Activity of Anti-Tumor Endoribonucleases, Onconase (ranpirnase) and R-Amphinase in Chronic Lymphocytic Leukemia

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4205-4205
Author(s):  
Piotr Smolewski ◽  
Anna Linke-Szewczyk ◽  
Barbara Cebula ◽  
Kuslima Shogen ◽  
Wojciech Ardelt ◽  
...  

Abstract Despite of evident progress in treatment of chronic lymphocytic leukemia (CLL), the disease still remains incurable. Several attempts have been made therefore to develop most effective and selective therapeutical approaches. A promising approach that involves targeting RNA either by the use of specific antisense oligonucleotides or cytostatic/cytotoxic ribonucleases is recently being promoted. Two such ribonucleases, onconase (ONC; ranpirnase) and R-amphinase (R-Amph), derived from Rana pipiens oocytes, have been developed. ONCdemonstrated preferential toxicity to tumor cells and was shown to be effective in vivo in animal tests as well as in clinical trials in treatment of malignant mesothelioma. Moreover, ONC is synergistic when used in combination with a variety of antitumor modalities including anthracyclines. R-Amph was developed only recently and thus far there is only a single report demonstrating its cytostatic and cytotoxic activity against human promyelocytic HL-60-, Jurkat T-cell- and U-937 histiomonocytic leukemic cells in vitro. In the present study we aimed to assess potential cytotoxicity of ONCand R-Amph against CLL cells. Toward this aim, leukemic cells were isolated from 36 untreated patients with CLL and were cultured for 24–72 h with either ONC or R-Amph alone and in combination with purine analogues, cladribine (2-CdA) and fludarabine (FA), two drugs routinely used in treatment of CLL, as well as with doxorubicin (DOX), the drug reported to show synergy with ONC in solid tumors. Cytotoxicity of the study drugs was assessed by the propidium iodide exclusion assay using flow cytometry. Their pro-apoptotic activity was examined by the Annexin-V (Ann-V) binding test, detection of caspase-3, -8, and -9 activation, a decrease of mitochondrial potential and the expression of apoptosis–regulating proteins from the Bcl-2 family. Compensated apoptotic index (CAI) has been calculated based on Ann-V assay as a difference in the percentage of apoptotic cells between the drug-treated sample and spontaneous apoptosis in the parallel untreated control. After preliminary experiments the optimal concentrations of both ONC and R-Amph were found to be 20 μg/ml; these were the lowest doses that induced significant cytotoxicity during 24–72 h of incubation, in comparison with parallel controls. The significant effect of ONC was evident after 48 h of treatment (median CAI=11.5%; p=0.035 versus control). After 72 h of incubation the median CAI for ONC was 17.1% (p=0.009). The significant cytotoxicity of R-Amph was seen after 72 h incubation (median CAI =19.9%; p=0.007, respectively). The mechanism of this cytotoxicity involved the induction of apoptosis along its mitochondrial pathway, with the drop of mitochondrial potential and activation of caspase-9 and caspase-3, concurrent with an increase in expression of pro-apoptotic Bax protein (p=0.035 versus control; after 72h) and a decrease of anti-apoptotic Bcl-2 expression (p=0.006; after 72 h). No significant changes in expression of Bak and Mcl-1 were observed. Synergistic effect was found for both, ONC plus 2-CDA and ONC plus FA (combination indices, CI; <0.8). Also the combination of R-Amph with 2-CDA or with FA exerted synergistic cytotoxiciy (both CI <0.8). Although, the combination of DOX with ONC or R-Amph demonstrated an increased in pro-apoptotic activity when compared to single agents, the effect was not statistically significant. In conclusion, this is the first study showing cytotoxic, pro-apoptotic affect of RNA-targeting agents, Onconase and R-Amphinase, in CLL. This promising anti-leukemic activity of both ribonucleases, especially their synergistic effects exerted in combination with purine analogues warrant further intensive preclinical and, subsequently, clinical study in this disease.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2972-2972
Author(s):  
Piotr Smolewski ◽  
Markus Duechler ◽  
Anna Linke ◽  
Barbara Cebula ◽  
Olga Grzybowska-Izydorczyk ◽  
...  

Abstract Background: Inhibitor of proteasome, bortezomib (BOR), has high in vitro cytotoxic activity in chronic lymphocytic leukemia (CLL). However, first clinical trials showed low efficacy of BOR used alone in CLL patients. One way to increase the efficacy of BOR in vivo may be its combinatory use with other agents active in CLL, what can bring also benefit from lowering their doses. Indeed, there is some evidence, that efficacy of BOR may be increased by its combination with other agents active in CLL. Aim: To assess in vitro cytotoxic effects exerted by BOR in concomitant treatment with monoclonal antibodies anti-CD20 (rituximab, RIT) or anti-CD52 (alemtuzumab, ALT), agents with confirmed activity in CLL. Additionally, we investigated mechanisms responsible for observed interactions. Methods: The study was performed on cells isolated from 61 untreated CLL patients. Cell viability was evaluated by propydium iodide and MTT assays. Proapoptotic effects were measured by detection of active caspase-3, collapse of mitochondrial transmembrane potential (Mitotracker Red dye) and annexin V flow cytometry assays. Additionally, expression of several promoters of apoptosis (Bid, Bax, Bak, Bcl-w) and anti-apoptotic proteins (Bcl-2, Mcl-1, XIAP and FLIP) was measured. BOR concentration varied in different experiments between 1,25nM and 5nM. Based on preliminarily performed experiments RIT and ALT were used at final doses 10 μg/ml and 20 μg/ml, respectively. Cells were cultured for 24 hours in following sets of samples: 1/untreated control, 2/BOR alone, 3/RIT alone, 4/ALT alone, 5/BOR+RIT and 6/BOR+ALT. Moreover, all those sets of cultures were either done in RPMI 1640 medium supplemented with 5% human serum as a source of complement or in the presence of 20 μg/ml anti-human IgG crosslinking antibodies. Finally, in additional series of experiments cells were pretreated for 24 hours with RIT or ALT, and then BOR was added for the next 24 hours of incubation. Results: Combinations of BOR+RIT and BOR+ALT showed additive cytotoxicity, especially when 24-hour incubation with the antibodies crosslinked with anti-IgG preceded BOR administration (combination index 1.07 and 0.83, respectively). In these settings both combinations, BOR+RIT and BOR+ALT, significantly increased caspase-3 activation. Interestingly, addition of complement enhanced significantly only cell death mediated by ALT. Caspase-3 activation correlated with collapse of mitochondrial potential in samples treated with BOR+RIT (R= 0.71; p<0.02). Upregulation of Bax and downregulation of Bcl-2 or Mcl-1 were found after BOR+RIT treatment (p<0.005 and p<0.01, respectively). ALT+BOR triggered significant downregulation of Bcl-2 (p<0.005) and XIAP (p<0.01) proteins in CLL cells. For both combinations, significant increase in Bax/Bcl-2 ratio was shown (p<0.001). Conclusions: We found additive cytotoxic effects of both combinations, BOR+RIT and BOR+ALT. Upregulation of Bax and downregulation of Bcl-2 and Mcl-1 proteins were main mechanisms of additive interaction of BOR+RIT. The BOR+ALT combination significantly increased Bid and p53 expression and downregulated Bcl-2 and XIAP proteins. These data indicate feasibility of treatment combining proteasome inhibition with the use of RIT or CAM monoclonal antibodies in CLL.


Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2973-2979 ◽  
Author(s):  
Anne J. Novak ◽  
Richard J. Bram ◽  
Neil E. Kay ◽  
Diane F. Jelinek

B-cell chronic lymphocytic leukemia (B-CLL) is defined by the accumulation of CD5+ B cells in the periphery and bone marrow. This disease is not characterized by highly proliferative cells but rather by the presence of leukemic cells with significant resistance to apoptosis and, therefore, prolonged survival. B-lymphocyte stimulator (BLyS) is a newly identified tumor necrosis factor (TNF) family member shown to be critical for maintenance of normal B-cell development and homeostasis and it shares significant homology with another TNF superfamily member, APRIL. The striking effects of BLyS on normal B-cell maintenance and survival raises the possibility that it may be involved in pathogenesis and maintenance of hematologic malignancies, including B-CLL. In this study, we investigated the status of APRIL and BLyS expression, as well as their receptors, in this disease. All B-CLL patient cells studied expressed one or more of 3 known receptors for BLyS; however, the pattern of expression was variable. In addition, we demonstrate for the first time that B-CLL cells from a subset of patients aberrantly express BLyS and APRIL mRNA, whereas these molecules were not detectable in normal B cells. Furthermore, we provide in vitro evidence that BLyS protects B-CLL cells from apoptosis and enhances cell survival. Because these molecules are key regulators of B-cell homeostasis and tumor progression, leukemic cell autocrine expression of BLyS and APRIL may be playing an important role in the pathogenesis of this disease.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3804-3816 ◽  
Author(s):  
John C. Byrd ◽  
Charlotte Shinn ◽  
Jamie K. Waselenko ◽  
Ephraim J. Fuchs ◽  
Teresa A. Lehman ◽  
...  

Abstract Flavopiridol has been reported to induce apoptosis in lymphoid cell lines via downregulation of bcl-2. The in vitro activity of flavopiridol against human chronic lymphocytic leukemia (CLL) cells and potential mechanisms of action for inducing cytotoxicity were studied. The in vitro viability of mononuclear cells from CLL patients (n = 11) was reduced by 50% at 4 hours, 24 hours, and 4 days at a flavopiridol concentration of 1.15 μmol/L (95% confidence interval [CI] ±0.31), 0.18 μmol/L (95% CI ±0.04), and 0.16 μmol/L (95% CI ±0.04), respectively. Loss of viability in human CLL cells correlated with early induction of apoptosis. Exposure of CLL cells to 0.18 μmol/L of flavopiridol resulted in both decreased expression of p53 protein and cleavage of the caspase-3 zymogen 32-kD protein with the appearance of its 20-kD subunit. Contrasting observations of others in tumor cell lines, flavopiridol cytotoxicity in CLL cells did not correlate with changes in bcl-2 protein expression alterations. We evaluated flavopiridol’s dependence on intact p53 by exposing splenocytes from wild-type (p53+/+) and p53 null (p53−/−) mice that demonstrated no preferential cytotoxicity as compared with a marked differential with F-ara-a and radiation. Incubation of CLL cells with antiapoptotic cytokine interleukin-4 (IL-4) did not alter the LC50 of flavopiridol, as compared with a marked elevation noted with F-ara-a in the majority of patients tested. These data demonstrate that flavopiridol has significant in vitro activity against human CLL cells through activation of caspase-3, which appears to occur independently of bcl-2 modulation, the presence of IL-4, or p53 status. Such findings strongly support the early introduction of flavopiridol into clinical trials for patients with B-CLL.


Blood ◽  
1984 ◽  
Vol 64 (6) ◽  
pp. 1207-1211 ◽  
Author(s):  
MJ Deegan ◽  
JP Abraham ◽  
M Sawdyk ◽  
EJ Van Slyck

Abstract Chronic lymphocytic leukemia (CLL) is generally considered a nonsecretory B cell immunoproliferative disorder. Conventional electrophoretic and immunoelectrophoretic methods have revealed serum monoclonal proteins in less than 10% of these patients. However, there is increasing experimental evidence from in vitro studies demonstrating that CLL cells may secrete immunoglobulins, particularly free light chains. We examined the serum and urine of 36 consecutive CLL patients for monoclonal proteins using sensitive immunochemical methods (high resolution agarose gel electrophoresis combined with immunofixation). The results obtained were correlated with the Rai stage, quantitative immunoglobulin levels, and lymphocyte membrane immunoglobulin phenotype of the leukemic cells. Twenty-three monoclonal proteins were identified in the serum or urine of 22 patients, an incidence of 61%. Six patients had serum monoclonal proteins, seven had only urinary monoclonal proteins, and nine had monoclonal proteins in serum and urine. In every instance the monoclonal protein was the same light chain type as expressed on the leukemic cells. Our findings suggest that the monoclonal proteins observed in the serum or urine of CLL patients are secretory products of the tumor cells and that their discovery is a function of the sensitivity of the method used for their detection.


Blood ◽  
1984 ◽  
Vol 63 (2) ◽  
pp. 463-467 ◽  
Author(s):  
F Praz ◽  
G Karsenty ◽  
JL Binet ◽  
P Lesavre

Abstract Using affinity-purified 125I-F(ab')2 anti-human C3, we have investigated the ability of various leukemic cells to activate complement. Lymphocytes from patients with chronic lymphocytic leukemia (CLL) activated the alternative pathway, but cells from patients with other forms of leukemia or normal lymphocytes did not do so. The amount of C3 deposited on the CLL cells was significantly higher in patients with organomegaly (i.e., splenomegaly and/or hepatomegaly). Activation of complement by CLL cells as assessed by C3 deposition on the membrane occurred both in vivo and in vitro and was not related to the N- acetylneuraminic acid content of the membrane.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 587-587
Author(s):  
Yuji Miura ◽  
Elinor Lee ◽  
Federica Gibellini ◽  
Therese White ◽  
Gerald Marti ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of mature B lymphocytes in the peripheral blood (PB), lymph nodes (LN) and bone marrow (BM). Increasing evidence suggests that CLL cells depend on survival and proliferation signals provided by stroma cells in LN and BM. The chemokine receptor CXCR4 (CD184) and its ligand stromal cell-derived factor-1 (SDF-1) play an important role in trafficking of lymphocytes and may guide CLL cells to stroma cell niches. ZAP70 expression has prognostic value in CLL but the functional consequences of ZAP70 expression remain incompletely defined. Given that ZAP70 has been implicated in CXCR4 signaling its expression could enhance migration to SDF-1 and thereby promote interactions with stroma cells. As measured by flow cytometry, CXCR4 expression on leukemic cells obtained from different anatomic sites differed; cells from the PB (n=24, median 71% above isotype control) expressed CXCR4 more strongly than cells from BM (n=21, median 39%) and from LN (n=9, median 24%). Expression of CD69, an activation marker, followed a reverse pattern with cells from LN and BM typically showing higher expression than cells from PB, albeit with not detectable difference in expression in several patients. In vitro CLL cells from PB migrated in a dose dependent manner to SDF-1, and cells that had migrated down-modulated CXCR4 expression (89% before migration - 54% after migration). After exposure to SDF-1 CXCR4 expression decreased rapidly and remained virtually absent for at least 24 hours. Several mechanisms apparently decrease CXCR4 expression after contact with SDF-1, including internalization (given rapid re-expression of CXCR4 when SDF-1 is washed off after short exposure), protein degradation or inhibition of translation (evidenced by a decrease in total CXCR4 protein on Western blots), and mRNA degradation or transcriptional inhibition (decrease in mRNA levels more than 6 hours from SDF-1 exposure). In vitro migration of ZAP70(+) CLL cells toward SDF-1 through a 5μm membrane (Migration Index [MI] of 12.0, n=5) was significantly increased compared to ZAP70(−) CLL cells (MI of 2.9, n=4, p<0.05). To exclude effects of contaminating cells we repeated these assays with purified CLL cells (negative selection) with similar results. To model the complex interactions of CLL cells with stroma, we cultured PB derived leukemic cells with or without murine marrow stroma cells (S17). CXCR4 expression on CD19+ cells decreased from 90% without S17 to 50% when cultured on S17 cells, consistent with the known SDF-1 secretion by the murine stroma cell line. Conversely, CD69 expression increased from 58% without S17 to 71% with S17 cells. In addition, culturing of CLL cells on an S17 stroma cell layer extended their survival by several weeks when compared to cultures without S17 cells. Our data is consistent with a model in which CLL cells migrate along an SDF-1 gradient to stroma cell niches in BM and LN where they are activated. ZAP70 expression is associated with more effective migration in an SDF-1 gradient and thereby may facilitate access to growth and survival signals which then could contribute to the more progressive nature of ZAP70(+) CLL. The interaction between leukemic cells and stroma may represent a novel target for therapy of patients with CLL.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3895-3895
Author(s):  
Yair Herishanu ◽  
Inbal Hazan-Hallevi ◽  
Sigi Kay ◽  
Varda Deutsch ◽  
Aaron Polliack ◽  
...  

Abstract Abstract 3895 Chronic lymphocytic leukemia (CLL) cells depend on their microenvironment for proliferation and survival. Ectonucleotidase CD39 has anti-inflammatory properties as it hydrolyzes pro-inflammatory extra-cellular ATP, generates anti-inflammatory adenosine and also protects regulatory T cells from ATP-induced cell death. In this study we investigated the clinical significance of CD39 expression on CD4+T-cells in 45 patients with CLL as well as its compartmental regulation and explored the possible mechanisms for its induction. Compared to healthy individuals, CD4+CD39+ lymphocytes were increased in the peripheral blood of patients with CLL (4.6%±2.28 vs. 17.3%±12.49, respectively, p=0.004), and correlated with advanced stage of disease (9.72%±5.76, 18.15%±12.03 and 25.90%±16.34, of CD4+ lymphocytes, in patients with Rai stages 0, 1+2 and 3+4, respectively, p=0.019). CD4+CD39+ cells were also higher in patients with CLL who needed therapeutic intervention (untreated; 12.99%±10.63 vs treated; 22.21%±12.88, p=0.01) and in those who were ZAP70+ or had b2-microglobulin levels>3g/L. There were more CD4+CD39+ lymphocytes in the bone marrow compartment (22.25%±16.16) than in the peripheral blood (16.60%±15.84, p=0.009). In-vitro studies showed that CD39 can be induced on CD4+cells by exposure to ATP or indirectly, following B-cell receptor (BCR) engagement (CD4+CD39+ lymphocytes increased by 1.56 fold, in the BCR engaged samples compared to their paired controls; 20.27%±11.3 vs. 13%±9.42, respectively, p=0.0006). Conclusions: Increased CD39 expression on CD4+ T-lymphocytes in CLL associates with an aggressive disease. This may reflect the ability of the leukemic cells to suppress the surrounding immune environment, and contribute to a poorer prognosis. CD39+ may also serve as a future target for the development of novel therapies with immune modulating anti–tumor agents in CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1799-1799
Author(s):  
Maria Göbel ◽  
Michael Möllmann ◽  
Andre Görgens ◽  
Ulrich Dührsen ◽  
Andreas Hüttmann ◽  
...  

Abstract Abstract 1799 The receptor tyrosine kinase Axl belongs to the TAM (Tyro-3, Axl and Mer) family and is involved in the progression of several human malignancies including chronic lymphocytic leukemia (CLL), where it is has been found to be overexpressed in comparison to normal B-cells. An increasing body of evidence suggests that Axl acts as an oncogene which increases the survival, proliferation, metastatic potential and chemotherapy resistance of tumor cells. Hence, it has been recently identified as a potential therapeutic target in a wide range of tumor entities with deregulated Axl expression including prostate cancer, glioma, lung cancer and CLL. Here, we investigated two different Axl inhibitors for their potential to inhibit the migratory capacity and survival of leukemic cells in preclinical CLL models. In vitro studies: Freshly isolated PBMC (>90% CD5+CD19+) from CLL patients were incubated in serum free medium for 48h containing concentrations series of 2 different Axl inhibitors: BMS777607, a previously published inhibitor of the MET kinase family, and LDC2636, a novel inhibitor of the TAM receptor tyrosine kinase (RTK) family with high affinity to Axl. Viability of CLL cells was assessed by trypan blue staining and flow cytometry employing annexin V staining. Since a polarized phenotype is required for migration, cell polarization was analyzed by time-lapse video-microscopy. We detected cytotoxic effects in a patient dependent manner that were more prevalent in LDC2636 as compared to BMS777607 treated cells (LD50= 1.4 μM vs. 5.2 μM, p<0.004, n=5). Cell polarization of the remaining viable cells was significantly reduced in a dose dependent fashion in comparison to vehicle only controls (LDC2636 IC50 = 7.2 μM, p<0.00001; BMS777607: IC50=6.2μM; p=0.0004). Of note, both Axl inhibitors exhibited significantly weaker effects on both, the viability and cell polarization of normal PBMC over the whole concentration range tested (p<0.05, n=5). In vivo studies: To verify our hypothesis that reduced cell polarization results in decreased homing of leukemic cells in vivo we employed a recently developed adoptive transfer model of CLL. In this model NOD/SCID/gcnull(NSG) mice were pre-treated with a single intraperitoneal bolus of LDC2636 or BMS777607 (20 mg/kg) and subsequently transplanted with primary CLL cells. Both Axl inhibitors significantly reduced the homing capacity of CLL cells to the bone marrow of NSG mice by 43% and 59%, respectively, compared to vehicle treated controls (LDC2636: p=0.046, BMS777607 p=0.0077; n=3). These data demonstrate that Axl inhibitors exert potent in vitro and in vivo activity against human CLL cells, which is caused at least in part by the suppression of CLL homing to their supportive stromal niches. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 38 (3) ◽  
pp. 165-173 ◽  
Author(s):  
Maria Jesus Citores ◽  
Raquel Castejon ◽  
Mercedes Villarreal ◽  
Silvia Rosado ◽  
Jose Antonio Garcia-Marco ◽  
...  

Blood ◽  
1993 ◽  
Vol 81 (1) ◽  
pp. 143-150 ◽  
Author(s):  
LE Robertson ◽  
S Chubb ◽  
RE Meyn ◽  
M Story ◽  
R Ford ◽  
...  

Abstract 2-Chloro-2′-deoxyadenosine (CldAdo) and 9-beta-D-arabinosyl-2- fluoroadenine (F-ara-A) have shown marked activity in the treatment of indolent lymphoid malignancies. Based on the susceptibility of various lymphocyte populations to apoptosis, we investigated whether CldAdo or F-ara-A would induce this process in lymphocytes from patients with chronic lymphocytic leukemia (CLL). In vitro exposure of leukemic lymphocytes to CldAdo or F-ara-A for 24 to 72 hours elicited features of apoptosis visible by light and electron microscopy. Analysis of DNA integrity showed DNA cleavage into nucleosomal-sized multimers. Using a quantitative assay, drug-induced DNA fragmentation was both time and dose dependent. Inhibition of active macromolecular synthesis did not prevent drug-induced fragmentation; however, both drug-induced and spontaneous DNA fragmentation were prevented by intracellular calcium chelation. In vitro culture with phorbol ester generally decreased drug- induced DNA cleavage. After prolonged incubation, CLL cells exhibited spontaneous cleavage; albeit, at significantly lower rates than drug- treated cells. Heterogeneity was observed for spontaneous and drug- induced DNA fragmentation and was significantly lower in B-leukemic cells obtained from patients with high-risk and refractory disease. We conclude that CldAdo and F-ara-A are potent inducers of apoptotic death in CLL and that this feature correlates with the disease status.


Sign in / Sign up

Export Citation Format

Share Document