Impaired Activation of Platelets Lacking Protein Kinase C Theta (PKCΘ) Isoform.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1845-1845
Author(s):  
Bela Nagy ◽  
Kamala Bhavaraju ◽  
Todd Getz ◽  
Yamini Saraswathy Bynagari ◽  
Soochong Kim ◽  
...  

Abstract Protein kinase C (PKC) has been implicated in platelet functional responses, but the contribution of individual isoforms has not been directly evaluated. PKCΘ is activated by glycoprotein VI (GPVI) and protease-activated receptor (PAR) agonists, but not by ADP. In human platelets, PKCΘ-selective receptor for activated C kinase (RACK) antagonistic peptide inhibited agonist-induced aggregation and secretion. Consistently, in murine platelets lacking PKCΘ, GPVI- or PAR-mediated aggregation and secretion were also impaired. Previously, fibrinogen receptor has been shown to be activated independently by calcium and PKC pathways. In the presence of dimethyl BAPTA, AYPGKF-induced platelet aggregation was inhibited by PKCΘ antagonistic RACK peptides, suggesting a role for this isoform in PKC-dependent fibrinogen receptor activation. In addition, the levels of thromboxane A2 (TXA2) release measured in GPVI and PAR-mediated activation of PKCΘ −/− murine platelets, were significantly lower compared to WT platelets. Moreover, agonist-induced extracellular-signal regulated kinase (ERK) phosphorylation was also significantly decreased in PKCΘ −/− murine platelets, which could be contributing to decreased TXA2 levels. PKCΘ −/− mice displayed unstable thrombus formation and prolonged arterial occlusion in the FeCl3 in vivo thrombosis model versus WT mice. In conclusion, PKCΘ isoform plays a significant role in platelet functional responses downstream of GPVI and PARs.

Blood ◽  
2009 ◽  
Vol 113 (11) ◽  
pp. 2557-2567 ◽  
Author(s):  
Bela Nagy ◽  
Kamala Bhavaraju ◽  
Todd Getz ◽  
Yamini S. Bynagari ◽  
Soochong Kim ◽  
...  

Protein kinase C (PKC) isoforms have been implicated in several platelet functional responses, but the contribution of individual isoforms has not been thoroughly evaluated. Novel PKC isoform PKC-θ is activated by glycoprotein VI (GPVI) and protease-activated receptor (PAR) agonists, but not by adenosine diphosphate. In human platelets, PKC-θ–selective antagonistic (RACK; receptor for activated C kinase) peptide significantly inhibited GPVI and PAR-induced aggregation, dense and α-granule secretion at low agonist concentrations. Consistently, in murine platelets lacking PKC-θ, platelet aggregation and secretion were also impaired. PKC-mediated phosphorylation of tSNARE protein syntaxin-4 was strongly reduced in human platelets pretreated with PKC-θ RACK peptide, which may contribute to the lower levels of granule secretion when PKC-θ function is lost. Furthermore, the level of JON/A binding to activated αIIbβ3 receptor was also significantly decreased in PKC-θ−/− mice compared with wild-type littermates. PKC-θ−/− murine platelets showed significantly lower agonist-induced thromboxane A2 (TXA2) release through reduced extracellular signal–regulated kinase phosphorylation. Finally, PKC-θ−/− mice displayed unstable thrombus formation and prolonged arterial occlusion in the FeCl3 in vivo thrombosis model compared with wild-type mice. In conclusion, PKC-θ isoform plays a significant role in platelet functional responses downstream of PAR and GPVI receptors.


2002 ◽  
Vol 368 (2) ◽  
pp. 535-543 ◽  
Author(s):  
Todd M. QUINTON ◽  
Soochong KIM ◽  
Carol DANGELMAIER ◽  
Robert T. DORSAM ◽  
Jianguo JIN ◽  
...  

Platelet fibrinogen receptor activation is a critical step in platelet plug formation. The fibrinogen receptor (integrin αIIbβ3) is activated by agonist-mediated Gq stimulation and resultant phospholipase C activation. We investigated the role of downstream signalling events from phospholipase C, namely the activation of protein kinase C (PKC) and rise in intracellular calcium, in agonist-induced fibrinogen receptor activation using Ro 31-8220 (a PKC inhibitor) or dimethyl BAPTA [5,5′-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid], a high-affinity calcium chelator. All the experiments were performed with human platelets treated with aspirin, to avoid positive feedback from thromboxane A2. In the presence of Ro 31-8220, platelet aggregation caused by U46619 was completely inhibited while no effect or partial inhibition was seen with ADP and the thrombin-receptor-activating peptide SFLLRN, respectively. In the presence of intracellular dimethyl BAPTA, ADP- and U46619-induced aggregation and anti-αIIbβ3 antibody PAC-1 binding were completely abolished. However, similar to the effects of Ro 31-8220, dimethyl BAPTA only partially inhibited SFLLRN-induced aggregation, and was accompanied by diminished dense-granule secretion. When either PKC activation or intracellular calcium release was abrogated, aggregation and fibrinogen receptor activation with U46619 or SFLLRN was partially restored by additional selective activation of the Gi signalling pathway. In contrast, when both PKC activity and intracellular calcium increase were simultaneously inhibited, the complete inhibition of aggregation that occurred in response to either U46619 or SFLLRN could not be restored with concomitant Gi signalling. We conclude that, while the PKC- and calcium-regulated signalling pathways are capable of inducing activating fibrinogen receptor independently and that each can synergize with Gi signalling to cause irreversible fibrinogen receptor activation, both pathways act synergistically to effect irreversible fibrinogen receptor activation.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3228-3234 ◽  
Author(s):  
Todd M. Quinton ◽  
Fatih Ozdener ◽  
Carol Dangelmaier ◽  
James L. Daniel ◽  
Satya P. Kunapuli

Abstract Collagen activates platelets by transducing signals through glycoprotein VI (GPVI). It is not clear whether collagen can directly activate fibrinogen receptors on the adherent platelets without a role for positive feedback agonists. We investigated the contribution of secondary G protein signaling to the mechanism of GPVI-stimulated platelet aggregation using the GPVI-selective agonists, convulxin and collagen-related peptide (CRP) as well as collagen. Adenosine diphosphate (ADP) scavengers or ADP receptor antagonists shifted the concentration-response curve slightly to the right at low concentrations of convulxin, whereas platelet aggregation at higher concentrations of convulxin was unaffected by these agents. ADP receptor antagonists shifted the concentration-response curve of collagen- or CRP-induced platelet aggregation to the right at all the concentrations. Protein kinase C inhibitor, Ro 31-8220, or a calcium chelator 5,5′-dimethyl-BAPTA shifted the concentration-response curve of convulxin-induced platelet aggregation to the right. In addition, pretreatment with both Ro 31-8220 and dimethyl-BAPTA resulted in total inhibition of convulxin-mediated aggregation. Blockade of either the calcium- or protein kinase C–regulated pathway leads to inhibition of fibrinogen receptor activation on platelets adherent to collagen, but inhibition of both pathways leads to abolished fibrinogen receptor activation. We conclude that collagen-induced activation of fibrinogen receptor on adherent platelets through GPVI signaling occurs without any significant role for secreted ADP or thromboxane A2. Furthermore, protein kinase C– and calcium-regulated pathways independently contribute to GPVI-mediated platelet aggregation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1841-1841
Author(s):  
Ramya Chari ◽  
Todd Getz ◽  
Bela Nagy ◽  
Kamala Bhavaraju ◽  
Yingying Mao ◽  
...  

Abstract Protein Kinase Cδ (PKCδ), a novel PKC isoform is expressed and activated in platelets downstream of PARs and GPVI receptors. In the current study, the role of PKCδ in regulating platelet functional responses was investigated using a pharmacological inhibitor, (δV1-1)TAT (a PKCδ inhibitor) in human platelets. These studies were further confirmed by a knockout approach using PKCδ+/+ and PKCδ−/− mice. In both human and murine platelets, PAR4-mediated dense granule secretions were inhibited, whereas GPVI-mediated dense granule secretions were potentiated. Furthermore, α-granule secretions and thromboxane A2 (TXA2) generation were differentially regulated in murine platelets.. These data suggest a differential role for this isoform in regulating dense granule secretion, α-granule secretion and TXA2 generation. Previous studies have shown that PAR-mediated fibrinogen receptor activation is regulated by a Calcium-dependent and a PKC-dependent pathway. The contribution of PKCδ to PAR-mediated fibrinogen receptor activation was studied by pretreating human and murine platelets with BAPTA. Our results showed a inhibition of AYPGKF-induced aggregation in human and murine platelets in the presence of BAPTA and fibrinogen. These results suggest a small contribution of PKCδ to PAR-4- mediated platelet aggregation and aIIbb3 activation. The in vivo significance of PKCδ was tested using a FeCl3 injury model. While the wildtype mice occluded in 7 minutes, PKCδ −/− mice occluded after 4 minutes of injury with 10 % FeCl3. Therefore, we conclude that PKCδ regulates platelet functional responses such as dense, α-granule secretions, TXA2 generation downstream of both PARs and GPVI receptors, contributes to PAR-4-mediated fibrinogen receptor activation ex vivo and plays a critical role in the thrombus formation in vivo. This study is supported by predoctoral fellowships to Ramya Chari and Swaminathan Murugappan from American Heart Association, Great Rivers affiliate.


1992 ◽  
Vol 119 (6) ◽  
pp. 1515-1521 ◽  
Author(s):  
D Sugden ◽  
S J Rowe

The pineal hormone, melatonin (5-methoxy N-acetyltryptamine) induces a rapid aggregation of melanin-containing pigment granules in isolated melanophores of Xenopus laevis. Treatment of melanophores with activators of protein kinase C (PKC), including phorbol esters, mezerein and a synthetic diacylglycerol, did not affect pigment granule distribution but did prevent and reverse melatonin-induced pigment aggregation. This effect was blocked by an inhibitor of PKC, Ro 31-8220. The inhibitory effect was not a direct effect on melatonin receptors, per se, as the slow aggregation induced by a high concentration of an inhibitor of cyclic AMP-dependent protein kinase (PKA), adenosine 3',5'-cyclic monophosphothioate, Rp-diastereomer (Rp-cAMPS), was also reversed by PKC activation. Presumably activation of PKC, like PKA activation, stimulates the intracellular machinery involved in the centrifugal translocation of pigment granules along microtubules. alpha-Melanocyte stimulating hormone (alpha-MSH), like PKC activators, overcame melatonin-induced aggregation but this response was not blocked by the PKC inhibitor, Ro 31-8220. This data indicates that centrifugal translocation (dispersion) of pigment granules in Xenopus melanophores can be triggered by activation of either PKA, as occurs after alpha-MSH treatment, or PKC. The very slow aggregation in response to inhibition of PKA with high concentrations of Rp-cAMPS, suggests that the rapid aggregation in response to melatonin may involve multiple intracellular signals in addition to the documented Gi-mediated inhibition of adenylate cyclase.


1997 ◽  
Vol 272 (1) ◽  
pp. H350-H359 ◽  
Author(s):  
D. S. Damron ◽  
B. A. Summers

Modulation of intracellular free Ca2+ concentration ([Ca2+]i) by inotropic stimuli alters contractility in cardiac muscle. Arachidonic acid (AA), a precursor for eicosanoid formation, is released in response to receptor activation and myocardial ischemia and has been demonstrated to alter K+ and Ca2+ channel activity. We investigated the effects of AA on contractility by simultaneously measuring [Ca2+]i and shortening in single field-stimulated rat ventricular myocytes. [Ca2+]i transients were measured using fura 2, and myocyte shortening was assessed using video edge detection. AA stimulated a doubling in the amplitude of the [Ca2+]i transient and a twofold increase in myocyte shortening. In addition, AA stimulated a 30% increase in the time to 50% diastolic [Ca2+]i and a 35% increase in the time to 50% relengthening. These effects of AA were mediated by AA itself (56 +/- 5%) and by cyclooxygenase metabolites. Pretreatment with the protein kinase C inhibitors staurosporine and chelerythrine nearly abolished (> 90% inhibition) these AA-induced effects. Inhibition of voltagegated K+ channels with 4-aminopyridine mimicked the effects of AA. Addition of AA to the 4-aminopyridine-treated myocyte had no additional effect on parameters of contractile function. These data indicate that AA alters the amplitude and duration of Ca2- transients and myocyte shortening via protein kinase C-dependent inhibition of voltage-gated K+ channels. Release of AA by phospholipases in response to receptor activation by endogenous mediators or pathological stimuli may be involved in mediating inotropic responses in cardiac muscle.


Blood ◽  
2011 ◽  
Vol 118 (2) ◽  
pp. 416-424 ◽  
Author(s):  
Olga Konopatskaya ◽  
Sharon A. Matthews ◽  
Matthew T. Harper ◽  
Karen Gilio ◽  
Judith M. E. M. Cosemans ◽  
...  

Abstract Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.


Sign in / Sign up

Export Citation Format

Share Document