Raloxifene Modulates Estrogen-mediated B Cell Autoreactivity in NZB/W F1 Mice

2010 ◽  
Vol 37 (8) ◽  
pp. 1646-1657 ◽  
Author(s):  
YU ZHANG ◽  
SUBHRAJIT SAHA ◽  
GABRIEL ROSENFELD ◽  
JUANA GONZALEZ ◽  
KIRIL P. PEPELJUGOSKI ◽  
...  

Objective.Estrogen has been found to exacerbate disease activity in murine lupus and to induce a lupus-like syndrome in nonspontaneously autoimmune mice. This has led to the consideration that estrogen may be a risk factor for the development of systemic lupus erythematosus (SLE), and selective estrogen receptor modulators (SERM) may serve to ameliorate lupus activity. We evaluated the effects and mechanism of action of the SERM raloxifene in murine lupus.Methods.Effects of raloxifene on the development of lupus in NZB/W F1 mice were evaluated in the presence and absence of estrogen by assessing the serum DNA reactivity, glomerular IgG deposition and kidney damage, B cell maturation and selection, and activation status of marginal zone and follicular B cells.Results.Compared to estradiol-treated mice, mice treated with estradiol and raloxifene had significantly lower serum anti-DNA antibody levels and less kidney damage. These effects of raloxifene were due, at least in part, to antagonism of the influence of estrogen on DNA-reactive B cells. Raloxifene was found to prevent estrogen-mediated suppression of autoreactive B cell elimination at the T1/T2 selection checkpoint, to reduce estrogen-induced CD40 overexpression on follicular B cells, making them less responsive to T cell costimulation, and to ameliorate estrogen-mediated CD22 downregulation on marginal zone B cells, thereby decreasing their responsiveness to B cell antigen receptor-mediated stimuli.Conclusion.Raloxifene suppressed estrogen-mediated effects on the survival, maturation, and activation of autoreactive B cells in NZB/W F1 mice.

Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2391-2398 ◽  
Author(s):  
Elena Vigorito ◽  
Laure Gambardella ◽  
Francesco Colucci ◽  
Simon McAdam ◽  
Martin Turner

AbstractMice lacking all 3 Vav proteins fail to produce significant numbers of recirculating follicular or marginal zone B cells. Those B cells that do mature have shortened lifespans. The constitutive nuclear factor-kappaB (NF-κB) activity of resting naive B cells required Vav function and expression of cellular reticuloendotheliosis (c-Rel). Rel-A was reduced in Vav-deficient B cells. Furthermore, expression of the NF-κB-regulated antiapoptotic genes A1 and Bcl-2 was reduced in mature Vav-deficient B cells. Overexpression of Bcl-2 restored the number of mature follicular B cells in the spleens of Vav-deficient mice. When activated by B-cell receptor (BCR) cross-linking, Vav-deficient B cells failed to activate NF-κB. Vav proteins thus regulate an NF-κB-dependent survival signal in naive B cells and are required for NF-κB function after BCR cross-linking.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2050-2050
Author(s):  
Tomomi Sakai ◽  
Momoko Nishikori ◽  
Masaharu Tashima ◽  
Ryo Yamamoto ◽  
Toshio Kitawaki ◽  
...  

Abstract BCL2/IGH translocation is a hallmark of follicular lymphoma and diffuse large B-cell lymphoma of germinal center B-cell type. Although being a strong determinant of these histological subtypes, this translocation is considered to be insufficient by itself and further gene alterations are necessary for cellular transformation. In Eμ-BCL2 transgenic (Tg) mice, B-lineage cells are increased by several-fold compared to wild-type (WT) mice, but only 5–15 % of them develop disease in the first year of life. To clarify how the BCL2 translocation contributes to the development of specific lymphoma subtypes, we created two types of chimeric mouse models to characterize the biological features of BCL2-overexpressing B cells in normal individuals. First, we introduced CD19 promoter-driven BCL2 and its mutant genes to a minor population of murine bone marrow cells by using a lentiviral vector system and transplanted into irradiated mice. BCL2-overexpressing B cells showed increased follicular and reduced marginal zone populations. The same phenotypic shift was observed in B cells introducing BCL2-Y28F mutant that retained anti-apoptotic function, but a defective mutant BCL2-G142A and a mock vector did not affect B-cell phenotype. Additionally, BCL2-introduced B cells showed decreased cell size compared to those introduced BCL2-G142A and mock vectors. To assess the functional alteration of BCL2-overexpressing B cells, TNP-Ficoll binding experiment was performed. The result showed diminished T-cell independent response in parallel with decreased marginal zone B cells. The low transformation frequency of B cells in Eμ-BCL2 Tg mice has been partly explained by their propensity to reside in the G0 phase of the cell cycle (reviewed in Oncogene, 18:5268,1999). We hypothesized that the microenvironment of B cells in Eμ-BCL2 Tg mice might be altered by abnormal B cells themselves. To evaluate the influence of the different microenvironments on BCL2-overexpressing B cells, we next made Eμ-BCL2/CAG-GFP double Tg mice and transferred their bone marrow mononuclear cells into WT or Eμ-BCL2 Tg mice. Blastic cell population of BCL2+GFP+ B cells was larger in those transferred to WT mice compared to those transferred to Eμ-BCL2 Tg mice, regardless of the same phenotypic preference toward follicular B cells. BrdU uptake experiments demonstrated continuous cell cycle progression of the BCL2+GFP+ B cells in WT mice but repressed cell cycle of those in Eμ-BCL2 Tg mice. In immunohistochemical analysis, splenic follicles were disorganized with reduced follicular dendritic cells and inadequate T cell accumulation in Eμ-BCL2 Tg mice. Functional impairment of splenic follicles in Eμ-BCL2 Tg mice might be caused by decreased marginal zone B cell subset, as the antigen capture and delivery by marginal zone B cells was reported to play an important role in the development of follicular dendritic cells. To understand the fate of BCL2-overexpressing B cells after stimulation, we finally assessed their terminal differentiation capacity in vitro. Plasma cell differentiation was suppressed in B cells derived from Eμ-BCL2 Tg mice under either LPS or anti-IgM antibody stimulation. BCL2 is reported to impede the activity of transcription factor NF-AT (Proc Natl Acad Sci93:9545,1996; Nature386:728,1997), and we found that calcineurin inhibitor FK506 suppressed plasma cell differentiation of WT B cells. Gene regulation patterns of the Eμ-BCL2+ B cells were similar to B cells stimulated in the presence of FK506 as well, suggesting that repressed terminal differentiation in Eμ-BCL2+ B cells was partly caused by the suppressed activity of NF-AT. In summary, BCL2-deregulated B cells preferentially differentiate into follicular B cells, and as a result of decreased terminal differentiation in addition to their anti-apoptotic property, they may be obliged to survive and recirculate as memory B cells, and accumulate genetic abnormalities while they repeatedly pass through the germinal center. As the germinal center is the particular site where they can counterbalance the cell cycle-retarding effect of BCL2, it may be a specific place for generating lymphoma triggered by BCL2/IGH translocation. Our results emphasize the importance of the microenvironment of pre-malignant cells during transformation process, and suggest that a simple transgenic mouse model may not be always appropriate for the study of oncogenesis.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1737-1737
Author(s):  
Anat Biran ◽  
Helene Kretzmer ◽  
Shanye Yin ◽  
Leah Billington ◽  
Fara Faye Regis ◽  
...  

Large-scale DNA methylation analysis of chronic lymphocytic leukemia (CLL) has identified a pervasive genome-wide level of discordance in local methylation state in leukemic cells compared to normal B cells. This is associated with variation in gene expression, increased clonal evolution and poorer clinical outcomes. We hypothesized that locally disordered methylation could lead to dysregulation of gene expression and hence contribute to cancer development and progression. To test this, we have engineered mouse lines with B-cell restricted homozygous or heterozygous knock-out of Dnmt3a by crossing Dnmt3a-floxed mice with CD19-Cre mice. Dnmt3a is a DNA methyltransferase, catalyzing the addition of a methyl group to CpG sequences in the DNA and thereby regulating gene expression. Although DNMT3A mutations are only rarely identified in CLL, RNA sequencing and protein expression analysis reveal dysregulation of DNMT3A. We confirmed partial or complete reduction in Dnmt3a protein levels in B cells from CD19-Cre;Dnmt3a heterozygous (Dnmt3a-het) and CD19-Cre;Dnmt3a homozygous mice (Dnmt3a-hom), respectively. These mice therefore provide a unique opportunity to study B cell restricted changes in locally discordant methylation over time. We first assessed the impact of Dnmt3a deletion on normal B cell development, prior to CLL development, by characterizing splenic B cell of CD19-Cre (control) or Dnmt3a-hom mice. Flow cytometry data using B220, CD21 and CD23 markers to identify B220+CD23+CD21- follicular B cells and B220+CD23+CD21high marginal zone B cells revealed elevated levels of follicular B cells (83.1% vs 87.6%, p=0.008) and reduced levels of marginal zone B cells (9.6% vs 4.1%, p=0.001) in Dnmt3a-hom mice in comparison to control mice (n=3 mice per group). These results indicate that mice with Dnmt3a deletion present with massive changes in their B cells, even prior to overt CLL development. We next monitored both Dnmt3a-het and Dnmt3a-hom cohorts over time for CLL development. We observed that 100% Dnmt3a-hom mice developed CLL-like disease by 7 months (n=23), characterized by CD5+B220+;Igk+ expression and evident within the blood, bone marrow (BM), spleen and peritoneum, suggesting a fundamental role of altered DNMT3A expression in generation of CLL. In comparison, 75% of Dnmt3a-het mice developed CLL-like disease by 18 months (n=12), with similar expansion of CD5+C220+ expansion in the BM and spleen. By RNA-sequencing analysis of normal splenic B cells from CD19-Cre and Dnmt3a-hom mice (n=3 mice, 10 weeks old), we detected substantial changes in gene expression, including 113 upregulated genes and 39 downregulated (p<0.05, FC>2). To explore the development of locally disordered methylation following transformation, CLL cells from Dnmt3a-hom mice (n=3) were subjected to reduced representation bisulfite sequencing (RRBS), a high-throughput technique to analyze genome wide methylation patterns. We found that murine CLL-like cells display locally disordered methylation, which was detected in all genomic features covered by this assay, indicating that disordered methylation is broadly affecting the murine CLL cells' epigenome. Additionally, we identified a set of differentially methylated regions (DMRs) between B cells from CD19-Cre vs CLL cells from Dnmt3a-hom (n = 2,839 DMRs), with a minimum difference of 0.2 and a minimum of 10 CpGs per DMR. Interestingly, gene ontology analysis demonstrated strong association with genes hypermethylated in TCL1 mouse model, linking this model with alternative murine models for CLL. In conclusion, we have studied B cell specific deletion of Dntm3a and showed the development of CLL in 100% of the case in Dnmt3a-hom mice. Our data suggest a fundamental role for Dnmt3a in CLL development through increased locally disordered methylation and changes in associated transcriptional signatures. This mouse model provides an exciting experimental model to undertake functional in vivo studies in order to elucidate the contribution of epigenetic changes on CLL development. Disclosures Neuberg: Pharmacyclics: Research Funding; Madrigal Pharmaceuticals: Equity Ownership; Celgene: Research Funding. Wu:Neon Therapeutics: Other: Member, Advisory Board; Pharmacyclics: Research Funding.


2005 ◽  
Vol 174 (8) ◽  
pp. 4797-4802 ◽  
Author(s):  
Devapriya Nandini Samanta ◽  
Alois Palmetshofer ◽  
Dragan Marinkovic ◽  
Thomas Wirth ◽  
Edgar Serfling ◽  
...  

2001 ◽  
Vol 194 (8) ◽  
pp. 1151-1164 ◽  
Author(s):  
Zhenyue Hao ◽  
Klaus Rajewsky

To study homeostasis of peripheral B lymphocytes in the absence of B cell influx from the bone marrow, we generated a mouse mutant in which the recombination-activating gene (RAG)-2 can be inducibly deleted. When RAG-2 was deleted at the age of 8–10 wk, splenic naive follicular B cells were gradually lost over a year of observation, with a half-life of ∼4.5 mo. By contrast, the pool of marginal zone B cells in the spleen and of B-1 cells in the peritoneal cavity were kept at normal level. In lymph nodes, ∼90% of the B cells were lost within 4 mo, and B cell numbers remained constant thereafter. Mice in which RAG-2 was deleted at birth maintained a small population of activated B cells with an increased proportion of marginal zone B cells. Additionally, an increase of the pool of IgM secreting cells and B-1a cells was observed.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3902-3902
Author(s):  
Hongsheng Wang ◽  
Dong Mi Shin ◽  
Chenfeng Qi ◽  
Herbert Morse

Abstract Abstract 3902 CXCR7 is a newly discovered receptor for the chemokines I-TAC/CXCL11 and SDF-1/CXCL12. Overexpression of CXCR7 in certain tumors has been associated with increased activities of adhesion, invasion and survival. CXCR7 has thus been investigated as a potential chemotherapeutic target in the treatment of metastatic cancers. Our analyses of murine B cell lymphomas revealed that marginal zone B (MZB) cell lymphomas expressed higher levels of CXCR7 than other types of lymphomas. This prompted us to investigate the expression and function of CXCR7 in normal B cells. In this report, we demonstrate that normal MZB cells expressed the highest level of CXCR7 among all B cell subsets. This pattern of expression was consistent with gene profiling studies using cDNA microarrays. Injection of mice with CCX754 or CCX771, a specific blocker of CXCR7, resulted in a significant reduction of MZB cells in the spleen. Immunohistological analyses revealed disrupted integrity and reduced size of the MZ in spleens of CCX754-treated mice. In addition, CCX754 significantly blocked internalization of CXCR7 resulting in an increase of CXCR7 expression on MZB cells but not follicular B cells. This indicates that CXCR7 constantly removes its ligands from the extracellular environment. Taking together, our data suggest that CXCR7 controls CXCL12 availability influencing MZB cell retention in the spleen. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 417 (3) ◽  
pp. 673-683 ◽  
Author(s):  
Munetoyo Toda ◽  
Risa Hisano ◽  
Hajime Yurugi ◽  
Kaoru Akita ◽  
Kouji Maruyama ◽  
...  

CD22 [Siglec-2 (sialic acid-binding, immunoglobulin-like lectin-2)], a negative regulator of B-cell signalling, binds to α2,6- sialic acid-linked glycoconjugates, including a sialyl-Tn antigen that is one of the typical tumour-associated carbohydrate antigens expressed on various mucins. Many epithelial tumours secrete mucins into tissues and/or the bloodstream. Mouse mammary adenocarcinoma cells, TA3-Ha, produce a mucin named epiglycanin, but a subline of them, TA3-St, does not. Epiglycanin binds to CD22 and inhibits B-cell signalling in vitro. The in vivo effect of mucins in the tumour-bearing state was investigated using these cell lines. It should be noted that splenic MZ (marginal zone) B-cells were dramatically reduced in the mice bearing TA3-Ha cells but not in those bearing TA3-St cells, this being consistent with the finding that the thymus-independent response was reduced in these mice. When the mucins were administered to normal mice, a portion of them was detected in the splenic MZ associated with the MZ B-cells. Furthermore, administration of mucins to normal mice clearly reduced the splenic MZ B-cells, similar to tumour-bearing mice. These results indicate that mucins in the bloodstream interacted with CD22, which led to impairment of the splenic MZ B-cells in the tumour-bearing state.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Markus Lechner ◽  
Thomas Engleitner ◽  
Tea Babushku ◽  
Marc Schmidt-Supprian ◽  
Roland Rad ◽  
...  

AbstractFollicular B (FoB) and marginal zone B (MZB) cells are functionally and spatially distinct mature B cell populations in the spleen, originating from a Notch2-dependent fate decision after splenic influx of immature transitional B cells. In the B cell follicle, a Notch2-signal is provided by DLL-1-expressing fibroblasts. However, it is unclear whether FoB cells, which are in close contact with these DLL-1 expressing fibroblasts, can also differentiate to MZB cells if they receive a Notch2-signal. Here, we show induced Notch2IC-expression in FoB cells re-programs mature FoB cells into bona fide MZB cells as is evident from the surface phenotype, localization, immunological function and transcriptome of these cells. Furthermore, the lineage conversion from FoB to MZB cells occurs in immunocompetent wildtype mice. These findings demonstrate plasticity between mature FoB and MZB cells that can be driven by a singular signaling event, the activation of Notch2.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Maria Cristina de Vera Mudry ◽  
Franziska Regenass-Lechner ◽  
Laurence Ozmen ◽  
Bernd Altmann ◽  
Matthias Festag ◽  
...  

Theγ-secretase complex is a promising target in Alzheimer’s disease because of its role in the amyloidogenic processing ofβ-amyloid precursor protein. This enzyme also catalyzes the cleavage of Notch receptor, resulting in the nuclear translocation of intracellular Notch where it modulates gene transcription. Notch signaling is essential in cell fate decisions during embryogenesis, neuronal differentiation, hematopoiesis, and development of T and B cells, including splenic marginal zone (MZ) B cells. This B cell compartment participates in the early phases of the immune response to blood-borne bacteria and viruses. Chronic treatment with the oralγ-secretase inhibitor RO4929097 resulted in dose-dependent decreased cellularity (atrophy) of the MZ of rats and mice. Significant decreases in relative MZ B-cell numbers of RO4929097-treated animals were confirmed by flow cytometry. Numbers of MZ B cells reverted to normal after a sufficient RO4929097-free recovery period. Functional characterization of the immune response in relation to RO4929097-related MZ B cell decrease was assessed in mice vaccinated with inactivated vesicular stomatitis virus (VSV). Compared with the immunosuppressant cyclosporin A, RO4929097 caused only mild and reversible delayed early neutralizing IgM and IgG responses to VSV. Thus, the functional consequence of MZ B cell decrease on host defense is comparatively mild.


Sign in / Sign up

Export Citation Format

Share Document