Platelet Tissue Factor: Expression of Pro-Coagulant Activity depends on Gpibα Activation and Signaling through Lyn-Mediated Phosphorylation. A Platelet-Based Model of Hemostasis

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 113-113
Author(s):  
Olga Panes ◽  
Paula Ibarra ◽  
Valeria Matus ◽  
Claudia G. Sáez ◽  
Jaime Pereira ◽  
...  

Abstract Human platelets synthesize and store functionally silent tissue factor (TF) which has procoagulant activity (PCA) after platelet activation. We now explored the location of inactive and active forms of TF and mechanisms of activation. We reported that resting, non-permeabilized human platelets express scant surface TF, which was strikingly enhanced and co-localized with GPIbα after stimulation (Blood2007;109:5242). The externalization of TF was confirmed by immunoprecipitation (Ip) from biotinylated membranes before and after platelet activation. Moreover, TF and GPIbα co-precipitated in Ip assays and both glycoproteins were prominently found in lipid rafts (Lr) domains. TF-dependent PCA, assessed by FXa generation, was negligible or absent in resting, leukocyte-free platelet preparations. Interestingly, FVII was found in platelet membranes (western blot) and no exogenous FVIIa was needed to trigger TF-dependent FXa generation from washed platelets. Platelet responses to activation (TF-dependent PCA, platelet aggregation and secretion) depended on the agonist used. With 1IU/mL VWF + 1.2 mg/mL Ristocetin (Ris) PCA increased 5 to 10-fold 2 min after stimulation and platelets formed large aggregates with null 14C-serotonin secretion. In contrast, both platelet aggregation and secretion were normal 2 min after activation with 1IU thrombin, 10μM TRAP or 2μg/mL collagen; and PCA induced by thrombin was only ≈1/2 of that elicited by VWF+Ris, whereas 2 min after TRAP or collagen stimulation no PCA induction was detected. Removal of membrane cholesterol (by methyl-β-cyclo-dextrin) or disruption of Lr (with filipin III) abolishes the VWF-Ris-induced PCA. Lr’s from resting platelets contain TF of Mr ≈60kDa. Five min after activation an increase in Lr’s TF was observed, but its Mr depended on the agonist: species of ≈47kDa and ≈60kDa were found after VWF-Ris and TRAP activation, respectively. Given that GPIbα signals through Lyn, member of the Src family, inhibition of signaling with PP2 resulted in 80% fall of VWF-Ris-induced PCA. Ip assays revealed that Lyn co-precipitated with both GPIbα and TF in VWF-Ris activated, but not resting platelets. The phosphokinase activity of Lyn on TF was tested. A polyclonal antibody raised against the phosphorylated (Ser253/Ser258) cytoplasmic domain of TF (Dr. W. Ruf, La Jolla) recognized membrane TF only in activated, not in resting platelets. These findings indicate that VWF-induced activation of GPIbα, subsequent signaling with Lyn-induced serine phosphorylation, along with a change of TF to a ≈47kDa species, triggers human platelets PCA. The previously described role of phospho-disulphide isomerases (PDI) in TF activation through SH groups oxidation was also explored. TF and PDI co-precipitated in resting and activated platelet membranes and antagonizing PDI with bacitracin inhibited TF-dependent PCA. After platelet activation and labeling with MPB, a sulfhydryl-specific probe, TF protein (with PCA) was detected on the plasma membrane, denoting presence of reduced thiols. Furthermore, platelet incubation with phenylarsine oxide, a blocking reagent of vicinal SH groups, or HgCl2, a potent oxidant of thiol groups, had no effect on platelet PCA. Thus, it seems unlikely that TF activation depends on SH oxidation. Finally, we found that platelet TF was sufficient to speed up the clotting of plasma. In fact, clotting time of PRP (2 × 108 platelets mL−1) incubated with ionophore A23187 (2 min, 37°C) and then re-calcified, was 59 ± 6 sec, whereas clotting time in re-calcified PRP without previous activation was 137 ± 19 sec (n=19, p<0.0001). Taken together, our results highlight the crucial role of platelets, not only in assembling clotting complexes and reactions on their surface, but also providing enough TF to trigger the whole process. This novel, comprehensive understanding of hemostasis, (“platelet-based hemostasis model”), unifies primary and secondary hemostasis around the platelets, which would be able to synchronize and modulate the times of both processes ensuring a confined thrombin generation and adequate deposit of fibrin when and where it is needed. It also emphasizes the self-sufficiency of intravascular components to carry out both normal hemostasis and thrombus formation. In this context, platelet PCA may become a central pharmacological target for preventing or managing bleeding and thrombotic disorders.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3904-3904
Author(s):  
Samantha Baldassarri ◽  
Alessandra Bertoni ◽  
Paolo Lova ◽  
Stefania Reineri ◽  
Chiara Sarasso ◽  
...  

Abstract 2-Arachidonoylglycerol (2-AG) is a naturally occurring monoglyceride that activates cannabinoid receptors and meets several key requisites of an endogenous cannabinoid substance. It is present in the brain and hematopoietic cells, including macrophages, lymphocytes and platelets. 2-AG is released from cells in a stimulus-dependent manner and is rapidly eliminated by uptake into cells and enzymatic hydrolysis in arachidonic acid and glycerol. 2-AG might exert a very fine control on platelet function either through mechanisms intertwining with the signal transduction pathways used by platelet agonists or through mechanisms modulating specific receptors. The aim of this study was to define the role of 2-AG in human platelets and characterize the mechanisms by which it performs its action. Platelets from healthy donors were isolated from plasma by differential centrifugations and gel-filtration on Sepharose 2B. The samples were incubated with 2-AG (10–100 μM) under constant stirring in the presence or absence of various inhibitors. Platelet aggregation was measured by Born technique. We have found that stimulation of human platelets with 2-AG induced irreversible aggregation, which was significantly enhanced by co-stimulation with ADP (1–10 μM). Furthermore, 2-AG-dependent platelet aggregation was completely inhibited by ADP scavengers, aspirin, and Rho kinase inhibitor, as well as by antagonists of the 2-AG receptor (CB2), of the ADP P2Y12 receptor, and of the thromboxane A2 receptor. We further investigated the role of endocannabinoids on calcium mobilization. Intracellular [Ca2+] was measured using FURA-2-loaded platelets prewarmed at 37°C under gentle stirring in a spectrofluorimeter. 2-AG induced rapid increase of cytosolic [Ca2+] in a dose-dependent manner. This effect was partially blocked by ADP scavengers and CB2 receptor antagonists. Furthermore, 2-AG-induced [Ca2+] mobilization was totally suppressed by aspirin or the thromboxane A2 receptor antagonist. These results suggest that 2-AG is able to trigger platelet activation, and that this action is partially mediated by CB2 receptor and ADP. Furthmore, 2-AG-dependent platelet activation is totally dependent on thromboxane A2 generation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2998-2998
Author(s):  
Valery Leytin ◽  
Asuman Mutlu ◽  
Sergiy Mykhaylov ◽  
David J. Allen ◽  
Armen V. Gyulkhandanyan ◽  
...  

Abstract Abstract 2998 Poster Board II-976 Introduction: The platelet surface receptor glycoprotein (GP) IIbIIIa (integrin αaIIbβ3) mediates platelet aggregation and plays a key role in hemostasis and thrombosis. Numerous GPIIbIIIa antagonists have been designed and tested as inhibitors of platelet aggregation. Two of these antagonists, eptifibatide (Integrilin) and tirofiban (Aggrastat) have been approved by the U.S. Food and Drug Administration (FDA) and widely used for preventing and treating thrombotic complications in patients undergoing percutaneous coronary intervention and in patients with acute coronary syndromes. It has been reported, however, that some GPIIbIIIa antagonists, such as orbofiban and xemilofiban, promote apoptosis in cardiomyocytes by activation of the apoptosis executioner caspase-3, raising the possibility that platelets also may be susceptible to pro-apoptotic effects of eptifibatide and tirofiban. Over the past decade it has been well-documented that apoptosis occurs not only in nucleated cells but also in anucleated platelets stimulated with thrombin, calcium ionophores, very high shear stresses and platelet storage (Leytin et al, J Thromb Haemost 4: 2656, 2006; Mason et al, Cell 128: 1173, 2007). It has been further reported that platelet activation and apoptosis may be induced by different mechanisms and/or require different levels of triggering stumuli (Leytin et al, Br J Haematol 136: 762, 2007; Br J Haematol 142: 494, 2008). Recently, we have shown that injection of anti-GPIIb antibody induced caspase-3 activation in mouse platelets in vivo (Leytin et al, Br J Haematol 133: 78, 2006), suggesting that direct GPIIbIIIa-mediated pro-apoptotic signaling is able to trigger caspase-3 activation within platelets. Study Design and Methods: The current study aimed to examine, for the first time, the effect of eptifibatide and tirofiban on caspase-3 activation in human platelets. We studied the effects of eptifibatide and tirofiban on caspase-3 activation in resting platelets, which express GPIIbIIIa receptors in their non-active (“closed”) conformation, and in platelets stimulated with thrombin or calcium ionophore A23187, which induce transition of GPIIbIIIa receptors into active (“open”) conformation. Resting platelets were treated with control buffer, 0.48 μM eptifibatide or 0.48 μM tirofiban, and stimulated platelets were treated with 1 U/mL thrombin or 10 μM A23187, or preincubated with eptifibatide or tirofiban before treatment with thrombin or A23187. Caspase-3 activation was determined by flow cytometry using the cell-penetrating FAM-DEVD-FMK probe, which covalently binds to active caspase-3. Results and Discussion: We found that treatment of resting platelets with eptifibatide and tirofiban did not affect caspase-3 activation (P>0.05, n=7). In contrast, a 2.3-2.7-fold increase of caspase-3 activation was observed in platelets after thrombin or A23187 stimulation (P<0.01, n=7). However, when platelets were preincubated with eptifibatide and tirofiban before agonist treatment, these drugs significantly inhibited agonist-induced caspase-3 activation by an average of 44-50% (P<0.05, n=7). The fact that eptifibatide and tirofiban do not promote caspase-3 activation in unstimulated platelets suggests that these GPIIbIIIa antagonists do not induce transmission of pro-apoptotic transmembrane signals inside platelets through inactive GPIIbIIIa integrin. The inhibitory effect of eptifibatide and tirofiban on thrombin- and A23187-induced caspase-3 activation suggests a role of GPIIbIIIa integrin in caspase-3 activation induced by these platelet agonists. Conclusions: We have demonstrated a novel platelet-directed activity of two clinically used GPIIbIIIa antagonist drugs, eptifibatide (Integrilin) and tirofiban (Aggrastat), with ability to inhibit apoptosis executioner caspase-3 induced by potent platelet agonists, thrombin and A23187, and the absence of adverse pro-apoptotic effects on resting platelets. Taken together with earlier reported data (Leytin et al, Br J Haematol 133: 78, 2006), the current study indicates that, aside from their well-known participation in platelet activation and aggregation, GPIIbIIIa receptors are involved in the modulation of platelet apoptosis. This GPIIbIIIa-mediated mechanism of apoptosis modulation may be very efficient given the extremely large number of GPIIbIIIa copies (≈80,000) on the platelet surface. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3626-3626
Author(s):  
Michelle Castillo ◽  
Emily Ott ◽  
Robert Wujek ◽  
Liu Qiuli ◽  
Kathleen Schmainda ◽  
...  

Introduction: Genetic deletion of Tissue Factor Pathway Inhibitor (TFPI) exon 4, encoding its Kunitz 1 (K1) domain, results in complete intrauterine lethality (PMID 9242522). TFPI K1 null mice (Tfpi-/-) are born live if Tissue Factor expression is reduced or in the complete absence of Protease Activated Receptor-4 (Par4), and these exhibit a normal life span without overt signs of thrombosis (PMID 15598816, 25954015). Based on these data, it has been postulated that modulation of thrombin-dependent platelet activation by TFPI is essential for survival. Platelet activation results in a number of downstream events. Of these, platelet aggregation via the integrin receptor αIIbβ3 is considered to have a key role in hemostasis and could participate in thrombotic pathology in the absence of TFPI. Binding of αIIbβ3 to its ligands also mediates critical interactions of platelets with endothelial cells, leukocytes and other cell types. In this work, we have investigated whether modulation of platelet activity via genetic absence of integrin receptor αIIbβ3 confers protection and allows generation of adult Tfpi-/- mice. Methods: Tfpi+/- αIIb-/- mice were generated by breeding Tfpi+/- and integrin αIIb-/- mice and identified by PCR-based genotyping of tissues obtained by tail biopsies. Tfpi+/- αIIb-/- intercrosses served as the experimental cross. Pups were genotyped at the time of wean, around 4 weeks of age. In some experiments, surgeries were performed to analyze pregnancies at 18.5 days post coitum (dpc). Embryos and placentae were observed under the dissecting microscope and any phenotypic abnormalities were noted. Presence of heart beats and limb movements were used to identify live embryos. Embryos and placentae were fixed in zinc-formalin and embedded in paraffin for sectioning and histological analysis. T1 weighted Magnetic Resonance Images were acquired on a 9.4T scanner to measure cerebral ventricle sizes of Tfpi-/- αIIb-/- and littermate control mice. Ventricular regions of interest (ROI) were drawn on each image slice from which total ventricular volume was computed. These mice were later perfused with 4% paraformaldehyde for collection of organs and histological analysis. Results: We analyzed 122 pups from intercrosses of Tfpi+/- αIIb-/- mice and observed a genetic distribution 39 Tfpi+/+, 77 Tfpi+/- and 6 Tfpi-/- (25% or 31 Tfpi-/- were expected, 5% observed, 95% CI 1.8 to 10.4%). Thus, genetic absence of αIIb results in incomplete rescue of Tfpi-/- mice (P&lt; 0.000002, Χ2 GOF) with only ~20% surviving past embryonic development to 4 weeks of age. These data contrast with 40% Tfpi-/- offspring surviving in the absence of Par4 (Tfpi+/- Par4-/- intercrosses: 23 Tfpi+/+, 39 Tfpi+/- and 8 Tfpi-/-; PMID 25954015). Thus, the absence of αIIb is much less effective than the absence of Par4 in allowing early survival of TFPI null mice (P &lt; 1.9E-09; Χ2 test of independence). We compared survival of Tfpi-/- αIIb-/- offspring close to term of pregnancy (18.5 dpc) and at 4 weeks of age. TFPI null embryos were found at reduced frequency at 18.5 dpc (12 Tfpi+/+, 21 Tfpi+/- and 5 Tfpi-/-; 25% Tfpi-/- expected, 13% observed, 95% CI 4.4 to 28.1%), but even fewer survived the trauma of birth (P&lt;0.0004, Χ2 test of independence). Of the 6 Tfpi-/- αIIb-/- pups found at 4 weeks of age, 3 died by 9 weeks of age. Dome shaped heads indicative of hydrocephalus or histological evidence of hydrocephalus was noted in the pups that died. Surviving mice were observed for 7 months to 1 year of age and imaged with MRI. Comparison of ventricular volumes between Tfpi-/- mice and Tfpi+/- controls demonstrated a higher volume in Tfpi-/- mice (39.3 ± 18.3 versus 5.3 ± 2.2 mm3; P=0.08). Both Tfpi-/- and Tfpi+/- mice were αIIb-/- in this experiment. Thus, αIIb in not involved in hydrocephalus formation. Hydrocephalus formation in Tfpi-/- mice was confirmed through serial histological sections of the brain (Figure 1). Conclusions: Our data demonstrates that genetic absence of αIIb improves survival of TFPI null mice, but to a much lesser extent than the genetic absence of Par4. Thus, the critical role of Par4 in the demise of TFPI null mice is unlikely to be primarily through excessive platelet aggregation. We further show that TFPI null pups exhibit varying degrees of hydrocephalus formation. While the mechanism of hydrocephalus formation in the absence of TFPI remains unclear, our results demonstrate a critical role of TFPI in the brain. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3000-3000
Author(s):  
Olga Panes ◽  
Valeria Matus ◽  
Claudia G. Sáaez ◽  
Jaime Pereira ◽  
Diego Mezzano

Abstract Abstract 3000 Poster Board II-977 Human platelets synthesize and store functionally silent tissue factor (TF) which expresses procoagulant activity (PCA) after platelet activation. Fast activation of TF was elicited by VWF-Ristocetin (VWF-R) through GPIbαa activation and Src-Lyn transduction pathway (Blood, Nov 2008; 112:113). Given that GPVI, along with GPIb and TF have been found in “lipid rafts”, and the activated form of GPVI signals through Fyn, another member of the Src family, we tested if GPVI was involved in TF-initiated PCA. We also studied the time-course and pathway specificity of TF activation and the role of platelet FVII in PCA. Weak TF immunofluorescence and co-localization with GPIba were observed in non stimulated washed platelets. A mild increase of TF fluorescence was detected 2 min after TRAP activation, which augmented when the stimulus was VWF-R. Furthermore, striking enhancement of TF fluorescence occurred 2 min after depositing platelets over a VWF-coated surface, but not over fibrinogen or albumin. Platelets adherent to VWF matrix showed GPIb clustering and loss of co-localization with TF. Externalization of TF was confirmed by immunoprecipitation (Ip) of biotinylated membranes before and after platelet activation. Concomitantly, TF-dependent FXa generation increased 5-10-fold shortly after VWF stimulus. Washed platelets stimulated with VWF-R agglutinated normally when stirred in an aggregometer, and the fraction of platelets exposing anionic phospholipids (annexin V binding) was similar to parallel samples stimulated with TRAP. However, VWF-R induced null 14C-serotonin secretion and P-selectin exposure (flow cytometry) in washed platelets. In contrast, TRAP, collagen, ADP and convulxin induced full platelet aggregation, 14C-serotonin and P-selectin secretion at 2-5 min, but with no increase in FXa generation. Platelet PCA was inhibited by antibodies against TF, GPIba, FVIIa, as well as by SU6656 and PP2 (Src pathway inhibitors), but not by Gö6850 (a PKC inhibitor) or exogenous TFPI. p85, a subunit of PI-3K constitutively associated with GPIb complex, becomes strongly associated with TF after stimulation with VWF-R, though only weakly after TRAP activation, confirming the coordinate activation of GPIb and TF. FVII and FX were revealed in platelet membrane fractions by immunoblotting and both co-precipitate with TF in non-stimulated platelets. Two min after activation with VWF-R striking co-precipitations of TF with FVII and FX light chains were evidenced, denoting activation of platelet FVII and FX. When exogenous FX was added to the assay, the amount of FXa generated after 1 and 2 min stimulation was similar whether or not exogenous FVIIa was added. Platelets from four non-related patients with bleeding related to hereditary defect of GPVI had null aggregation and secretion with convulxin and collagen, less than 7% labeling of GPVI by flow cytometry and an immunoreactive membrane GPVI of Mr≈40kDa (native GPVI Mr=62kDa). All of them had normal agglutination with VWF-R and normal FXa generation. In summary, GPIb activation by VWF constitutes a unique and fast inducer of platelet TF-dependent PCA. This process requires anionic phospholipid exposure, but is independent of platelet GPIIb/IIIa and GPVI function. Platelet FVII can initiate FXa generation without need of plasma FVII. The associations of platelet FVII and FX with TF on membrane fractions, together with the large amount of FV in platelets, indicate that human platelets provide not just TF and a PCA phospholipid platform, but also all the components of the prothrombinase complex to trigger the clotting process. Taken together, our results underline the central role of platelets in the whole hemostatic process, unifying primary and secondary hemostasis and circumscribing thrombin generation and fibrin deposition where platelet plug is being formed. Platelet PCA should become a pharmacological target for preventing or managing bleeding and thrombotic disorders. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jennifer Yeung ◽  
Benjamin Tourdot ◽  
Theodore R Holman ◽  
Steven E McKenzie ◽  
Michael Holinstat

Introduction: FcγRIIa plays a key role in platelet activation mediated by immune complexes containing IgG and platelet factor 4 (PF4) bound to heparin. One of the primary mechanisms by which FcγRIIa mediates it effects in the platelet is through its ITAM motif. 12-lipoxygenase (12-LOX) has recently been shown to play an important role in regulation of platelet function through GPVI, which also signals in part through an ITAM motif. We therefore hypothesize that 12-LOX can play an important role in regulation of FcγRIIa-mediated platelet activation resulting in aggregation and thrombosis. Identifying the importance of this regulatory interaction is essential for understanding the role of 12-LOX in regulation of hemostasis and thrombosis, and identifying a possible target for prevention of FcγRIIa -induced platelet activation. Objectives: Determine the requirement of 12-LOX activation in FcγRIIa -mediated platelet activation and identify the underlying mechanism by which 12-LOX activation regulates FcγRIIa. Methods: FcγRIIa-mediated Platelet aggregation was measured in washed human platelets and mouse platelets in the presence of a 12-LOX inhibitor or in FcγRIIa +/+ mice crossed with 12-LOX -/- mice. PLCγ and PKC activation were measured in the absence of 12-LOX activity. Additionally, Rap1, calcium, and αIIbβ3 activity was measured in the presence or absence of 12-LOX activity following stimulation of FcγRIIa with CD9 or goat anti-mouse IV.3 antibody (IV.3). Results: Both human and FcγRIIa +/+ mouse platelets were able to fully aggregate following stimulation with CD9 or IV.3. Pharmacological inhibition of 12-LOX or absence of 12-LOX significantly delayed and attenuated platelet aggregation. Additionally, PLCγ, calcium, Rap1 and activation of αIIbβ3 were inhibited. Conclusions: These observations support our hypothesis that 12-LOX is an essential enzyme in the regulation of FcγRIIa-mediated platelet activation. Further investigation of this regulatory pathway will help to confirm 12-LOX as a viable target for inhibition of FcγRIIa and other ITAM-mediated platelet activation.


1996 ◽  
Vol 76 (01) ◽  
pp. 084-087 ◽  
Author(s):  
Flavia Franconi ◽  
Mauro Miceli ◽  
Maria Graziella De Montis ◽  
Elena Lupis Crisafi ◽  
Federico Bennardini ◽  
...  

SummaryReceptors for different monoamines, peptides and other neurohormones are present in the plasma membrane of platelets, and the sophisticated process of haemostasis is regulated by the interplay of their physiologic agonists (1). The recent report of a platelet binding* site for phencyclidine (2) suggested a possible role of N-methyl-D-aspartate (NMDA) receptors in platelet function. Isotherms of [3H]-glutamate (GLU), [3H]-CGP-39653, [3H]-glycine (GLY) and [3H]-MK-801 carried out in platelet membranes yielded Bmax and Kd values for these ligands similar to those present in neurons, and NMDA only partially displaced [3H]-GLU. In neurons [3H]-MK-801 binding is potentiated by GLU and/or GLY and, being specific for the open NMDA receptor channel species, it has a functional meaning. In platelet membranes neither GLU and/or GLY increased [3H]-MK-801 binding; thus suggesting that NMDA receptors in platelets are different from those present in neurons. GLU or NMDA alone did not induce platelet aggregation. However, both amino acids were antagonistic on the aggregating activity of arachidonic acid (AA), NMDA being 3 orders of magnitude more active than GLU, and NMDA also antagonized adenosine diphosphate (ADP) and platelet aggregating factor (PAF) induced platelet aggregation. Finally, NMDA increased cAMP levels in intact platelets, and such an effect did not occur in a Ca2+-free medium; yet, cAMP increase was not antagonized by the calmodulin inhibitor trifluoperazine (TFP). It was concluded that platelet membranes carry an NMDA receptor, functionally distinct from the neuronal one, which seems to play an anti-aggregating role.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1430-1430
Author(s):  
Olga Panes ◽  
César González ◽  
Gustavo Soto ◽  
Jaime Pereira ◽  
Valeria Matus ◽  
...  

Abstract Human platelets contain Tissue Factor (TF) demonstrated by western blotting (WB), IP, confocal IF microscopy and flow cytometry (FC) using an array of different α-TF antibodies. Moreover, TF is synthesized by platelets and has procoagulant activity (PCA) (Panes et al. Blood 2007). Platelets also contain the full-length α-isoform of TFPI that is exposed on the plasma membrane of activated, coated-platelets. A new role of Protein S (PS) is to function as TFPI co-factor for TF/FVIIa/FXa inactivation. In fact, TFPI function, enhanced by protein S (PS), dampens thrombin generation on the platelet surface (Wood, JP et al, 2014). In endothelial cells TFPI appears associated with the cell surface through glycosylphosphatidyl-inositol-mediated anchorage, suggesting some type of association with cholesterol-rich domains in cell membranes (lipid rafts, LR). Platelets also contain PS, but its functional association with platelet TFPI to inhibit platelet TF-dependent PCA remains still unknown. Aim: to disclose the physiologic role of TFPI and PS on the TF-dependent PCA of human platelets. Results: Stimulation of isolated, washed platelets with VWF-Ristocetin (VWF-R) resulted in 10-fold increase of TF-dependent FXa generation within 2-5min, compared with non-stimulated (N-S) platelets: [median 17(10-37) to 182(43-847) nM FXa/2x107 platelets, n=198]. VWF-R induced anionic phospholipid exposure, but no α-δ-granules release in washed platelets. FX activation could be triggered without external FVII, although this was required to sustain the reaction. FVII/FVIIa was demonstrated in washed platelets by WB, confocal IF microscopy and FC, and its membrane expression augmented after platelet activation. FXa induced by VWF-R was abolished by pre-incubation with TFPI or with several polyclonal or mAbs against to each TF, FVIIa or GPIbα. In contrast, TRAP stimulation (n=84) induced little or no FXa generation [Median 32(11-219) nM FXa/2x107platelets], but FX activation was increased by 54% (range 13-109%, p=0.0039) in platelets pre-incubated with α-TFPI. This increase was more pronounced with pre-incubation with α-PS (90%, range 31-227%, p<0.004). Combination of α-TFPI and α-PS did not enhance further FX activation. The releasate fraction of TRAP-stimulated platelets inhibited the FXa produced by VWF-R-stimulated platelets, supporting that TRAP-induced secretion of TFPI and PS explained this effect. Membrane exposure of platelet TFPI measured by FC was decreased after TRAP stimulation, a paradox explained by the high content of TFPI and PS in microparticles (MP) contained in the TRAP releasates. In contrast, the smaller number of MP released by VWF-R activation contained neither TFPI nor PS (WB assay). IP assays in platelet membrane fractions showed co-precipitation of TF, FVII/FVIIa and GPIbα. All these proteins co-precipitated also with TFPI in lipid raft fractions. Importantly, TFPI was notably augmented in LR fractions after TRAP stimulation, as compared with VWF-R stimulation. Moreover, TRAP stimulation resulted in co-precipitation of TFPI and PS in cytosolic, membrane and released platelet fractions. Conclusions: 1. TF-dependent PCA of washed human platelets is specifically and rapidly induced by GPIbα activation and it´s not accompanied with α-δ-granules release, including TFPI and PS. 2. Platelets contain enough membrane FVII to trigger the FX activation. 3. TRAP induces granule release, including TFPI and PS, which block TF-dependent PCA. 3. This TFPI is predominantly localized in LR fractions and co-precipitates with PS. 4. Secreted protein S likely localizes TFPI to the platelet membrane rich in anionic-rich phospholipids. 5. These results suggest that TF is translocated to LR for its inactivation. 6.These findings lead us to propose a novel model in which clotting is triggered by platelet TF during the first stage of platelet adhesion through GPIbα-VWF interaction; and TF/FVIIa/FXa would be dampened by the secreted TFPI and PS during subsequent platelet activation. Human platelets TF, FVII and the anionic phospholipid surface become central players to assemble and localize the whole clotting process into and around the platelet plug for both hemostasis and atherothrombosis; and platelet TFPI and PS would modulate its growth inactivating TF/FVIIa/FXa on the platelet surface. Disclosures No relevant conflicts of interest to declare.


1981 ◽  
Author(s):  
M Yamamoto ◽  
K Watanabe ◽  
Y Ando ◽  
H Iri ◽  
N Fujiyama ◽  
...  

It has been suggested that heparin caused potentiation of aggregation induced by ADP or epinephrine. The exact mechanism of heparin-induced platelet activation, however, remained unknown. In this paper, we have investigated the role of anti-thrombin III ( AT ) in heparin-induced platelet activation using purified AT and AT depleted plasma. When ADP or epinephrine was added to citrated PRP one minute after addition of heparin ( 1 u/ml, porcine intestinal mucosal heparin, Sigma Co. USA ), marked enhancement of platelet aggregation was observed, compared with the degree of aggregation in the absence of heparin. However, in platelet suspensions prepared in modified Tyrode’s solution, heparin exhibited no potentiating effect on platelet aggregation induced by epinephrine or ADP. Potentiation of epinephrine- or ADP-induced platelet aggregation by heparin was demonstrated when purified AT was added to platelet suspensions at a concentration of 20 μg/ml. AT depleted plasma, which was prepared by immunosorption using matrix-bound antibodies to AT, retained no AT, while determination of α1-antitrypsinα2- macroglobulin and fibrinogen in AT depleted plasma produced values which corresponded to those of the original plasma when dilution factor was taken into account. The activities of coagulation factors were also comparable to those of the original plasma. Heparin exhibited potentiating effect on ADP- or epinephrine-induced aggregation of platelets in original plasma, but no effect in AT depleted plasma. When purified AT was added back to AT depleted plasma at a concentration of 20 μg/ml, potentiation of platelet aggregation by heparin was clearly demonstrated.Our results suggest that effect of heparin on platelet aggregation is also mediated by anti-thrombin III.


1981 ◽  
Vol 46 (02) ◽  
pp. 538-542 ◽  
Author(s):  
R Pilo ◽  
D Aharony ◽  
A Raz

SummaryThe role of arachidonic acid oxygenated products in human platelet aggregation induced by the ionophore A23187 was investigated. The ionophore produced an increased release of both saturated and unsaturated fatty acids and a concomitant increased formation of TxA2 and other arachidonate products. TxA2 (and possibly other cyclo oxygenase products) appears to have a significant role in ionophore-induced aggregation only when low concentrations (<1 μM) of the ionophore are employed.Testosterone added to rat or human platelet-rich plasma (PRP) was shown previously to potentiate platelet aggregation induced by ADP, adrenaline, collagen and arachidonic acid (1, 2). We show that testosterone also potentiates ionophore induced aggregation in washed platelets and in PRP. This potentiation was dose and time dependent and resulted from increased lipolysis and concomitant generation of TxA2 and other prostaglandin products. The testosterone potentiating effect was abolished by preincubation of the platelets with indomethacin.


1979 ◽  
Vol 42 (04) ◽  
pp. 1193-1206 ◽  
Author(s):  
Barbara Nunn

SummaryThe hypothesis that platelet ADP is responsible for collagen-induced aggregation has been re-examined. It was found that the concentration of ADP obtaining in human PRP at the onset of aggregation was not sufficient to account for that aggregation. Furthermore, the time-course of collagen-induced release in human PRP was the same as that in sheep PRP where ADP does not cause release. These findings are not consistent with claims that ADP alone perpetuates a collagen-initiated release-aggregation-release sequence. The effects of high doses of collagen, which released 4-5 μM ADP, were not inhibited by 500 pM adenosine, a concentration that greatly reduced the effect of 300 μM ADP. Collagen caused aggregation in ADP-refractory PRP and in platelet suspensions unresponsive to 1 mM ADP. Thus human platelets can aggregate in response to collagen under circumstances in which they cannot respond to ADP. Apyrase inhibited aggregation and ATP release in platelet suspensions but not in human PRP. Evidence is presented that the means currently used to examine the role of ADP in aggregation require investigation.


Sign in / Sign up

Export Citation Format

Share Document