Glycoprotein VI–mediated platelet fibrinogen receptor activation occurs through calcium-sensitive and PKC-sensitive pathways without a requirement for secreted ADP

Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3228-3234 ◽  
Author(s):  
Todd M. Quinton ◽  
Fatih Ozdener ◽  
Carol Dangelmaier ◽  
James L. Daniel ◽  
Satya P. Kunapuli

Abstract Collagen activates platelets by transducing signals through glycoprotein VI (GPVI). It is not clear whether collagen can directly activate fibrinogen receptors on the adherent platelets without a role for positive feedback agonists. We investigated the contribution of secondary G protein signaling to the mechanism of GPVI-stimulated platelet aggregation using the GPVI-selective agonists, convulxin and collagen-related peptide (CRP) as well as collagen. Adenosine diphosphate (ADP) scavengers or ADP receptor antagonists shifted the concentration-response curve slightly to the right at low concentrations of convulxin, whereas platelet aggregation at higher concentrations of convulxin was unaffected by these agents. ADP receptor antagonists shifted the concentration-response curve of collagen- or CRP-induced platelet aggregation to the right at all the concentrations. Protein kinase C inhibitor, Ro 31-8220, or a calcium chelator 5,5′-dimethyl-BAPTA shifted the concentration-response curve of convulxin-induced platelet aggregation to the right. In addition, pretreatment with both Ro 31-8220 and dimethyl-BAPTA resulted in total inhibition of convulxin-mediated aggregation. Blockade of either the calcium- or protein kinase C–regulated pathway leads to inhibition of fibrinogen receptor activation on platelets adherent to collagen, but inhibition of both pathways leads to abolished fibrinogen receptor activation. We conclude that collagen-induced activation of fibrinogen receptor on adherent platelets through GPVI signaling occurs without any significant role for secreted ADP or thromboxane A2. Furthermore, protein kinase C– and calcium-regulated pathways independently contribute to GPVI-mediated platelet aggregation.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1845-1845
Author(s):  
Bela Nagy ◽  
Kamala Bhavaraju ◽  
Todd Getz ◽  
Yamini Saraswathy Bynagari ◽  
Soochong Kim ◽  
...  

Abstract Protein kinase C (PKC) has been implicated in platelet functional responses, but the contribution of individual isoforms has not been directly evaluated. PKCΘ is activated by glycoprotein VI (GPVI) and protease-activated receptor (PAR) agonists, but not by ADP. In human platelets, PKCΘ-selective receptor for activated C kinase (RACK) antagonistic peptide inhibited agonist-induced aggregation and secretion. Consistently, in murine platelets lacking PKCΘ, GPVI- or PAR-mediated aggregation and secretion were also impaired. Previously, fibrinogen receptor has been shown to be activated independently by calcium and PKC pathways. In the presence of dimethyl BAPTA, AYPGKF-induced platelet aggregation was inhibited by PKCΘ antagonistic RACK peptides, suggesting a role for this isoform in PKC-dependent fibrinogen receptor activation. In addition, the levels of thromboxane A2 (TXA2) release measured in GPVI and PAR-mediated activation of PKCΘ −/− murine platelets, were significantly lower compared to WT platelets. Moreover, agonist-induced extracellular-signal regulated kinase (ERK) phosphorylation was also significantly decreased in PKCΘ −/− murine platelets, which could be contributing to decreased TXA2 levels. PKCΘ −/− mice displayed unstable thrombus formation and prolonged arterial occlusion in the FeCl3 in vivo thrombosis model versus WT mice. In conclusion, PKCΘ isoform plays a significant role in platelet functional responses downstream of GPVI and PARs.


2002 ◽  
Vol 368 (2) ◽  
pp. 535-543 ◽  
Author(s):  
Todd M. QUINTON ◽  
Soochong KIM ◽  
Carol DANGELMAIER ◽  
Robert T. DORSAM ◽  
Jianguo JIN ◽  
...  

Platelet fibrinogen receptor activation is a critical step in platelet plug formation. The fibrinogen receptor (integrin αIIbβ3) is activated by agonist-mediated Gq stimulation and resultant phospholipase C activation. We investigated the role of downstream signalling events from phospholipase C, namely the activation of protein kinase C (PKC) and rise in intracellular calcium, in agonist-induced fibrinogen receptor activation using Ro 31-8220 (a PKC inhibitor) or dimethyl BAPTA [5,5′-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid], a high-affinity calcium chelator. All the experiments were performed with human platelets treated with aspirin, to avoid positive feedback from thromboxane A2. In the presence of Ro 31-8220, platelet aggregation caused by U46619 was completely inhibited while no effect or partial inhibition was seen with ADP and the thrombin-receptor-activating peptide SFLLRN, respectively. In the presence of intracellular dimethyl BAPTA, ADP- and U46619-induced aggregation and anti-αIIbβ3 antibody PAC-1 binding were completely abolished. However, similar to the effects of Ro 31-8220, dimethyl BAPTA only partially inhibited SFLLRN-induced aggregation, and was accompanied by diminished dense-granule secretion. When either PKC activation or intracellular calcium release was abrogated, aggregation and fibrinogen receptor activation with U46619 or SFLLRN was partially restored by additional selective activation of the Gi signalling pathway. In contrast, when both PKC activity and intracellular calcium increase were simultaneously inhibited, the complete inhibition of aggregation that occurred in response to either U46619 or SFLLRN could not be restored with concomitant Gi signalling. We conclude that, while the PKC- and calcium-regulated signalling pathways are capable of inducing activating fibrinogen receptor independently and that each can synergize with Gi signalling to cause irreversible fibrinogen receptor activation, both pathways act synergistically to effect irreversible fibrinogen receptor activation.


1989 ◽  
Vol 258 (1) ◽  
pp. 57-65 ◽  
Author(s):  
W Siess ◽  
E G Lapetina

Suspensions of aspirin-treated, 32P-prelabelled, washed platelets containing ADP scavengers in the buffer were activated with either phorbol 12,13-dibutyrate (PdBu) or the Ca2+ ionophore A23187. High concentrations of PdBu (greater than or equal to 50 nM) induced platelet aggregation and the protein kinase C (PKC)-dependent phosphorylation of proteins with molecular masses of 20 (myosin light chain), 38 and 47 kDa. No increase in cytosolic Ca2+ was observed. Preincubation of platelets with prostacyclin (PGI2) stimulated the phosphorylation of a 50 kDa protein [EC50 (concn. giving half-maximal effect) 0.6 ng of PGI2/ml] and completely abolished platelet aggregation [ID50 (concn. giving 50% inhibition) 0.5 ng of PGI2/ml] induced by PdBu, but had no effect on phosphorylation of the 20, 38 and 47 kDa proteins elicited by PdBu. The Ca2+ ionophore A23187 induced shape change, aggregation, mobilization of Ca2+, rapid phosphorylation of the 20 and 47 kDa proteins and the formation of phosphatidic acid. Preincubation of platelets with PGI2 (500 ng/ml) inhibited platelet aggregation, but not shape change, Ca2+ mobilization or the phosphorylation of the 20 and 47 kDa proteins induced by Ca2+ ionophore A23187. The results indicate that PGI2, through activation of cyclic AMP-dependent kinases, inhibits platelet aggregation at steps distal to protein phosphorylation evoked by protein kinase C and Ca2+-dependent protein kinases.


1987 ◽  
Author(s):  
S Krishnamurthi ◽  
V V Kakkar

We have compared the abilities of exogenously added U46619, the PG endoperoxide analogue and, sn-l-oleoyl 2-acetylglycerol (OAG) and sn-1,2-dioctanoylglycerol (diCg), the membrane-permeant DAG analogues, at restoring weak agonist-induced secretion in indomethacin (10μM)-treated platelets (I-PL) in the absence of endogenous PG/Tx synthesis. [14C]-5HT secretion from pre-loaded, washed human platelets was correlated with the levels of [Ca2+]i, using platelets loaded with quin 2. Concentrations of OAG (62-125μM) and diCg (15-30μM), which have previously been shown to be fully effective at activating protein kinase C, failed to significantly enhance [14C]-5HT secretion in combination with ADP (10μM), adrenaline (10μM) or PAF (0.2μM) although they potentiated platelet aggregation, when added 10-30 sec after these agonists to I-PL. eg ADP-0%, 30jiM diCg-9.8%, ADP+diCg-11.9%, 5HT release (p>O.05). In contrast, a low concentration of U46619 (0.2μM), that induced no aggregation, [14C]-5HT secretion or rise in [Ca2+]i levels on its own, was able to synergize strongly at potentiating secretion in combination with all three weak agonists examined, as well as in combination with OAG and diCg (U46619-0%, ADP+U46619-20.4%, U46619+30μM diC8-48% 5HT release) . The greater effectiveness of U46619 at potentiating secretion in combination with the weak agonists was not related to different degrees of [Ca2+]i mobilisation, as ADP and PAF-induced rise in [Ca2+]i occurred to a similar degree in the presence of U46619 and diCg. At a higher concentration of U46619 (0.6μM), which was maximally effective at inducing secretion and elevating [Ca2+]i levels on its own, addition of the weak agonists or OAG or diCg, along with U46619, resulted in a further enhancement of secretion which was independent of changes in [Ca2+]i levels. The results demonstrate that U46619 but not OAG or diCg, is able to fully restore weak agonist-induced secretion in indomethacin-treated platelets, suggesting that the actions of endogenously formed PG endoperoxides/TxA2 cannot be substituted by DAG and raised [Ca2+]i levels and, may be mediated via a mechanism additional to that involving these mediators.


1989 ◽  
Vol 263 (1) ◽  
pp. 57-64 ◽  
Author(s):  
G R Guy ◽  
M Finney ◽  
R H Michell ◽  
J Gordon

We have investigated the rapid phosphorylation of proteins in B-lymphocytes incubated with the tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), anti-Ig and combinations of TPA and the Ca2+ ionophore ionomycin. Two-dimensional electrophoretic analysis was used to identify the proteins phosphorylated in cells preincubated with [32P]Pi. TPA induced a characteristic pattern of labelled proteins, four of which (pp85, pp76, pp66 and pp63) showed a dose-dependent incorporation of 32P on serine residues. The phosphorylation of pp63 and pp66, in particular, correlated with the mitogenic dose-response curve. Addition of the Ca2+ ionophore ionomycin to B-cells also stimulated a characteristic incorporation of 32P into proteins, which included pp63 and pp66. With combined doses of TPA and ionomycin, these two proteins show an enhanced phosphorylation, which correlated well with the synergistic enhancement of proliferation shown by this combination of agents. Protein kinase C (PKC) was partially purified from B-cells and separated into alpha and beta subtypes. The activation of both PKCs was assessed with increasing doses of TPA and concentrations of Ca2+ of 0.1 microM and 2 microM. For both forms of PKC, in particular the beta form, higher concentrations of Ca2+ shifted the dose-response curve for TPA to the left and increased the maximum activation. Anti-Ig, which stimulated B-cells by cross-linking surface immunoglobulin and causing hydrolysis of PtdIns(4,5)P2, also caused increased phosphorylation of several proteins, which again included pp63 and pp66. These data suggest that PKC, particularly the beta form, is involved in the early part of the proliferation cascade for human B-lymphocytes. It is most probably activated in a synergistic manner by the increased Ca2+ and diacylglycerol levels which result from the earlier hydrolysis of PtdIns(4,5)P2.


2000 ◽  
Vol 347 (2) ◽  
pp. 561-569 ◽  
Author(s):  
Tsukasa OHMORI ◽  
Yutaka YATOMI ◽  
Naoki ASAZUMA ◽  
Kaneo SATOH ◽  
Yukio OZAKI

Proline-rich tyrosine kinase 2 (Pyk2) (also known as RAFTK, CAKβ or CADTK) has been identified as a member of the focal adhesion kinase (FAK) family of protein-tyrosine kinases and it has been suggested that the mode of Pyk2 activation is distinct from that of FAK. In the present study we investigated the mode of Pyk2 activation in human platelets. When platelets were stimulated with thrombin, Pyk2, as well as FAK, was markedly tyrosine-phosphorylated, in a manner mostly dependent on αIIbβ3 integrin-mediated aggregation. The residual Pyk2 tyrosine phosphorylation observed in the absence of platelet aggregation was completely abolished by pretreatment with BAPTA/AM [bis-(o-aminophenoxy)ethane-N,N,Nʹ,Nʹ-tetra-acetic acid acetoxymethyl ester]. The Pyk2 phosphorylation was inhibited by protein kinase C (PKC) inhibitors at concentrations that inhibited platelet aggregation. In contrast, direct activation of PKC with the active phorbol ester PMA induced the tyrosine phosphorylation of Pyk2 and FAK but only when platelets were fully aggregated with the exogenous addition of fibrinogen (the ligand for αIIbβ3 integrin). Furthermore, PMA-induced Pyk2 (and FAK) tyrosine phosphorylation was also observed when platelets adhered to immobilized fibrinogen. The activation of the von Willebrand factor (vWF)--glycoprotein Ib pathway with botrocetin together with vWF failed to induce Pyk2 (and FAK) tyrosine phosphorylation. Most Pyk2 and FAK was present in the cytosol and membrane skeleton fractions in unstimulated platelets. When platelets were stimulated with thrombin, both Pyk2 and FAK were translocated to the cytoskeleton in an aggregation-dependent manner. In immunoprecipitation studies, Pyk2, as well as FAK, seemed to associate with Shc through Grb2. With the use of glutathione S-transferase fusion proteins containing Shc-SH2, Grb2-SH2, and Grb2 N-terminal and C-terminal SH3 domains, it was implied that the proline-rich region of Pyk2 (and FAK) binds to the N-terminal SH3 domain of Grb2 and that the phosphotyrosine residue of Shc binds to the SH2 domain of Grb2. Although Pyk2 and FAK have been reported to be differentially regulated in many cell types, our results suggest that, in human platelets, the mode of Pyk2 activation is mostly similar to that of FAK, in terms of αIIbβ3 integrin-dependent and PKC-dependent tyrosine phosphorylation. Furthermore, Pyk2, as well as FAK, might have one or more important roles in post-aggregation tyrosine phosphorylation events, in association with the cytoskeleton and through interaction with adapter proteins including Grb2 and Shc.


1990 ◽  
Vol 52 ◽  
pp. 360
Author(s):  
Masatoshi Hagiwara ◽  
Mariko Sumi ◽  
Nobuteru Usuda ◽  
Tetsuji Nagata ◽  
Hiroyoshi Hidaka

1987 ◽  
Author(s):  
J A Ware ◽  
M Smith ◽  
E W Salzman

Platelet aggregation and secretion induced by phorbol ester (PMA) or diacylglycerol (DAG) are preceded by an increase in [Ca++] that is detected byaequorin, but not by quin2, fura-2, or indo-1, suggesting that these indicatorsreflect different aspects of Ca++ homeostasis, possibly different functional Ca++ pools. Addition of two conventional agonists in subthreold concentrations synergistically enhances the [Ca++] rise and aggregation.However, if PMA or DAG is the first agonist the subsequent quin2-indicated [Ca++] rise after thrombin is reduced.Whether aequorin-indicated [Ca++] is similarly affected is unknown. We studied gel-filtered platelets loaded with aequorin or a fluorophore and added PMA, DAG, thrombin or ADP, alone or in combination. Either PMA or DAG alone caused a concentration-dependent increase in [Ca++] detectable with aequorin but not with the fluorophores; simultaneous addition of thrombin or ADP with DAG or PMA produced a larger [Ca++] rise than either alone. However, addition of DAG or PMA as a first agonist reduced subsequent aequorin-indicated [Ca++] rises following thrombin or ADP in a concentration and time-dependent manner. Inhibition of ADP or thrombin-induced [Ca++] rise was not always accompanied by inhibition of aggregation or secretion. Combination of subthreshold concentrations of ADP and thrombin produced an enhanced [Ca++] rise and aggregation. However, this synergistic effect was inhibited by preincubation with DAG or PMA. Neither this effect nor DAG-induced [Ca++] rise was inhibited by the protein kinase C inhibitor H-7. In genera^ preincubation of platelets with an agonist enhances Ca rise and aggregation in response to a second agonist; in contrasl protein kinase C activators, which themselves elevate [Ca++] as shown by aequorin, inhibit aequorin-indicated Ca rises after ADP or thrombin, and limit synergism between these two agonists.


1997 ◽  
Vol 272 (1) ◽  
pp. H350-H359 ◽  
Author(s):  
D. S. Damron ◽  
B. A. Summers

Modulation of intracellular free Ca2+ concentration ([Ca2+]i) by inotropic stimuli alters contractility in cardiac muscle. Arachidonic acid (AA), a precursor for eicosanoid formation, is released in response to receptor activation and myocardial ischemia and has been demonstrated to alter K+ and Ca2+ channel activity. We investigated the effects of AA on contractility by simultaneously measuring [Ca2+]i and shortening in single field-stimulated rat ventricular myocytes. [Ca2+]i transients were measured using fura 2, and myocyte shortening was assessed using video edge detection. AA stimulated a doubling in the amplitude of the [Ca2+]i transient and a twofold increase in myocyte shortening. In addition, AA stimulated a 30% increase in the time to 50% diastolic [Ca2+]i and a 35% increase in the time to 50% relengthening. These effects of AA were mediated by AA itself (56 +/- 5%) and by cyclooxygenase metabolites. Pretreatment with the protein kinase C inhibitors staurosporine and chelerythrine nearly abolished (> 90% inhibition) these AA-induced effects. Inhibition of voltagegated K+ channels with 4-aminopyridine mimicked the effects of AA. Addition of AA to the 4-aminopyridine-treated myocyte had no additional effect on parameters of contractile function. These data indicate that AA alters the amplitude and duration of Ca2- transients and myocyte shortening via protein kinase C-dependent inhibition of voltage-gated K+ channels. Release of AA by phospholipases in response to receptor activation by endogenous mediators or pathological stimuli may be involved in mediating inotropic responses in cardiac muscle.


Sign in / Sign up

Export Citation Format

Share Document