=0.018;P=0.039) and ferritin (P=0.000;P=0.008) levels. We concluded that maternal IDA may have an effect on the iron stores of newborns.


Author(s):  
Nenad Ponorac ◽  
Mira Popović ◽  
Dea Karaba-Jakovljević ◽  
Zorislava Bajić ◽  
Aaron Scanlan ◽  
...  

This study primarily aimed to quantify and compare iron status in professional female athletes and nonathletes. Furthermore, this study also aimed to identify differences in iron status according to sporting discipline and explore the relationship between ferritin concentration and weekly training volume in professional athletes. A total of 152 participants were included in this study, including 85 athletes who were members of senior teams (handball, n = 24; volleyball, n = 36; soccer, n = 19; and judo, n = 6) involved at the highest level of competition and 67 nonathletes. A significantly greater proportion (p = .05) of athletes (27%) demonstrated iron-deficient erythropoiesis (IDE) compared with nonathletes (13%). There were nonsignificant differences (p > .05) in the prevalence of iron deficiency (ID; 49% vs. 46%) and iron deficiency anemia (IDA; 2% vs. 4%) between athletes and nonathletes. Similarly, the prevalence of ID, IDE, and IDA was not significantly different between sports (p > .05). Furthermore, training volume was negatively correlated with ferritin concentration in athletes (r: −.464, moderate, p < .001). Professional female athletes are at a heightened risk of IDE compared with nonathletes; therefore, they should be periodically screened for ID to reduce the deleterious effects on training and performance. The similar prevalence of ID, IDE, and IDA found across athletes competing in different sports suggests that overlaps exist between handball, volleyball, soccer, and judo athletes regarding risk of disturbance in iron metabolism.


2019 ◽  
Vol 57 (219) ◽  
Author(s):  
Niharika Shah ◽  
Sairil Pokharel ◽  
Deebya Raj Mishra ◽  
Purbesh Adhikari

Introduction: Anemia due to iron deficiency and chronic diseases is common occurrence in developing country like Nepal, the latter seen in patients with various inflammatory, autoimmune, and malignant disorders . The Intensive method of marrow iron examination, which this study has employed, provides clinically useful iron status classification in cases of functional iron deficiency. The aim of the study is to find out the prevalence of iron deficiency anemia in biochemically defined moderate to severe anemic patients in tertiary care center. Methods: A descriptive cross-sectional study was done in 43 patients who underwent bone marrow aspiration for evaluation of any cause and had moderate to severe anemia at the same time over a period of one year from Nov 2015 to 2016. Ethical clearance was obtained from Institutional Review Committee. The bone marrow iron stores were assessed by“intensive method” apart from the routinely used Gale’s method. Data was collected and entry were done in Statistical Package for Social Sciences version 24. Point estimate at 95% Confidence Interval was calculated along with frequency and proportion for binary data. Results: The intensive grading system demonstrated normal marrow iron store in 13 (30.2%), depleted iron stores in 3 (7%), functional iron deficiency in 14 (32.6%), and combined deficiency in 13 (30.2%) patients. Mean log ferritin concentration was lower in patients with depleted iron stores (2.2μg/l) than in those with normal (2.7μg/l), and functional iron deficiency (2.4μg/l). The mean log ferritin in combined deficiency was lower than the mean log ferritin concentration in iron store deficiency (1.9μg/l). Conclusions: The prevalence of functional iron deficiency anemia was greatest when the intensive method for assessment of bone marrow iron was used, thus differentiating four different iron status categories, including functional iron deficiency, from actual iron store deficiency, avoiding unnecessary iron supplementation in the former group.


2017 ◽  
Vol 147 (12) ◽  
pp. 2297-2308 ◽  
Author(s):  
Michael J Wenger ◽  
Laura E Murray-Kolb ◽  
Julie EH Nevins ◽  
Sudha Venkatramanan ◽  
Gregory A Reinhart ◽  
...  

Abstract Background: Iron deficiency and iron deficiency anemia have been shown to have negative effects on aspects of perception, attention, and memory. Objective: The purpose of this investigation was to assess the extent to which increases in dietary iron consumption are related to improvements in behavioral measures of perceptual, attentional, and mnemonic function. Methods: Women were selected from a randomized, double-blind, controlled food-fortification trial involving ad libitum consumption of either a double-fortified salt (DFS) containing 47 mg potassium iodate/kg and 3.3 mg microencapsulated ferrous fumarate/g (1.1 mg elemental Fe/g) or a control iodized salt. Participants' blood iron status (primary outcomes) and cognitive functioning (secondary outcomes) were assessed at baseline and after 10 mo at endline. The study was performed on a tea plantation in the Darjeeling district of India. Participants (n = 126; 66% iron deficient and 49% anemic at baseline) were otherwise healthy women of reproductive age, 18–55 y. Results: Significant improvements were documented for iron status and for perceptual, attentional, and mnemonic function in the DFS group (percentage of variance accounted for: 16.5%) compared with the control group. In addition, the amount of change in perceptual and cognitive performance was significantly (P < 0.05) related to the amount of change in blood iron markers (mean percentage of variance accounted for: 16.0%) and baseline concentrations of blood iron markers (mean percentage of variance accounted for: 25.0%). Overall, there was evidence that the strongest effects of change in iron status were obtained for perceptual and low-level attentional function. Conclusion: DFS produced measurable and significant improvements in the perceptual, attentional, and mnemonic performance of Indian female tea pickers of reproductive age. This trial was registered at clinicaltrials.gov as NCT01032005.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1070-1070
Author(s):  
Brian Sandri ◽  
Gabriele Lubach ◽  
Eric Lock ◽  
Michael Georgieff ◽  
Pamela Kling ◽  
...  

Abstract Objectives To determine whether rapid correction of iron deficiency using intramuscular iron dextran normalizes serum metabolomic changes in a nonhuman primate model of iron deficiency anemia (IDA). Methods Blood was collected from naturally iron-sufficient (IS; n = 10) and IDA (n = 12) male and female infant rhesus monkeys (Macaca mulatta) at 6 months of age. IDA infants were treated with intramuscular injections of iron dextran, 10 mg/weekly for 4–8 weeks. Iron status was reevaluated following treatment using hematological measurements and sera were metabolically profiled using HPLC/MS with isobaric standards for identification and quantification. Results Early-life iron deficiency anemia negatively affects many cellular metabolic processes, including energy production, electron transport, and oxidative degradation of toxins. Slow iron repletion with dietary supplementation restores iron deficient monkeys from a hematological perspective, but the serum metabolomic profile remains differed from monkeys that had been iron sufficient their entire life. Whether rapid iron restoration through intramuscular injections of iron dextran normalizes serum metabolomic profile is not known. A total of 654 metabolites were measured with differences in 53 metabolites identified between IS and IDA monkeys at 6 months (P 0.05). Pathway analyses provided evidence of altered liver function, hypometabolic state, differential essential fatty acid production, irregular inosine and guanosine metabolism, and atypical bile acid production in IDA infants. After treatment, iron-related hematological parameters had recovered, but the formerly IDA infants remained metabolically distinct from the IS infants, with 225 metabolites differentially expressed between the groups. Conclusions As with slow iron repletion, rapid iron repletion does not normalize the altered serum metabolomic profile in rhesus infants with IDA, suggesting the need for iron supplementation in the pre-anemic stage. Funding Sources National Institutes of Health.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2052-2052
Author(s):  
Eldad A. Hod ◽  
Eric H. Ekland ◽  
Shruti Sharma ◽  
Boguslaw S. Wojczyk ◽  
David A. Fidock ◽  
...  

Abstract Abstract 2052 To clarify the interactions between iron status, oral iron supplementation, and bacterial and malarial infections, we examined iron-replete mice and mice with dietary iron deficiency infected with Salmonella typhimurium, Plasmodium yoelii, or both, with and without oral iron administration. These studies were designed to identify potential mechanisms underlying the increased risk of severe illness and death in children in a malaria-endemic region who received routine iron and folic acid supplementation during a randomized, controlled trial in Pemba, Tanzania (Sazawal et al. Lancet 2006;367:133-43). To this end, weanling C57BL/6 female mice were fed an iron-replete or an iron-deficient diet, the latter of which resulted in severe iron deficiency anemia. Groups of mice were then infected by intraperitoneal injection of Salmonella typhimurium strain LT2, Plasmodium yoelii strain 17X parasites, or both. With Salmonella infection alone, iron-deficient mice had a median survival (7.5 days, N=8) approximately half that of iron-replete mice (13 days, N=10, p<0.0001). At death, the mean level of bacteremia was significantly higher in infected iron-deficient mice. In blood cultures performed at death, all iron-deficient mice were bacteremic, but bacteria were detected in only 4 of 10 iron-replete mice. Both iron-deficient and iron-replete Salmonella-infected mice had gross hepatosplenomegaly with hepatitis, distorted hepatic and splenic architecture, massive expansion of the splenic red pulp with inflammatory cells, and Gram-negative bacilli by tissue Gram stain. With P. yoelii infection alone, iron-deficient and iron-replete mice cleared the infection at similar rates (by ~13 days following infection, N=5 in each group) and no deaths due to parasitemia occurred. With Salmonella and P. yoelii co-infection, death was earlier than with Salmonella alone in iron-replete mice (median survival of 10 vs. 13 days; N=10 in each group; p=0.005), but not in iron-deficient mice (median survival of 7 vs. 7.5 days; N=10 and 8, respectively; p=0.8). To examine the effect of short-term oral iron supplementation with Salmonella infection alone, mice received daily iron (ferrous sulfate, 1 mg/kg) by gavage for 4 days before infection with Salmonella, and supplementation continued for a total of 10 days. After gavage, plasma non-transferrin-bound iron (NTBI) appeared at 1–2 hours with a mean peak level of approximately 5 μM. In iron-deficient mice, short-term oral iron supplementation did not fully correct the iron deficiency anemia or replenish iron stores. Oral iron supplementation reduced the median survival of both iron-deficient and iron-replete Salmonella-infected mice by approximately 1 day; the difference was significant only in the iron-replete group (N=5, p<0.05). In summary, these results indicate that iron deficiency decreases the survival of Salmonella-infected mice; the median survival of iron-deficient mice was approximately half that of those that were iron replete. These observations are similar to those in the Pemba sub-study in which iron-deficient children given placebo had a 200% increase in the risk of adverse events relative to iron-replete children. Iron deficiency had no apparent effect on the course of infection with P. yoelii but further studies with more virulent Plasmodium species are needed. Co-infection with Salmonella and Plasmodium significantly increased mortality as compared to single infections, but only in iron-replete mice. Oral iron supplementation of Salmonella-infected mice significantly decreased the median survival, but only of iron-replete animals; however, our study may have had insufficient power to detect an effect on iron-deficient mice. Systematic examination in mice of the effect of iron supplements on the severity of malarial and bacterial infection in iron-replete and iron-deficient states may ultimately help guide the safe and effective use of iron interventions in humans in areas with endemic malaria. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Somen Saha ◽  
Tapasvi Puwar ◽  
Deepak Saxena ◽  
Komal Shah ◽  
Apurva kumar Pandya ◽  
...  

AbstractIntroductionAnaemia is one of the leading public health problems. India accounts for the highest prevalence of anaemia in the world. Anaemia programs in India focus on screening and management of anaemia based on haemoglobin estimation, treatment is being given irrespective of status of iron as well as other micronutrient storage. The present study assesses the prevalence of anaemia and iron deficiency (ID) based on low serum ferritin status among antenatal and postnatal women in Devbhoomi Dwarka District of Gujarat.MethodsA total of 258 pregnant (AN) and postnatal (PN) women drawn from 27 primary health centres were studied. Anaemia was evaluated based on haemoglobin concentration obtained from venous whole blood, using auto-analyser. Serum ferritin was used to evaluate iron status in the study. Serum ferritin was assessed using the direct chemiluminescence method using MINI VIDAS which is a compact automated immunoassay system based on the Enzyme Linked Fluorescent Assay (ELFA) principles.ResultsOverall, Anaemia (low Hb) and ID (low s. ferritin) was observed in 65.9% and 27.1% respectively. Out of anaemic participants, about 38.2% reported ID while the remaining 61.8% had normal s. ferritin (i.e. non-iron deficient anaemia). Anaemia was reported 69.1% in AN women and 57.1% in PN women. The ID was reported higher (30.9%) in AN woman than PN women (17.1%). However, the prevalence of anaemia, as well as IDA decreased from the first to the third trimester.ConclusionTwo out of every three women were anaemic; one out of four were anaemic with depleted iron storage. Importantly, two out of five women had anaemia but iron storage was sufficient. Strategy to prevent and correct anaemia must include screening for iron and non-iron deficiency anaemia and follow appropriate treatment protocol for both types of anaemia.


2015 ◽  
Vol 55 (1) ◽  
pp. 44
Author(s):  
Desmansyah Desmansyah ◽  
Rini Purnamasari ◽  
Theodorus Theodorus ◽  
Sulaiman Waiman

Background Iron deficiency is considered to be a major public health problem around the world due to its high prevalence as well as its effect on growth, development, and infection-resistance in children. In malaria-endemic areas, malaria infection is thought to contribute to the occurrence of iron deficiency, by means of hepcidin and hemolysis mechanisms. Objective To assess the prevalence of asymptomatic vivax malaria, compare hemoglobin levels and iron status parameters between vivax malaria-infected and uninfected children, assess the prevalence of iron deficiency, and evaluate a possible correlation between vivax malaria infection and iron deficiency. Methods This cross-sectional study was conducted from February to April 2013 at Sanana City of Sula Islands District, North Maluku. Six parameters were evaluated in 5-11-year-old children: malaria parasite infection, hemoglobin level, serum iron concentration, total iron-binding capacity (TIBC), serum transferrin saturation, and serum ferritin concentration. Results Among 296 children aged 5-11 years, 75 (25.3%) were infected with Plasmodium vivax. In infected children, hemoglobin, serum iron, transferrin saturation, TIBC and serum ferritin were significantly lower than in non-infected children (P<0.01). Using a serum ferritin cut-off of <15 μg/dL, 142 (48.0%) of the children were found to be iron deficient. There was a strong correlation between vivax malaria infection and iron deficiency (OR 3.573; 95%CI 2.03-6.29). ConclusionThe prevalence of asymptomatic vivax malaria infection was 25.3%. The hemoglobin level and iron status parameters in vivax malaria-infected subjects were significantly lower than in uninfected children. The prevalence of iron deficiency was 48.0% for all study subjects. Malaria vivax infection was correlated with iron deficiency in 5-11-year-old children at Sanana City.


1998 ◽  
Vol 44 (4) ◽  
pp. 800-804 ◽  
Author(s):  
Else J Harthoorn-Lasthuizen ◽  
Jan Lindemans ◽  
Mart M A C Langenhuijsen

Abstract Erythrocyte zinc protoporphyrin (ZPP) was measured in 102 women blood donors to evaluate its usefulness in screening for evolving iron deficiency anemia, a reason for the deferral of donors. The results were compared with serum ferritin determinations. Five women were deferred before their first donation and eight women were deferred after one or two donations. Women with increased ZPP values all had low serum ferritin concentrations, indicating iron-deficient erythropoiesis that was caused by iron depletion. The positive predictive value of an increased ZPP in predicting deferral of the donor after one or two donations was 75%, whereas a serum ferritin concentration ≤12 μg/L predicted deferral in 26% of the donors. The results indicate that the ZPP test can be recommended as a feasible and inexpensive predonation test to determine a subset of donors with iron-deficient erythropoiesis at risk of developing iron deficiency anemia.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 19677-19677
Author(s):  
G. Riebandt ◽  
S. A. South ◽  
K. Odunsi ◽  
S. Lele ◽  
K. Rodabaugh

19677 Background: Anemia is a common consequence of cancer which significantly impacts patient quality of life. The mainstay of treatment for cancer- and chemotherapy-related anemia is erythropoietin therapy. However, approximately 30% to 50% of patients will not respond to these growth factors. The literature attributes this lack of response to functional iron deficiency, when iron stores are normal but the body cannot meet the increased rate of erythropoiesis. We evaluated the iron status of patients with ovarian malignancies receiving chemotherapy and erythropoietin therapy to establish a baseline for implementation of an intervention service. Methods: After obtaining Institutional Review Board approval, we identified 55 ovarian cancer patients receiving erythropoietin therapy from January to December 2005. We then performed a retrospective chart review for patients who had iron studies available. Results: Thirty-four patients had complete iron studies performed, while an additional 10 had only a ferritin level obtained. The mean hemoglobin for all patients was 9.9g/dl (6.9–13.1) with a mean MCV (mean corpuscular volume) of 92.7fl. Four (12%) patients were iron deficient based on ferritin <100ng/ml and iron saturation <20%. However, these patients had normal MCVs, indicating iron deficiency was not the etiology of their anemia. A few patients were assessed for B12 and folate deficiency, but none were identified. Interestingly, we had 22 patients with elevated ferritin levels (greater than 322ng/ml), with the highest being 2178ng/ml. Conclusions: Our results identified a few patients who were iron deficient, but none were diagnosed with iron deficiency anemia. Therefore, the role of routine iron screening in patients with a normal MCV prior to initiation of erythropoietin therapy is in question. We believe that functional iron deficiency may contribute to anemia in our population. Therefore, we suggest that all patients receive iron supplementation at erythropoietin therapy initiation. We plan to prospectively assess the optimal route of iron administration in ovarian cancer patients in order to improve the response rate to erythropoietic growth factors. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document