Modification of Invariant Chain and CLIP Expression Increases the Immunogenicity of Leukemic Blasts to Potentiate Leukemia-Specific T Cell Reactivity

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5430-5430
Author(s):  
Marvin M. van Luijn ◽  
Martine E.D. Chamuleau ◽  
James A. Thompson ◽  
Suzanne Ostrand-Rosenberg ◽  
Theresia M. Westers ◽  
...  

Abstract In patients suffering from AML, disease progression could be explained by the ability of leukemic blasts to escape immune surveillance. Since CD4+ T cells are indispensable for generating effective anti-leukemic immune responses, escaping leukemic blasts might exhibit aberrant HLA class II antigen presentation that interferes with antigen-specific CD4+ T cell activation. The Invariant Chain (Ii) is essentially involved in HLA class II processing, since it blocks endogenous antigen loading of HLA class II in the endoplasmic reticulum and mediates its transport to the lysosomal exogenous antigen-loading compartments. We previously showed that increased expression of the class II-associated invariant chain peptide (CLIP), a small remnant of Ii, on AML blasts predicts poor clinical outcome [Chamuleau et al., Cancer Research2004; 64]. This study was undertaken to modulate Ii and CLIP expression of leukemic blasts and examine the impact on leukemia-specific CD4+ T cell recognition. The THP-1 and Kasumi-1 AML cell lines were selected for Ii and CLIP modulation based upon their flow cytometrically determined DR+CLIP+Ii+ immunophenotype. Retroviral transduction of both THP-1 and Kasumi-1 with specific Ii siRNAs led to a clear decline in Ii expression, as MFI values dropped from 4.5 to 1.4 and 13.5 to 0.9, respectively, 6 weeks after transduction. Interestingly, the effect of Ii down-modulation on CLIP and HLA-DR expression levels differed between THP-1 and Kasumi-1 blasts. In THP-1, Ii down-modulation resulted in reduced CLIP expression (MFI values decreased from 35.9 to 14.0), while HLA-DR expression levels remained relatively constant. This yielded a marked reduction in the relative amount of CLIP presented by DR (decline from 1.12 to 0.52). In Kasumi-1, both CLIP and DR levels were markedly decreased by Ii down-modulation (MFI values declined from respectively 35.5 to 2.7 and 24.6 to 3.7). Although total DR expression was already reduced, the relative amount of CLIP presented by DR was even further reduced (decline from 1.49 to 0.78). These results might indicate that Ii and CLIP down-modulation enables HLA class II presentation of leukemia-associated antigens on these blast cell lines. Subsequently, DR+CLIP+Ii+ and DR+CLIP−Ii− blasts were compared in their capacity to induce allogeneic CD4+ T cell proliferation in mixed leukocyte reactions (MLRs). CD4+ T cells were obtained from different healthy donors and cultured in triplicate with irradiated blasts at various stimulator-to-responder (S/R) ratios. MLRs consisting of DR+CLIP−Ii− THP-1 blasts showed marked increases in CD4+ T cell proliferation in a S/R dependent manner compared to MLRs performed with DR+CLIP+Ii+ THP-1 blasts. These increases in CD4+ T cell proliferation (maximal 4.5-fold) correlated strongly with the decreased relative CLIP/DR amounts on THP-1 transductants. Similar increases in CD4+ T cell proliferation were observed when DR+CLIP−Ii− Kasumi-1 blasts were used as stimulator cells, also clearly correlating with the accompanying relative CLIP/DR amounts. The DR-specific L243 antibody totally abrogated CD4+ T cell proliferation, confirming HLA-DR restriction of the proliferative responses. These data demonstrate an essential role for Ii and CLIP expression of AML blasts in modifying T cell responsiveness and introduce Ii down-modulation as a potential immunotherapeutic strategy to activate leukemia-specific CD4+ T cells.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4888-4888
Author(s):  
Marvin M. van Luijn ◽  
Martine E.D. Chamuleau ◽  
Theresia M. Westers ◽  
James A. Thompson ◽  
Suzanne Ostrand-Rosenberg ◽  
...  

Abstract Although acute myeloid leukemia (AML) can be cured with intensive treatment including myeloablative chemotherapy and haematopoietic stem cell transplantation, relapses occur in the majority of cases. A common feature of tumor cells is their ability to escape immune surveillance through adapted intrinsic mechanisms. Thus, it is a great challenge to develop optimal strategies that direct a specific cellular immune response against residual AML blasts in vivo. As CD4+ T cells are needed to initiate a strong anti-leukemic CD8+ T cell response, the mechanism through which HLA class-II restricted (leukemia-specific) antigens are presented on AML blasts could be an essential factor in immune surveillance. Previously, we showed that the self peptide Class-II Associated Invariant Chain Peptide (CLIP) important in HLA class-II antigen presentation appeared to be disadvantageous, as its expression on AML blasts predicted a shortened disease-free survival (Chamuleau et al. Canc. Res.2004; 64(16):5546–50). We hypothesized that CLIP interferes with the presentation of specific tumor antigens on HLA class-II molecules, thereby preventing recognition of AML blasts by CD4+ T cells. To investigate whether CLIP expression indeed has a functional effect on leukemia-specific T cell activation in patients, an AML cell line model with CLIP+ and CLIP− leukemic blasts was set up. The Kasumi-1 and THP-1 AML cell lines were selected as both stained positive for extracellular HLA-DR (89%; MFI=31.3 and 91%; MFI=37.5 respectively) and CLIP expression (88%; MFI=37.2 and 91%; MFI=34.0 respectively) by flow cytometric analysis. These DR+CLIP+ cell lines were specifically silenced for Invariant Chain (Ii) expression using RNA interference to down-modulate CLIP presentation on the cell surface. Indeed, Ii siRNA-treated cells not only showed a significant decrease of intracellular Ii expression (MFI decrease of 87.7% for Kasumi-1 and 82.7% for THP-1), but also a marked downregulation of relative CLIP amount per HLA-DR molecule (fold decline in CLIP/DR ratio of 1.4 for Kasumi-1 and 2.0 for THP-1). Wild type (DR+CLIP+) and modulated (DR+CLIP−) cells of Kasumi-1 or THP-1 origin acted as stimulators for alloreactive CD4+ T cells in mixed leukocyte reactions using different stimulator to responder (S/R) ratios. Modulated DR+CLIP− Kasumi-1 and THP-1 cells induced a strong increase in alloreactive CD4+ T cell proliferation as compared to DR+CLIP+ wild type controls, both in an HLA-DR-specific and a S/R-dependent manner. At the highest S/R ratio, mean proliferation increases of 2.58-fold for Kasumi-1 (n=3) and 1.71-fold for THP-1 (n=2) were observed. These data support our hypothesis that the expression of CLIP on AML blasts plays an important role in immune surveillance, which might have impact on cellular immunotherapy with dendritic cell-based vaccines in AML.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1245-1245 ◽  
Author(s):  
Sanja Stevanovic ◽  
Marieke Griffioen ◽  
Marianke LJ Van Schie ◽  
Roelof Willemze ◽  
J.H. Frederik Falkenburg ◽  
...  

Abstract Donor lymphocyte infusion (DLI) following allogeneic stem cell transplantation (alloSCT) can be a curative treatment for patients with hematological malignancies. The therapeutic benefit of DLI is attributed to a graft versus leukemia (GvL) reactivity mediated by donor T cells recognizing allo-antigens on malignant cells of the patient. Donor T cells, however, often recognize allo-antigens which are broadly expressed in non-malignant tissues of the patient, thereby causing severe graft versus host disease (GvHD). In contrast to HLA class I molecules which are ubiquitously expressed on all nucleated cells, HLA class II molecules are predominantly expressed on cells of the hematopoietic system, and therefore CD4+ T cells may selectively mediate GvL reactivity without GvHD. Several clinical studies have indeed demonstrated that CD8-depleted DLI after alloSCT can lead to clinical remissions with reduced incidence of GvHD. Since in most of these studies DLI was contaminated with CD8+ T cells, it remained unclear whether CD4+ T cells alone are capable of mediating GvL reactivity. To assess the capacity of purified CD4+ T cells to solely exert GvL reactivity we compared the anti-tumor effects of CD4+ DLI and CD3+ DLI in a NOD/SCID mouse model of human acute leukemia. Iv injection of primary human leukemic cells from three different patients reproducibly resulted in engraftment of leukemia in mice, as monitored by peripheral blood analysis. Three weeks after inoculation of leukemic cells, established tumors were treated by infusion of human donor T cells. In mice treated with CD4+ DLI (5*106 CD4+ T cells), the emergence of activated (HLA-DR+) T cells coincided with rapid disappearance of leukemic cells, showing similar kinetics as for CD3+ DLI (consisting of 5*106 CD4+ T cells and 3*106 CD8+ T cells). To analyze the specific reactivity of T cells responsible for the anti-leukemic effect, we clonally isolated human CD45+ T cells during the anti-tumor response following CD4+ DLI in which the donor was matched for HLA class I and mismatched for the HLA-DR (DRB1*1301), -DQ (DQB1*0603) and –DP (DPB1*0301/0401) alleles of the patient. A total number of 134 CD4+ T cell clones were isolated expressing various different TCR Vbeta chains. Most of the isolated CD4+ T cell clones (84%) were shown to be alloreactive, as determined by differential recognition of patient and donor EBV-transformed B cells (EBV-LCL) in IFN-g ELISA. A substantial number of these CD4+ T cell clones also exerted cytolytic activity (17%), as demonstrated by specific reactivity with patient EBV-LCL but not donor EBV-LCL in a 10 hr 51Cr-release cytotoxicity assay. Further characterization of the specificity of 20 CD4+ T cell clones using blocking studies with HLA class II specific monoclonal antibodies illustrated HLA class II restricted recognition directed against HLA-DR (n=3), HLA-DQ (n=16) and HLA-DP (n=1) molecules of the patient. Of the 127 alloreactive CD4+ T cell clones, only 36 clones directly recognized primary leukemic cells of the patient. Flowcytometric analysis demonstrated that HLA class II, and in particular HLA-DQ, molecules were expressed at relatively low levels on patient leukemic cells as compared to patient EBV-LCL. Upregulation of HLA class II and costimulatory molecules on patient leukemic cells upon differentiation in vitro into leukemic antigen presenting cells (APC) resulted in recognition of patient leukemic cells by all alloreactive CD4+ T cell clones. Therefore, we hypothesize that the alloreactive CD4+ T cells have been induced in vivo by patient leukemic cells, which, upon interaction with T cells or other environmental factors, acquired an APC phenotype. In conclusion, our data show that alloreactive CD4+ T cells can be potent effector cells and sole mediators of strong antitumor responses in a NOD/SCID mouse model for human acute leukemia.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4351-4351
Author(s):  
Shigeo Fuji ◽  
Julia Fischer ◽  
Markus Kapp ◽  
Thomas G Bumm ◽  
Hermann Einsele ◽  
...  

Abstract Abstract 4351 Wilms‘ tumor protein-1 (WT1) is one of the most investigated tumor-associated antigens (TAA) in hematological malignancies. CD8 T-cell responses against several WT1-derived peptides have been characterized and are known to contribute to disease control after allogeneic hematopoietic stem cell transplantation (HSCT). Also the identification of human leukocyte antigen (HLA) class II-restricted CD4 T-cell epitopes from WT1 is a challenging task of T-cell-based cancer immunotherapy to improve the effectiveness of WT1 peptide vaccination. We found a highly immunogenic WT1 peptide composed of only 9 amino acids having the ability to induce IFN-γ secretion in CD4 T-cells in an HLA DR-restricted manner. This finding is of great interest as it was generally accepted that HLA class II binding peptides are composed of at least 12 amino acids being recognized by CD4 T-cells, whereas HLA class I binding peptides are composed of 8–11 amino acids being recognized by CD8 T-cells (Wang et al Mol. Immunol. 2002). However, both HLA class I and class II molecules bind to primary and secondary peptide anchor motifs covering the central 9–10 amino acids. Thus, considering this common structural basis for peptide binding there is a possibility that the WT1 9-mer peptide binds to HLA class II molecules, and induces CD4 T-cell responses. IFN-γ induction in response to several WT1 9-mer peptides was screened in 24 HLA-A*02:01 positive patients with acute myeloid leukemia or myelodysplastic syndrome after allogeneic HSCT. Responses to one WT1 9-mer peptide were exclusively detected in CD3+CD4+ T-cells of 2 patients after allogeneic HSCT, but not in CD3+CD4+ T-cells of their corresponding HSC donors. CD4+ T-cell responses to this WT1 9-mer peptide exhibited high levels of functional avidity, as IFN-γ induction was detected after stimulation with 100 ng peptide per mL. Peptide-induced IFN-γ production was confirmed with IFN-γ ELISPOT assays and the HLA restriction of the T-cell response was determined by HLA blocking antibodies. The reaction was significantly blocked by anti-pan HLA class II antibody (85 % reduction), but neither by pan-HLA class I nor by anti-HLA A2 antibody. To identify the subtype of HLA class II molecule, blocking assays with antibodies against HLA-DP, HLA-DR and HLA-DQ were performed. IFN-γ induction was completely abrogated by anti-HLA-DR antibody (99 % reduction) (fig 1, p value of unpaired student‘s t-test <0.0001 for the medium control vs anti-pan HLA class II antibody or anti-HLA-DR antibody, respectively). To test whether IFN-γ was exclusively induced in CD4 T cells, CD4 or CD8 T-cells were depleted from PBMC. Whereas CD8 T-cell depletion did not affect IFN-γ induction, CD4 T-cell depletion completely abrogated the WT1 9-mer peptide induced response (fig 2). CD4 T-cells responding to the WT1 9-mer peptide were indicated to be functional cytotoxic T-cells with an effector CD4 T-cell phenotype. Longitudinal analyses demonstrated the persistence and functionality of WT1 9-mer specific CD4 T-cells in PBMC of patients even at day 1368 after allogeneic HSCT. These data indicate for the first time that a TAA-derived 9-mer peptide can induce HLA class II-restricted CD4 T-cell responses. Vaccination with the characterized WT1 9-mer peptide can enhance the induction and maintenance of not only CD4 but also indirect CD8 T-cell responses. Considering that CD4 T-cells play an important role in tumor rejection, the possibility that other TAA-derived 9-mer peptides having the potential to induce CD4 T-cell responses should be explored in other settings of tumor immunology as well to improve vaccination strategies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 996-996
Author(s):  
Marvin M. van Luijn ◽  
Martine E.D. Chamuleau ◽  
James A. Thompson ◽  
Suzanne Ostrand-Rosenberg ◽  
Theresia M. Westers ◽  
...  

Abstract Abstract 996 Poster Board I-18 In patients with AML, the outgrowth of minimal residual disease (MRD) is considered as the major cause of relapse, whereby it is hypothesized that residual leukemic blasts are able to escape from immune surveillance. Since CD4+ T cells are critical for inducing effective anti-leukemic immunity, certain leukemic blasts might exhibit aberrant HLA class II antigen presentation that interferes with antigen-specific CD4+ T cell recognition. Increased binding of the class II-associated invariant chain self peptide (CLIP) to the HLA class II antigen-binding groove may thereby prevent the presentation of antigenic peptides. This study investigates both the clinical and functional role of CLIP expression on myeloid leukemic blasts. Blood and bone marrow samples from a cohort of 207 de novo AML patients were analyzed by flow cytometry for plasma membrane expression of CLIP and HLA-DR (DR). Significantly shortened disease-free and overall survival rates were found for patients with leukemic blasts characterized by a high amount of DR occupied by CLIP (relative CLIP amount). To explore the functional role of CLIP, we transduced blasts of the human Kasumi-1 and THP-1 myeloid leukemic cell lines with retroviral siRNAs specific for the Invariant Chain, a chaperone molecule that is critically involved in DR processing. Significant reductions in relative CLIP amount were found on blasts of both cell lines. Subsequently, CD4+ T cells derived from different healthy donors (n=3) were stimulated with either irradiated DR+CLIP- (Ii siRNA-treated) or DR+CLIP+ (wild type) THP-1 and Kasumi-1 blasts during mixed leukocyte reactions. In contrast to DR+CLIP+ blasts, DR+CLIP- blasts of both cell lines induced strong increases in allogeneic CD4+ T cell proliferation in a stimulator-to-responder dependent manner. To examine the effect of CLIP on CD4+ T cell induction in primary samples, we performed flow cytometric sorting experiments to select for CLIP- and CLIP+ leukemic blasts from different DR+ AML patients (n=5). CD4+ T cells collected from these same patients after achieving complete remission were isolated and stimulated with sorted CLIP- or CLIP+ leukemic blasts during four weeks of culture. In 2 of the 5 patients, marked proliferation of autologous remission CD4+ T cells stimulated with CLIP- leukemic blasts was observed in contrast to stimulation with CLIP+ leukemic blasts. In addition, in 4 of the 5 patients, flow cytometric analysis of CD4+ T cells showed that CLIP- leukemic blasts were able to induce both high CD25 and HLA-DR and low CD45RA and CD27 expression as compared to CLIP+ leukemic blasts, indicating increased activation of effector memory CD4+ T cells. Moreover, CD4+ T cells stimulated with CLIP- leukemic blasts also revealed strongly increased IFN-g/IL-4 ratios in contrast to CD4+ T cells stimulated with CLIP+ leukemic blasts, as determined by flow cytometry after PMA/ionomycin stimulation. This might imply skewing towards a more Th1 phenotype. In conclusion, these findings not only emphasize that the relative CLIP amount on leukemic blasts predicts clinical outcome, but also reveal that it is a critical factor for CD4+ T cell activation in AML. Hence, CLIP may serve as a target for immunomodulatory strategies to optimize HLA class II antigen presentation on AML whole-cell or DC vaccines and induce leukemia-specific CD4+ T cell immunity in patients. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 206 (10) ◽  
pp. 2111-2119 ◽  
Author(s):  
Ning Lu ◽  
Yi-Hong Wang ◽  
Yui-Hsi Wang ◽  
Kazuhiko Arima ◽  
Shino Hanabuchi ◽  
...  

Whether thymic stromal lymphopoietin (TSLP) directly induces potent human CD4+ T cell proliferation and Th2 differentiation is unknown. We report that resting and activated CD4+ T cells expressed high levels of IL-7 receptor a chain but very low levels of TSLP receptor (TSLPR) when compared with levels expressed in myeloid dendritic cells (mDCs). This was confirmed by immunohistology and flow cytometry analyses showing that only a subset of mDCs, with more activated phenotypes, expressed TSLPR in human tonsils in vivo. IL-7 induced strong STAT1, -3, and -5 activation and promoted the proliferation of naive CD4+ T cells in the presence of anti-CD3 and anti-CD28 monoclonal antibodies, whereas TSLP induced weak STAT5 activation, associated with marginally improved cell survival and proliferation, but failed to induce cell expansion and Th2 differentiation. The effect of TSLP on enhancing strong human T cell proliferation was observed only when sorted naive CD4+ T cells were cultured with mDCs at levels as low as 0.5%. TSLP could only induce naive CD4+ T cells to differentiate into Th2 cells in the presence of allogeneic mDCs. These results demonstrate that IL-7 and TSLP use different mechanisms to regulate human CD4+ T cell homeostasis.


Author(s):  
Fereshte Salami ◽  
Sahar Shariati ◽  
Seyed Erfan Rasouli ◽  
Samaneh Delavari ◽  
Marziyeh Tavakol ◽  
...  

Background: Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiencies. LPS-responsive beige-like anchor protein (LRBA) deficiency is a combined immunodeficiency characterized by a CVID-like phenotype. Affected patients by LRBA and CVID present a wide range of clinical manifestations, including hypogammaglobulinemia, recurrent infections, autoimmunity, as well as T cell abnormality. Methods: The study population comprised of patients with CVID (n=10), LRBA deficiency (n=11), and healthy controls (n=12). CD4+ T cell frequency and CD4 MFI (mean fluorescence intensity) were evaluated using flow cytometry before and after stimulation with PMA/ION. Results: The frequencies of CD4+ T cells were significantly lower in patients with LRBA deficiency than in HCs before and after treatment. In the unstimulated state, the CD4+ T cells frequency in CVID patients was significantly lower than in HCs. There were no statistically significant differences between patients and healthy individuals in CD4+ T cell proliferation. Compared to HCs, LRBA and CVID patients showed a lower CD4 MFI in unstimulated conditions. Furthermore, CD4 MFI decreased in both patients and the control group following activation. Conclusion : Despite the reported decrease in CD4+ T cell frequency in patients with CVID and LRBA deficiency, our findings demonstrated that their CD4+ T cells have a normal proliferative response to stimuli similar to healthy individuals.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3247-3247
Author(s):  
Anita N. Stumpf ◽  
Edith D. van der Meijden ◽  
Cornelis A.M. van Bergen ◽  
Roelof Willemze ◽  
J.H. Frederik Falkenburg ◽  
...  

Abstract Patients with relapsed hematological malignancies after HLA-matched hematopoietic stem cell transplantation (HSCT) can be effectively treated with donor lymphocyte infusion (DLI). Donor-derived T cells mediate beneficial graft-versus-leukemia (GvL) effect but may also induce detrimental graft-versus-host disease (GvHD). These T cell responses are directed against polymorphic peptides which differ between patient and donor due to single nucleotide polymorphisms (SNPs). These so called minor histocompatibility antigens (mHag) are presented by HLA class I or II, thereby activating CD8+ and CD4+ T cells, respectively. Although a broad range of different HLA class I restricted mHags have been identified, we only recently characterized the first autosomal HLA class II restricted mHag phosphatidylinositol 4-kinase type 2 beta (LB-PI4K2B-1S; PNAS, 2008, 105 (10), p.3837). As HLA class II is predominantly expressed on hematopoietic cells, CD4+ T cells may selectively confer GvL effect without GvHD. Here, we present the molecular identification of four new autosomal HLA class II restricted mHags recognized by CD4+ T cells induced in a patient with relapsed chronic myeloid leukemia (CML) after HLAmatched HSCT who experienced long-term complete remission after DLI with only mild GvHD of the skin. By sorting activated CD4+ T cells from bone marrow mononuclear cells obtained 5 weeks after DLI, 17 highly reactive mHag specific CD4+ T cell clones were isolated. Nine of these T cell clones recognized the previously described HLADQ restricted mHag LB-PI4K2B-1S. The eight remaining T cell clones were shown to exhibit five different new specificities. To determine the recognized T cell epitopes, we used our recently described recombinant bacteria cDNA library. This method proved to be extremely efficient, since four out of five different specificities could be identified as new HLA-class II restricted autosomal mHags. The newly identified mHags were restricted by different HLA-DR molecules of the patient. Two mHags were restricted by HLA-DRB1 and were found to be encoded by the methylene-tetrahydrofolate dehydrogenase 1 (LBMTHFD1- 1Q; DRB1*0301) and lymphocyte antigen 75 (LB-LY75-1K; DRB1*1301) genes. An HLA-DRB3*0101 restricted mHag was identified as LB-PTK2B-1T, which is encoded by the protein tyrosine kinase 2 beta gene. The fourth mHag LB-MR1-1R was restricted by HLA-DRB3*0202 and encoded by the major histocompatibility complex, class I related gene. All newly identified HLA class II restricted mHags exhibit high population frequencies of 25% (LB-MR1-1R), 33% (LB-LY75-1K), 68% (LB-MTHFD1- 1Q), and 70% (LB-PTK2B-1T) and the genes encoding these mHags show selective (LY- 75) or predominant (MR1, MTHFD1, PTK2B) expression in cells of hematopoietic origin as determined by public microarray databases. All T cell clones directed against the newly identified mHags recognized high HLA class II-expressing B-cells, mature dendritic cells (DC) and in vitro cultured leukemic cells with antigen-presenting phenotype. The clone recognizing LB-MTHFD1-1Q also showed direct recognition of CD34+ CML precursor cells from the patient. In conclusion, we molecularly characterized the specificity of the CD4+ T cell response in a patient with CML after HLA-matched HSCT who went into long-term complete remission after DLI. By screening a recombinant bacteria cDNA library, four new different CD4+ T cell specificities were characterized. Our screening method and results open the possibility to identify the role of CD4+ T cells in human GvL and GvHD, and to explore the use of hematopoiesis- and HLA class II-restricted mHag specific T cells in the treatment of hematological malignancies.


Blood ◽  
2009 ◽  
Vol 113 (3) ◽  
pp. 612-621 ◽  
Author(s):  
Mirko Paiardini ◽  
Barbara Cervasi ◽  
Jessica C. Engram ◽  
Shari N. Gordon ◽  
Nichole R. Klatt ◽  
...  

AbstractBone marrow (BM) is the key hematopoietic organ in mammals and is involved in the homeostatic proliferation of memory CD8+ T cells. Here we expanded on our previous observation that BM is a preferential site for T-cell proliferation in simian immunodeficiency virus (SIV)–infected sooty mangabeys (SMs) that do not progress to AIDS despite high viremia. We found high levels of mature T-cell proliferation, involving both naive and memory cells, in healthy SMs and rhesus macaques (RMs). In addition, we observed in both species that lineage-specific, BM-based T-cell proliferation follows antibody-mediated in vivo CD4+ or CD8+ T-cell depletion, thus indicating a role for the BM in maintaining T-cell homeostasis under depleting circumstances. We also observed that, in SIV-infected SMs, but not RMs, the level of proliferation of BM-based CD4+ T cells is higher than that of circulating CD4+ T cells. Interestingly, limited BM-based CD4+ T-cell proliferation was found in SIV-infected SMs with low CD4+ T-cell counts, suggesting a regenerative failure in these animals. Collectively, these results indicate that BM is involved in maintaining T-cell homeostasis in primates and suggest a role for BM-based CD4+ T-cell proliferation in determining the benign nature of natural SIV infection of SMs.


2010 ◽  
Vol 277 (1701) ◽  
pp. 3773-3781 ◽  
Author(s):  
Ming Liang Chan ◽  
Janka Petravic ◽  
Alexandra M. Ortiz ◽  
Jessica Engram ◽  
Mirko Paiardini ◽  
...  

Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections result in chronic virus replication and progressive depletion of CD4+ T cells, leading to immunodeficiency and death. In contrast, ‘natural hosts’ of SIV experience persistent infection with high virus replication but no severe CD4+ T cell depletion, and remain AIDS-free. One important difference between pathogenic and non-pathogenic infections is the level of activation and proliferation of CD4+ T cells. We analysed the relationship between CD4+ T cell number and proliferation in HIV, pathogenic SIV in macaques, and non-pathogenic SIV in sooty mangabeys (SMs) and mandrills. We found that CD4+ T cell proliferation was negatively correlated with CD4+ T cell number, suggesting that animals respond to the loss of CD4+ T cells by increasing the proliferation of remaining cells. However, the level of proliferation seen in pathogenic infections (SIV in rhesus macaques and HIV) was much greater than in non-pathogenic infections (SMs and mandrills). We then used a modelling approach to understand how the host proliferative response to CD4+ T cell depletion may impact the outcome of infection. This modelling demonstrates that the rapid proliferation of CD4+ T cells in humans and macaques associated with low CD4+ T cell levels can act to ‘fuel the fire’ of infection by providing more proliferating cells for infection. Natural host species, on the other hand, have limited proliferation of CD4+ T cells at low CD4+ T cell levels, which allows them to restrict the number of proliferating cells susceptible to infection.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Sebastien Hagmann ◽  
Claudia Rimmele ◽  
Florin Bucur ◽  
Thomas Dreher ◽  
Felix Zeifang ◽  
...  

Introduction. The participation of an inflammatory joint milieu has been described in osteoarthritis (OA) pathogenesis. Mesenchymal stromal cells (MSCs) play an important role in modulating inflammatory processes. Based on previous studies in an allogeneic T-cell coculture model, we aimed at further determining the role of synovial MSCs in OA pathogenesis.Methods. Bone-marrow (BM) and synovial membrane (SM) MSCs from hip joints of late stage OA patients and CD4+ T-cells from healthy donors were analysed regarding surface marker expression before and after coculture. Proliferation upon CD3/CD28 stimulation and cytokine analyses were compared between MSCs.Results. SM-MSCs differed from BM-MSCs in several surface markers and their osteogenic differentiation potential. Cocultures of both MSCs with CD4+ T-cells resulted in recruitment of CD45RA+ FoxP3+ regulatory T-cells. Upon stimulation, only SM-MSCs suppressed CD4+ T-cell proliferation, while both SM-MSCs and BM-MSCs modified cytokine profiles through suppressing IL-2 and TNF-αas well as increasing IL-6 secretion.Conclusions. Synovial MSCs from OA joints are a unique fraction that can be distinguished from their bone-marrow derived counterparts. Their unique ability to suppress CD3/CD28 induced CD4+ T-cell proliferation makes them a potential target for future therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document