In Vivo Mobilization of Leukemic Human Precursor-B-ALL Cells by the CXCR4-Antagonist AMD3100 Is Via Secretion of SDF-1 and Synergistically by Catecholamine Action.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1920-1920
Author(s):  
Eike C. Buss ◽  
Alexander Kalinkovich ◽  
Amir Schajnovitz ◽  
Orit Kollet ◽  
Ayelet Dar ◽  
...  

Abstract Introduction Mobilization of leukemic cells from the bone marrow (BM) to the circulation in order to better kill them with DNA damaging chemotherapy agents is emerging as a new experimental therapeutic intervention, however the mechanism is not entirely clear. Currently CXCR4-antagonists such as the mobilizing agent AMD3100 (AMD) are becoming available for clinical usage. The aim of this study is to explore mechanisms of human precursor-B-ALL cell mobilization from the BM in a functional, pre-clinical immune deficient mouse model. Methodology Immunodeficient mice were stably engrafted with the childhood pre-B-ALL leukemic cell line G2 (4 weeks after transplantation in NOD/SCID mice) and with primary childhood precursor-B-ALL cells from 4 patients (4-8 weeks after transplantation in NOD/SCID IL2R {gamma} null and NOD/SCID/B2m(null) mice). Two of the patients had a translocation (t4;11) (pro-B-ALL). All human leukemias were engrafted without prior irradiation of the mice. This approach prevents possible irradiation damage to the host microenvironment and thereby leads to a model which better mimics growth of human leukemias. To accommodate for differences in the level of leukemic BM engraftment (FACS analysis for huCD45+ cells), we assessed the leukemia mobilization level by calculating a leukemia mobilization index: WBC x % leukemic cells in the PB / % leukemic cells in the BM. Results and Discussion Treatment with AMD leads to a significant mobilization of all transplanted leukemias with a mobilization level of between 3 – 8 times above baseline. As we recently showed for mobilization of normal murine progenitors, AMD induces a strong release of SDF-1 from the BM (Dar et al. ASH 2006). To examine if this is also instrumental for the leukemia mobilization process, we inhibited SDF-1 action by injection of neutralizing CXCR4 antibodies (clone 12G5) in leukemic chimeras. This led to an abrogation of AMD-induced leukemia mobilization. Pointing towards the same mechanism, 3 daily injections of fucoidan, a known SDF-1 releasing agent, also led to significant leukemia mobilization in G2 and precursor-B-ALL chimeras. Recently we demonstrated that human hematopoietic stem and progenitor cells express receptors for catecholamines, such as dopamine and epinephrine (Epi) and that treatment with catecholamines leads to mobilization of murine progenitor cells (Spiegel et al. Nat. Immunol. 2007). Accordingly, we examined the effect of neurotransmitters. First, we found that the G2 cell line and all 4 examined precursor-BALL samples express the catecholamine receptors D3, D5 and beta-2. The expression is dynamic, as it was, in part, increased after engraftment of immunodeficient mice. Treatment of chimeras with high doses of Epi alone led to leukemia mobilization in vivo similar to AMD-induced mobilization. In combination with AMD, lower doses of norepinephrine increased leukemia obilization synergistically and significantly, resulting in dramatic leukemia mobilization up to 20 times above baseline. Unexpectedly and in contrast to normal cells, treatment of chimeras with the beta-2 agonist clenbuterol was accompanied by inhibition of AMD-induced mobilization of leukemic cells. These observations suggest similarities and differences in the activation of catecholamine receptors in the mobilization process of normal and leukemic cells. Conclusions Our results show that SDF-1 has a crucial role in AMD-induced leukemic cell mobilization. Human leukemias can be mobilized by catecholamine action synergistically with AMD in immunodeficient mice. This approach could be potentially used for future mobilization protocols of leukemia in combination with established chemotherapy to improve eradication of minimal residual disease of leukemia.

Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1216-1216
Author(s):  
Chen Tian ◽  
Zhipan Cao ◽  
Qiao Li ◽  
Jinhong Wang ◽  
Zhenyu Ju ◽  
...  

Abstract Abstract 1216 During leukemia development, emerging leukemic cells out-compete normal hematopoietic cells and become predominant in the body. How hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) respond to the growth of leukemic cell population is an important, yet less investigated area. Our previous study demonstrated differential effects of a leukemic environment on normal HSCs and HPCs in the Notch1-induced T-ALL mouse model (Hu X, et al. Blood 2009). We found that normal HSCs were better preserved in the leukemic bone marrow in part due to increased quiescence of the HSCs and in contrast, HPCs were exhausted during the expansion of leukemic cells. Our current work is aimed to further explore the molecular mechanisms concerning the distinct impacts of leukemic environment on normal HSCs and HPCs in the T-ALL mouse model. Given the previous report by others showing that increased secretion of stem cell factor (SCF) by myeloid leukemia cells played an important role in inducing normal HSCs/HPCs out of their niche and thus allowing leukemic cells to occupy the niche in the human-NOD/SCID xeno-graft model (Sipkins DA et al, Science 2008), we first examined the expression of SCF by ELISA, Western blot and real-time RT PCR in both normal hematopoietic and leukemic cell fractions in the Notch1-induced T-ALL mouse model as previously reported. We found that while expression of SCF in peripheral blood (PB) or bone marrow (BM) was increased in the leukemic mice, both mRNA and protein levels of SCF in normal hematopoietic cells were higher than that in leukemic cells, thereby suggesting that elevated SCF might be mainly secreted by non-leukemic cells in the leukemic hosts of our model. Further assessments on the role of SCF in leukemogenesis with the mice specifically deficient in SCF in different niche cell types are currently under investigation in our laboratory. In order to define potential mediators in HSCs in response to leukemic cell growth, a microarray study on normal HSCs isolated from T-ALL leukemic mice and the control mice was conducted. Gene expression profiling showed significantly differed expression of 169 genes (127 up and 42 down). Especially, real-time RT PCR confirmed an increase of Hes1, p21, Fbxw11, IL-18R1 and Itgb3, and a decrease of CXCR4 and Mmp2. Interestingly, the expression of Hes1 and its target gene, p21 were elevated in normal HSCs but not in HPCs, letting us to hypothesize that Hes1 might be in part mediate the different responses of HSCs and HPCs to the T-ALL leukemic environment. To test this hypothesis, we ectopically expressed Hes1 in normal hematopoietic cells and then examined their functions under the leukemic condition. BM cells from B6.SJL mice were transduced with either MSCV-Hes1-IRES-GFP or control MSCV-GFP vector. After transduction, Hes1-GFP+or control-GFP+cells were co-transplanted with the Notch1-induced T-ALL cells into lethally irradiated C57BL/6J recipients. The engrafted cells from the leukemic BM were analyzed and Hes1-GFP+or control-GFP+cells were sorted for functional assessments. Interestingly, although over-expression of Hes1 inhibited the growth of colony forming cell (CFC) in vitro, it could potentiate the long-term repopulating cells by maintaining more cells in the quiescent (G0) state in vivo. Taken together, our current study supports a role of Hes1 in mediating the distinct responses of normal HSCs and HPCs to the T-ALL leukemic environment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 754-754
Author(s):  
Benjamin Boyerinas ◽  
Ali Ekrem Yesilkanal ◽  
Andrea Pontier ◽  
Dorothy A. Sipkins

Abstract Abstract 754 Introduction: Acute lymphoblastic leukemia (ALL) is a treatable malignancy where initial induction chemotherapy achieves clinical remission in the majority of patients. Relapsed disease, however, occurs in many patients and is significantly more difficult to treat. The majority of relapsed cases are a result of minimal residual disease (MRD) that persists within the bone marrow (BM) after initial chemotherapy. Our evolving knowledge of the importance of the host microenvironment in tumor progression suggests that the stromal microenvironment can protect leukemic cells from chemotherapeutic assault, and that inhibiting the supportive relationship between leukemic blasts and the bone marrow microenvironment (BMM) will provide novel therapeutic opportunities. We therefore aimed to identify and characterize novel stromal signaling mechanisms that retain and support blasts within the malignant BMM. Our preliminary data suggest that osteopontin (OPN), normally secreted by osteoblasts within the marrow, is one such signaling chemokine that is highly upregulated in the leukemic niche. OPN has well-defined roles in both solid tumor metastasis and normal hematopoietic stem cell function within the BMM. Specifically, OPN expression at the endosteal bone surface functions to recruit hematopoietic progenitors to bone where they are induced to become quiescent and maintain long term repopulating potential. We hypothesized that a similar relationship exists between leukemia and OPN resulting in a quiescent population of chemoresistant leukemic blasts at the BM endosteum. Here, we demonstrate that stromal OPN negatively regulates leukemia cell proliferation in the BMM. Methods: A GFP expressing clone of the pre-B ALL cell line Nalm-6 (10 × 106 cells) was engrafted into SCID hosts (6-8 weeks old) via tail vein injection. In vivo imaging was accomplished in live anesthetized mice by reflecting the scalp and imaging the calvarial marrow compartment using real-time multi-photon confocal microscopy. OPN expression in the malignant marrow was imaged by injecting engrafted mice with fluorescently conjugated anti-OPN antibodies 18hrs prior to imaging. For OPN neutralizing experiments, engrafted mice were injected with a cocktail of anti-mouse and anti-human OPN antibodies at a dose of 3 mg/kg. Results: Using PCR, Western blot and ELISA assays, we show that the ALL cell line Nalm-6 expresses OPN and secretes large quantities of OPN into conditioned media. Flow cytometric analysis demonstrates that Nalm-6 also express the cell surface OPN receptors VLA-4 and VLA-5. Furthermore, Nalm-6 cells specifically adhere to OPN in vitro via specific engagement of these integrin receptors. In vivo imaging demonstrates that OPN expression in the BM increases as leukemia progresses and that OPN is highly expressed adjacent to areas of high tumor burden. Specifically, a significant amount of OPN is detected in bony tunnels surrounding the vasculature at the invading tumor front. Using Q-PCR and western analysis, we demonstrate that both host-derived and leukemia-derived OPN are upregulated in malignant BM. In vivo inhibition of the OPN signaling axis in the Nalm-6 xenograft model using neutralizing antibodies directed at both human and murine OPN increased overall tumor burden two-fold as measured by flow cytometry and in vivo imaging (p=0.02, N=7) while simultaneously increasing the Ki-67 positive proliferative tumor population (p=0.029, N=4). Furthermore, IHC analysis of a panel of diagnostic bone marrow biopsies from a diverse cohort of ALL patients demonstrated high OPN expression in the marrow of these patients. Conclusion: Leukemic blasts that have hijacked normal stromal interactions to become quiescent may represent a major source of MRD and patient relapse in ALL. Our data demonstrate that the interaction of leukemic blasts with OPN in the stromal microenvironment reduces the number of cycling blasts and constrains tumor proliferation within the marrow. Current investigations are aimed at combining OPN neutralization with an in vivo model of MRD to determine whether OPN neutralization induces cycling of quiescent blasts, ultimately rendering them sensitive to chemotherapy. The ultimate goal of this work is the development of clinically relevant therapies designed to render leukemic cells more susceptible to chemotherapy by disengaging them from protective interactions with the BM microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 77 (1) ◽  
pp. 49-54
Author(s):  
H Kodama ◽  
M Iizuka ◽  
T Tomiyama ◽  
K Yoshida ◽  
M Seki ◽  
...  

Some mouse myeloid leukemias induced by X-irradiation and serially transplanted into syngenic mice do not proliferate in vitro even in the presence of hematopoietic factors. To examine whether such leukemic cells can proliferate in response to stromal cells, we cocultured them with MC3T3-G2/PA6 (PA6) preadipocytes, cells that can support the growth of hematopoietic stem cells. All leukemias developed into in vitro cell lines, showing a dependence on contact with the PA6 cells. Two cell lines responded to none of the known hematopoietic factors including interleukin-3 (IL-3), IL-4, IL-5, IL-6, GM-CSF, G-CSF, M-CSF, and Epo. These results demonstrate that the mechanism of the action of PA6 cells is different from that of any of the known hematopoietic factors, and that, because these two leukemic cell lines retained the ability to grow in vivo, responsiveness to the known hematopoietic factors is not essential for the leukemic cell growth in vivo. Furthermore, all leukemic cell lines could respond also to the preadipocytes fixed with formalin, paraformaldehyde, or glutaraldehyde, suggesting that some molecule(s) associated with the surface of PA6 cells or with extracellular matrix secreted by the preadipocytes is responsible for the leukemic cell growth.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 493-493
Author(s):  
Asumi Yokota ◽  
Shinya Kimura ◽  
Tatsuya Oyama ◽  
Eishi Ashihara ◽  
Haruna Naito ◽  
...  

Abstract The penetration of imatinib mesylate (Gleevec™) into the central nervous system (CNS) is poor. Hence the CNS becomes a sanctuary site for patients who are on prolonged imatinib therapy. P-glycoprotein (P-gp) plays an important role in limiting the distribution of imatinib to the CNS, and it is well known that imatinib is a substrate of P-gp. We have recently identified a specific dual Bcr-Abl/Lyn inhibitor, NS-187, which can override imatinib-resistance. NS-187 was 25–55 and at least 10 times more potent than imatinib in vitro and in vivo, respectively. The purpose of this study was to investigate whether NS-187 can inhibit the growth of Ph+ leukemic cells in the CNS. In our preliminary pharmacokinetic study, the intracranial concentration of NS-187 was 10% of its serum concentration, suggesting the involvement in P-gp. To determine whether NS-187 is effluxed by P-gp, we examined the growth-inhibitory effects of NS-187 alone and in combination with a P-gp inhibitor, verapamil or cyclosporin A, on K562 cells and on a multidrug-resistant (MDR) K562/D1-9 cell line overexpressing P-gp. The K562/D1-9 cell line was 10 times more resistant to NS-187 than the parental K562 cell line, and P-gp inhibitors abolished this resistance, indicating that the action of NS-187, like that of imatinib, is affected by the P-gp-related MDR system. Even though NS-187 was found to be a substrate for P-gp, it inhibited the growth of K562/D1-9 cells at a concentration which could be achieved in the brain. we therefore tested the anti-tumor effects of NS-187 in murine CNS leukemia models. mice were inoculated into right cerebral ventricle with 1×105 BaF3/wt bcr-ablGFP cells (Balb/c-nu/nu mice) or 1×106 K562GFP cells (NOD/SCID mice). Five days after inoculation, mice were randomized into groups of 4 and orally administrated twice a day with vehicle, imatinib or NS-187 for 14 consecutive days. Sixteen days after inoculation, three mice from each group were sacrificed and their brains were examined under a fluorescent stereoscopic microscope. NS-187 inhibited the proliferation of leukemic cells in the brain, whereas imatinib did not. Moreover, NS-187 significantly prolonged the survival of the mice in a dose-dependent manner in both murine models compared with imatinib (Figure). In conclusion, NS-187 can inhibit Ph+ leukemic cell growth in the CNS in spite of efflux of the compound by P-gp. Figure Figure


Blood ◽  
1991 ◽  
Vol 77 (1) ◽  
pp. 49-54 ◽  
Author(s):  
H Kodama ◽  
M Iizuka ◽  
T Tomiyama ◽  
K Yoshida ◽  
M Seki ◽  
...  

Abstract Some mouse myeloid leukemias induced by X-irradiation and serially transplanted into syngenic mice do not proliferate in vitro even in the presence of hematopoietic factors. To examine whether such leukemic cells can proliferate in response to stromal cells, we cocultured them with MC3T3-G2/PA6 (PA6) preadipocytes, cells that can support the growth of hematopoietic stem cells. All leukemias developed into in vitro cell lines, showing a dependence on contact with the PA6 cells. Two cell lines responded to none of the known hematopoietic factors including interleukin-3 (IL-3), IL-4, IL-5, IL-6, GM-CSF, G-CSF, M-CSF, and Epo. These results demonstrate that the mechanism of the action of PA6 cells is different from that of any of the known hematopoietic factors, and that, because these two leukemic cell lines retained the ability to grow in vivo, responsiveness to the known hematopoietic factors is not essential for the leukemic cell growth in vivo. Furthermore, all leukemic cell lines could respond also to the preadipocytes fixed with formalin, paraformaldehyde, or glutaraldehyde, suggesting that some molecule(s) associated with the surface of PA6 cells or with extracellular matrix secreted by the preadipocytes is responsible for the leukemic cell growth.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2312-2312
Author(s):  
Jack M Heath ◽  
Aditi Chalishazar ◽  
Christina S Lee ◽  
William Selleck ◽  
Cecilia Cotta-Ramusino ◽  
...  

Abstract Transplantation of gene-modified autologous hematopoietic stem/progenitor cells (HSPCs) is an effective treatment for several hematologic diseases. However, a number of blood disorders may not be amenable to gene augmentation-based therapeutics. Targeted genome editing in human HSPCs could provide a therapeutic approach for these otherwise untreatable diseases. Here we demonstrate that CRISPR/Cas9 ribonucleoprotein (RNP) edits target genes in human HSPCs with high efficiency and precision. Human adult and umbilical cord blood (CB) CD34+ cells from 20 donors were electroporated with S. pyogenes or S. aureus Cas9 RNP targeting HBB, AAVS1, or CXCR4. Sequence analysis demonstrated up to 80% editing in CB CD34+ cells (mean±s.d: 61%±9%) and up to 57% in adult CD34+ cells (39%±13%). Delivery of Cas9 RNP and a single-stranded oligodeoxynucleotide donor (ssODN) led to up to 12% ssODN-mediated homology directed repair (HDR) and also led to a 20% increase in total gene editing (HDR+NHEJ)(RNP: 48%±15%; RNP+ssODN: 69%±8%). Both Cas9 RNP gene-edited CD34+ cells and donor-matched untreated control CD34+ cells reconstituted human hematopoiesis in primary and secondary recipient immunodeficient mice, with ~85% human CD45+ cell peripheral blood reconstitution 4 months after primary transplantation. Human T and B lymphoid, erythroid, and myeloid cells were detected in the spleen, thymus, and bone marrow with 20% CD34+ cell engraftment in the marrow of mice transplanted with RNP gene-edited or control CD34+ cells. The level of targeted gene editing in human erythroid, myeloid, and CD34+ cells that were recovered and enriched from the hematopoietic organs of primary recipients (~50%) was similar to the level of gene editing detected in the pre-infusion product (~60%). In summary, these results indicate that Cas9 gene-edited human HSPCs retain long-term engraftment potential and support multilineage blood reconstitution in vivo, thus supporting further investigation of CRISPR/Cas9 mediated gene-edited hematopoietic stem/progenitor cell therapies. Disclosures Heath: Editas Medicine: Employment. Chalishazar:Editas Medicine: Employment. Lee:Editas Medicine: Employment. Selleck:Editas Medicine: Employment. Cotta-Ramusino:Editas Medicine: Employment. Bumcrot:Editas Medicine: Employment. Gori:Editas Medicine: Employment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Yudovich ◽  
Alexandra Bäckström ◽  
Ludwig Schmiderer ◽  
Kristijonas Žemaitis ◽  
Agatheeswaran Subramaniam ◽  
...  

AbstractThe CRISPR/Cas9 system is a versatile tool for functional genomics and forward genetic screens in mammalian cells. However, it has been challenging to deliver the CRISPR components to sensitive cell types, such as primary human hematopoietic stem and progenitor cells (HSPCs), partly due to lentiviral transduction of Cas9 being extremely inefficient in these cells. Here, to overcome these hurdles, we developed a combinatorial system using stable lentiviral delivery of single guide RNA (sgRNA) followed by transient transfection of Cas9 mRNA by electroporation in human cord blood-derived CD34+ HSPCs. We further applied an optimized sgRNA structure, that significantly improved editing efficiency in this context, and we obtained knockout levels reaching 90% for the cell surface proteins CD45 and CD44 in sgRNA transduced HSPCs. Our combinatorial CRISPR/Cas9 delivery approach had no negative influence on CD34 expression or colony forming capacity in vitro compared to non-treated HSPCs. Furthermore, gene edited HSPCs showed intact in vivo reconstitution capacity following transplantation to immunodeficient mice. Taken together, we developed a paradigm for combinatorial CRISPR/Cas9 delivery that enables efficient and traceable gene editing in primary human HSPCs, and is compatible with high functionality both in vitro and in vivo.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Ximena Bonilla ◽  
Natalia-Del Pilar Vanegas ◽  
Jean Paul Vernot

Mesenchymal stem cells (MSC) constitute an important cell population of the bone marrow hematopoietic niche that supports normally hematopoietic stem cells (HSC) but eventually also leukemic cells. The alterations that occur in the MSC under leukemic stress are not well known. To deepen on this topic, we have used an in vitro model of the leukemic niche (LN) by coculturing MSC with an acute lymphocytic leukemia cell line (REH) and proceeded to evaluate MSC characteristics and functions. We found that leukemic cells induced in MSC a significant increase both in senescence-associated β-galactosidase activity and in p53 gene expression. MSC in the LN also showed a persistent production of cytoplasmic reactive oxygen species (ROS) and a G2/M phase arrest of the cell cycle. Another acute leukemic cell line (SUP-B15) produced almost the same effects on MSC. REH cells adhere strongly to MSC possibly as a result of an increased expression of the adhesion molecules VCAM-1, ICAM-1, and CD49e in MSC and of CD49d in REH cells. Although mesensphere formation was normal or even increased, multipotent differentiation capacity was impaired in MSC from the LN. A REH-conditioned medium was only partially (about 50%) capable of inducing the same changes in MSC, suggesting that cell-to-cell contact is more efficient in inducing these changes. Despite these important effects on MSC in the LN, REH cells increased their cell adhesion, proliferation rate, and directed-migration capacity. In conclusion, in this in vitro LN model, leukemic cells affect importantly the MSC, inducing a senescence process that seems to favour leukemic cell growth.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 236-236
Author(s):  
Craig T. Jordan ◽  
Sarah J. Neering ◽  
Pin-Yi Wang ◽  
Randall M. Rossi ◽  
Timothy Bushnell

Abstract Studies to date have shown that primary human leukemia stem cells (LSC) are resistant to standard chemotherapy agents and are likely to be a major cause of drug refractory disease and relapse. Therefore, elucidating the in vivo biology of LSC is critical in order to develop more effective therapeutic regimens. To this end, we report the first genetically defined model of LSC, using syngeneic murine systems in which the biological features of human LSC are recapitulated. The approach employs retroviral vectors to transduce normal murine hematopoietic stem cells with either BCR/ABL-GFP alone, or in combination with Nup98/HoxA9-YFP. Expression of BCR/ABL creates a well-described model of chronic phase CML, whereas expression of BCR/ABL in combination with Nup98/HoxA9 induces acute disease that mimics blast crisis CML. Analysis of the normal cell competent to generate LSC indicates that the BCR/ABL mutation must occur in primitive HSC in order to manifest disease, however, subsequent progression to blast crisis can occur through mutation in cells at the myeloid progenitor stage. Characterization of stem cells in these models revealed several striking features. First, chronic phase stem cells are1 phenotypically identical to normal hematopoietic stem cells (lin−, Sca-1+, c-kit+) and display cell cycle rates (percentage of cells in S or G2 phase) that are nearly double normal controls. However, the overall frequency of such cells is not elevated. In contrast, blast crisis stem cells show a distinct immunophenotype (lin−, Sca-1+, c-kit-lo, Flt3+, CD150−) and cycle rates nearly identical to normal controls, but are approximately 10-fold increased numbers. These data indicate that BCR/ABL alone functions as a stem cell mitogen, but does not enhance self-renewal, whereas added expression of Nup98/HoxA9 is sufficient to increase self-renewal, but return cell cycle regulation to normal levels. Furthermore, analysis of co-resident non-leukemic cells in each model shows that while the cycle activity of normal stem cells (HSC) was not affected, the cycle rates of normal progenitors (lin−, c-kit+) were substantially reduced. Thus, in either disease, active suppression of normal progenitors is evident and thereby increases the growth advantage of malignant populations. To test methods for modulation of normal vs. leukemic cells in vivo, we challenged blast crisis animals with ara-C (single dose, 100mg/kg) or imatinib mesylate (200mg/kg/day for 3 consecutive days) and assessed the consequences in primitive populations. The data indicate that ara-C reduced frequency and cycle rate of progenitor cells in vivo, but that the effects were identical between normal and malignant populations. Thus, at least for short-term studies there was no therapeutic index for ara-C at the level of primitive cells. In contrast, treatment with imatinib induced a 50% increase in the cycle rate and a 2–4 fold increase in numbers of progenitor cells. These findings imply a homeostatic mechanism in blast crisis leukemia, where pressure towards the malignant population may induce increased activity of stem and progenitor cells. In summary, this model provides a novel means by which the biology of LSCs may be directly characterized and the consequences of candidate treatment regimens can be assessed with regard to normal vs. leukemia stem cells in vivo.


Sign in / Sign up

Export Citation Format

Share Document