CD19-Redirected Cytotoxic T Cells Prevent Engraftment of Primary Human Leukemia Cells In Vivo.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3025-3025
Author(s):  
Silke Landmeier ◽  
Bianca Altvater ◽  
Sibylle Pscherer ◽  
Jutta Meltzer ◽  
Josef Vormoor ◽  
...  

Abstract Abstract 3025 Poster Board II-1001 Due to its restriction to the B-cell lineage and high surface expression in B-cell malignancies, CD19 is an attractive target antigen for immunological strategies in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). While preclinical in vivo studies of CD19-specific cellular immunotherapy have generally used xenografts from human CD19+ leukemia cell lines, primary leukemia cells are likely to more closely mimic the disease in humans and allow to differentiate between standard and high risk situations. Therefore, we investigated the in vivo sensitivity of human leukemic bone marrow to adoptive immunotherapy with gene-modified CD19-specific T cells. Among 15 primary leukemias obtained from the bone marrow of pediatric patients at diagnosis, 10 were successfully engrafted in NOD/scid mice by intrafemoral injection within 6 to 20 weeks. For therapeutic experiments, we focused on one standard risk leukemia, characterized by a rapid and sustained response to multiagent chemotherapy, and on a leukemia bearing the high-risk feature of an MLL rearrangement, which was refractory to standard treatment. Titration experiments demonstrated reliable engraftment of 1×104 leukemic cells per mouse. For CD19-directed T-cell therapy, cytotoxic T cells (CTLs) with native specificity for Epstein-Barr virus antigens were expanded from 4 healthy donors and transduced to express either a codon-optimized CD19-specific chimeric antigen receptor (CAR) containing the intracellular signaling domain of the TCRz chain (CD19-z), or a control CAR directed against the neuroectodermal antigen GD2 (14.G2a-z). Costimulatory domains now commonly used to ensure sustained T-cell activation via CARs were not included, since previous studies have shown that CAR activity in virus-specific CTLs does not benefit from additional signaling elements. CTLs had a uniform CD8+ effector memory T-cell phenotype (CD45RO+, CCR7-), and CAR surface expression was 73±21%, range 32-93% (CD19-z, n=9) and 18±13%, range 6-35% (14.G2a-z, n=5). In vitro cytotoxicity experiments confirmed specific lysis of the CD19+ leukemia cell lines REH (51Cr release 59.7±7.2% at an effector target ratio of 20:1) and SupB15 (66.7±8.6) as well as primary CD19+ leukemic cells from 5 pediatric patients (47.2±13.2%), in the absence of background lysis by 14.G2a-z-transduced control CTLs. 1×104 leukemic cells per mouse from primary engrafted mice were transferred into further cohorts of NOD/scid mice by secondary intrafemoral transplantation, followed by adoptive transfer of 4 doses of 5×106 CTLs via tail vein injection on days 1, 4, 8, and 11. IL-2 (500 IU/mouse) was administered twice-weekly, and sequential murine bone marrow aspirates were analyzed for human leukemia engraftment by flow cytometry using human CD45 and CD19-specific antibodies starting 3 weeks after transplantation. CD19z CTLs prevented engraftment of the standard risk leukemia in 3 of 4 mice, while 3 of 4 control mice developed the leukemia (p = 0.158, Log Rank/Mantel-Cox Test). Moreover, while the MLL-rearranged human leukemia became detectable in the bone marrow of 4 of 5 control mice, followed by overt and fatal leukemia, 5 of 8 mice receiving transfusions of CD19-z transduced CTLs remained disease-free (p = 0.067), and 6 of 8 remained alive, one of them with detectable leukemia cells (p = 0.054) (see Figure). Thus, adoptive transfer of CD19-redirected CTLs efficiently delayed or prevented engraftment of both standard and high risk ALLs in mice and therefore provides a promising treatment option for patients with BCP-ALL refractory to standard treatment. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1633-1633 ◽  
Author(s):  
Xun Lai ◽  
Jian-Qiong Liu ◽  
Lujia Dong ◽  
Hong-Mei Ou-Yang ◽  
Zi-Jin Dian ◽  
...  

Abstract Background: CD19-targeted chimeric antigen receptor (CAR) T cell treatment has emerged as a highly effective therapy in patients with refractory B cell acute lymphoblastic leukemia (B-ALL). Despite obvious successes, there have been documented relapses in which CAR T cells are still present but the leukemia cells have lost CD19 surface epitopes. In this study, we aim to investigate these patients and characterize their leukemic cell clones. Methods: As part of a multi-center trial, this single-arm, phase I trial enrolled 10 patients between March 2015 and June 2016 based on the following criteria: poor physical condition, chemotherapy resistance, and lack of suitable donor. Following salvage chemotherapy, peripheral lymphocytes were collected from leukapheresis, and T cells were transduced with a 4th generation, safety-engineered, CD19scFv/CD28/CD137/CD27/ CD3zeta lentivector. The pre-infusion lymphodepleting chemotherapy conditioning is cyclophosphamide 800mg/m2 x 3 days, followed by infusions at a dose of 2.13 (range from 0.42 - 5.9) x106 4SCAR19 T cells per kg body weight . Patients who achieved complete remission (CR) but later relapsed received chemotherapy of VDP (vincristine 1.4mg/m2 d1,8,15,22, daunomycin 40mg/m2 d1,8,15,22, prednison 40mg/m2d1-28) regimen. CD19-negative relapsed patients were assessed by surface immunophenotyping, cytoplasm immunophenotyping ,bone marrow biopsy and immunohistochemistry staining, T cell receptor(TCR) and immunoglobulin heavy chain (IgH) rearrangement analysis. Results and Discussion: Total 10 patients received 4SCAR19 treatment and 7 achieved CR. Following CR, 5 relapsed, including 3 CD19 positive and 2 CD19 negative relapses. Surface marker analysis showed that the CD19-negative relapsed leukemia cells displayed altered surface immunophenotype different from the original CD19-positive leukemia cells. Comparing the leukemia cells of the two CD19-negative relapsed patients by immunophenotype analysis for CD19,CD10,CD34,and CD79a, the CD10 surface expression in one of the two CD19-negative leukemia cells was down-regulated from 90% to 10%, but cytoplasmic CD10 expression remained at 90% which was confirmed by immunohistochemical staining of bone marrow biopsy. The CD10 expression profile, however, did not alter in the other CD19-negative leukemia cells. The loss of surface CD19 expression was coupled with the loss of cytoplasm CD19 as determined by intracellular flow cytometry and immunohistochemical staining; however, the nuclear PAX-5 expression was positive. Another B-ALL index ,the IgH rearrangement was examined by multiplex PCR and their original clonal identify was confirmed. It is thus conceivable that the CD19 negative relapsed leukemia cells were associated with escape variants rather than selection of de novo leukemia clones following 4SCAR19 therapy. From the diverse immune phenotype of the CD19 negative relapsed leukemia cells, it should be feasible to select another surface epitope(s) as target(s) for CAR T therapy. Importantly, after CAR T therapy, the two CD19-negative relapsed patients responded to chemotherapy and achieved CR again. However, the three CD19-positive relapsed patients experienced inferior chemotherapy outcomes. These results suggest that chemo-sensitivity could be re-established after CD19-negative relapse following 4SCAR19 therapy. Other studies have found that CD19 mutations in CAR T-treated leukemic cells could result in the loss of PI3K and SFTK signaling, and further, altered signaling pathways such as p53 and PTEN mutations have been shown to contribute to chemo-resistance of leukemic cells. The forced pathway alteration in the CD19-negative leukemic clones after CAR T treatment could involve one of these pathways, and further investigation is warranted. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 94 (10) ◽  
pp. 3531-3540 ◽  
Author(s):  
Angelo A. Cardoso ◽  
J. Pedro Veiga ◽  
Paolo Ghia ◽  
Hernani M. Afonso ◽  
W. Nicholas Haining ◽  
...  

We have previously shown that leukemia-specific cytotoxic T cells (CTL) can be generated from the bone marrow of most patients with B-cell precursor acute leukemias. If these antileukemia CTL are to be used for adoptive immunotherapy, they must have the capability to circulate, migrate through endothelium, home to the bone marrow, and, most importantly, lyse the leukemic cells in a leukemia-permissive bone marrow microenvironment. We demonstrate here that such antileukemia T-cell lines are overwhelmingly CD8+ and exhibit an activated phenotype. Using a transendothelial chemotaxis assay with human endothelial cells, we observed that these T cells can be recruited and transmigrate through vascular and bone marrow endothelium and that these transmigrated cells preserve their capacity to lyse leukemic cells. Additionally, these antileukemia T-cell lines are capable of adhering to autologous stromal cell layers. Finally, autologous antileukemia CTL specifically lyse leukemic cells even in the presence of autologous marrow stroma. Importantly, these antileukemia T-cell lines do not lyse autologous stromal cells. Thus, the capacity to generate anti–leukemia-specific T-cell lines coupled with the present findings that such cells can migrate, adhere, and function in the presence of the marrow microenvironment enable the development of clinical studies of adoptive transfer of antileukemia CTL for the treatment of ALL.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
L. I. Nagy ◽  
L. Z. Fehér ◽  
G. J. Szebeni ◽  
M. Gyuris ◽  
P. Sipos ◽  
...  

Combination therapy of bortezomib with other chemotherapeutics is an emerging treatment strategy. Since both curcumin and bortezomib inhibit NF-κB, we tested the effects of their combination on leukemia cells. To improve potency, a novel Mannich-type curcumin derivative, C-150, was synthesized. Curcumin and its analogue showed potent antiproliferative and apoptotic effects on the human leukemia cell line, HL60, with different potency but similar additive properties with bortezomib. Additive antiproliferative effects were correlated well with LPS-induced NF-κB inhibition results. Gene expression data on cell cycle and apoptosis related genes, obtained by high-throughput QPCR, showed that curcumin and its analogue act through similar signaling pathways. In correlation with in vitro results similar additive effect could be obsereved in SCID mice inoculated systemically with HL60 cells. C-150 in a liposomal formulation given intravenously in combination with bortezomib was more efficient than either of the drugs alone. As our novel curcumin analogue exerted anticancer effects in leukemic cells at submicromolar concentration in vitro and at 3 mg/kg dose in vivo, which was potentiated by bortezomib, it holds a great promise as a future therapeutic agent in the treatment of leukemia alone or in combination.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1015-1022 ◽  
Author(s):  
EA Machado ◽  
DA Gerard ◽  
CB Lozzio ◽  
BB Lozzio ◽  
JR Mitchell ◽  
...  

Abstract To study the influence of a biologic environment on cultured human leukemia cells, KG-1, KG-1a, and HL-60 cells were inoculated subcutaneously into newborn nude mice. The cells developed myelosarcomas at the site of inoculation and in lungs and kidneys. KG-1 and HL-60 myelosarcomas were successfully passaged through adult nude mice, whereas KG-1a tumors proliferated only after transplantation into newborn hosts. The human nature of the cells forming myelosarcomas in mice was assessed by chromosomal analyses and detection of cross- reactivity with an antibody to the human leukemia cell line K562. We undertook electron microscopic and cytochemical examinations of the cells proliferating in vitro and in the mice. The granules of KG-1 cells in vivo did not react for acid phosphatase, as observed in vitro, and the HL-60 cells proliferating in mice lost the perinuclear myeloperoxidase (MPO) demonstrated in cultured cells. Although the influence of an in vivo selection of cell subpopulations cannot be ruled out, the enzymatic changes are compatible with induced cell differentiation. Conclusive evidence of differentiation in vivo was observed in the KG-1a cell subline. The undifferentiated KG-1a blasts developed cytoplasmic granules and synthesized MPO during proliferation in vivo. These observations indicate that human leukemia cells from established cell lines proliferate in nude mice and may acquire new differentiated properties in response to the in vivo environment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1346-1346
Author(s):  
James W Behan ◽  
Jason P Yun ◽  
Marina P Proektor ◽  
Ehsan A Ehsanipour ◽  
Anna Butturini ◽  
...  

Abstract We have previously shown that obesity is an independent predictor of leukemia relapse in children. We have also shown that obese mice transplanted with syngeneic leukemia cells have poorer survival after chemotherapy, even when they are dosed proportional to body weight. Since interactions between leukemia cells and cells of the bone marrow niche are considered important for chemotherapy resistance and relapse, and adipocytes can comprise ~50% of the bone marrow niche, we developed in vivo and in vitro models to investigate the role of adipocytes in the leukemia microenvironment. Obese C57Bl/6J mice were transplanted with GFP+ murine preB cell ALL (“8093”) cells and then treated with vincristine (0.5 mg/kg/week × 3 weeks). At the time of relapse, we found that GFP+ leukemia cells persisted in the fat pads of the mice. We then developed an in vitro co-culture system in which human or murine leukemia cells were cultured together with adipocytes (differentiated 3T3-L1s). Undifferentiated 3T3-L1 cells, which are fibroblastic in nature, were used as a control. In this model, adipocytes severely diminished the anti-leukemic effect of all chemotherapeutics tested against murine 8093 cells, including vincristine, dexamethasone, nilotinib, daunorubicin, and L-asparaginase. Adipocytes also protected murine T-cell ALL and human SD-1, RCH-ACV, and BV173 cells from vincristine and daunorubicin. Adipocyte protection of leukemia cells occurred independent of cell contact. Further experiments demonstrated that media conditioned by adipocytes was able to protect 8093 cells from a 3-day exposure to 25 nM dexamethasone (viable cells were at 40±12% of their plated value in regular media, 66±17% in fibroblast-conditioned media, and 109±24% in adipocyte-conditioned media, p<0.05). Surprisingly, adipocyte-conditioned media did not protect leukemia cells from daunorubicin. However, media conditioned by the presence of both adipocytes and leukemia cells simultaneously conferred a high degree of resistance to the leukemia cells (n=3, p<0.05 compared to all other media types). In summary, adipose tissue is a reservoir for relapsed leukemia cells in vivo. Adipocytes engender protection from multiple chemotherapies in murine and human leukemia cell lines. Adipocytes secrete factor(s) that confer dexamethasone and daunorubicin resistance to leukemia cells, though for the latter drug it appears that a two-way communication between leukemia and adipocytes may be necessary for this protection. Figure Figure


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2587-2587 ◽  
Author(s):  
Chad R Burk ◽  
William Fix ◽  
Haiying Qin ◽  
Terry J Fry

Abstract Abstract 2587 Background: Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy and, despite tremendous success in therapy over the past 3 decades, remains a primary cause of cancer-related mortality in children. Enthusiasm for the use cellular immunotherapy for ALL has been tempered by the poor response to donor lymphocyte infusions following allogeneic hematopoietic stem cell transplantation. However, ALL blasts are susceptible to T cell and NK cell mediated lysis in vitro suggesting that poor response to in vivo immune interventions may be due to events occurring during the priming of the immune response. Using a murine model of precursor B cell ALL we examined the impact of leukemia progression on T cells in vivo. Methods: We developed a transplantable syngeneic model of pediatric ALL derived from transgeneic mice expressing human E2aPBX1, a recurring translocation present in 5% of pediatric leukemia (Bijl et al, Genes and Development, 2005). This murine line displays a precursor B cell phenotype and results in 100% lethality following injection of 100,000 cells (Qin et al, ASH, 2010). Using congenic (CD45.1) B6 recipients, we tracked the early progression of ALL in vivo and examined the T cells in the leukemia-containing compartments by flow cytometry and PCR. Results: Using congenic markers, ALL cells can be detected in bone marrow as early as 3 days following intravenous injection of 1,000,000 cells with a sensitivity of 0.01%. Spleen and lymph node involvement was seen later (10 days) followed by the detection of circulating blasts by 2 weeks. E2aPBX1 cells express variable levels of costimulatory molecules in vitro with no change in expression during in vivo progression. Notably, PDL1 and PDL2 are expressed both in vitro and in vivo at higher levels than on non-malignant precursor B cells in leukemia-bearing mice. Remarkably, although PD1+ T cells are not seen in the bone marrow of non-leukemia-bearing mice, PD1 expression on bone marrow T cells was markedly increased during progression such that 60–80% of all bone marrow CD4 and CD8 T cells were positive by 2 weeks following leukemia injection (figure). In addition to expression of PD1, these T cells also co-expressed Tim3, a phenotype associated with T cell exhaustion. Blockade of PD1 or PDL1 starting 3 days following leukemia injection had no impact on leukemia progression. However, combining PD1 blockade with the adoptive transfer of T cells from leukemia-primed donors resulted in improved survival compared to primed T cells alone (p=0.0004). Conclusions: Early progression of ALL results in the induction of PD1 and Tim3 on T cells in vivo. Combination of PD1 blockade plus adoptive T cell therapy results in therapeutic benefit suggesting that this axis may be an attractive target in ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1890-1890
Author(s):  
Shen Sylvie ◽  
Ning Xu ◽  
Guy Klamer ◽  
Tracey O'Brien ◽  
Alla Dolnikov

Abstract Abstract 1890 Stem cell transplantation has become a widely used procedure in the treatment of haematological and non-haematological clinical disorders. Unfortunately, cure is often hampered by relapse of the underlying disease, graft-versus-host disease (GVHD), or severe opportunistic infections. Slow T-cell reconstitution is regarded as primarily responsible for infections, GVHD, and relapse, therefore, enhancing immune reconstitution is important. Glycogen synthase kinase-3β (GSK3β) was recently identified as an important regulator of T cell function acting through the Wingless (Wnt) pathway. The effect of in vivo administration of GSK3β inhibitor 6-Bromoindirubin 3'-oxime (BIO) was examined in a humanised mouse model. Mice transplanted with highly purified cord blood CD34+ stem cells demonstrated efficient multilineage reconstitution including myeloid, B and T cell lymphoid compartments. The presence of human CD4 and CD8 single positive human T cells was abundant in peripheral blood (PB). De novo generated T cells exhibited low CD31 expression in the naïve CD4+ T cells suggesting prolonged post-thymic proliferative history of these cells. This is not completely surprising considering that graft recipient mice are characterized by impaired thymopoiesis following irradiation. Human T cells at various stages of differentiation including late effector T cells were recorded by detecting the expression of CD62L, CD45RA and CD45RO. Late memory T cell skewing was observed in PB and spleen of graft recipient mice. Activation of human T cells expressing CD25 was registered in the spleen, however, the recipients of the graft did not exhibit any signs of GVHD suggesting normal positive and negative selection occurring in the thymus during human T cell development in this mouse model. Human T cells isolated from the spleen of transplanted mice exhibited strong proliferative responses to mitogenic and allogeneic stimulation, however, they did not demonstrated any CTL activity tested following vaccination with human leukaemia U937 cells. In vivo administration of GSK3β inhibitor promoted T cell reconstitution in mice transplanted with human CD34+haematopoietic progenitor cells. Per cell output of T cells from CD34+ and CD34+CD38- primitive bone marrow (BM) progenitor cells was higher in BIO-treated mice while CD19+ B cell output was reduced suggesting T-cell developmental skewing in expense of B cell development. In vitro analysis of CD34+ progenitor cells co-cultured with bone marrow stroma MS5 cells has demonstrated inhibited B-cell development following BIO-treatment. CD31 expression in naïve CD4+ T cells was not up-regulated by BIO suggesting that GSK3β inhibition does not act to increase thymic output of T cells. GSK3β inhibition also increased naïve/memory T cell ratio in reconstituted mice. A similar effect was observed in mice transplanted with mature cord blood (CB)-derived T cells. delayed naive to memory T cell transition is likely related to decreased T cell activation and proliferation demonstrated ex vivo. BIO reduced IFNγ and TNFα production in human T cells. BIO increased naïve T cell production in mitogenically stimulated T cells and in mixed lymphocyte cultures. GSK3β inhibition preserved naïve T cell gene expression profile and suppressed the expression of genes activated during effector T cell differentiation. BIO actrivated β-catenin sigbnaling and up-regulated IL7Rα expression. IL7 signalling prevents activated T cell death following effector differentiation suggesting that the mechanism triggered by BIO may act through the inhibition of activated T cell death. In addition, BIO down-regulated negative regulator of IL7Rα SOCS1 as well as CTLA4 and PDCD1 both up-regulated during effector differentiation. Thus clinically GSK3β inhibition acting to prevent late memory T cell skewing and preserving a subset of naïve T cells may increase T cell diversity and improve T cell responses in the recipients of CB transplant particularly in adult patients with impaired thymic function. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (6) ◽  
pp. e001514
Author(s):  
Concetta Quintarelli ◽  
Marika Guercio ◽  
Simona Manni ◽  
Iolanda Boffa ◽  
Matilde Sinibaldi ◽  
...  

Chimeric antigen receptor T-cells (CAR T-cells) for the treatment of relapsing/refractory B-cell precursor acute lymphoblastic leukemia have led to exciting clinical results. However, CAR T-cell approaches revealed a potential risk of CD19-/CAR+ leukemic relapse due to inadvertent transduction of leukemia cells.BackgroundMethodsWe evaluated the impact of a high percentage of leukemia blast contamination in patient-derived starting material (SM) on CAR T-cell drug product (DP) manufacturing. In vitro as well as in vivo models were employed to identify characteristics of the construct associated with better profile of safety in case of inadvertent B-cell leukemia transduction during CAR T-cell manufacturing.ResultsThe presence of large amounts of CD19+ cells in SM did not affect the transduction level of DPs, as well as the CAR T-cell rate of expansion at the end of standard production of 14 days. DPs were deeply characterized by flow cytometry and molecular biology for Ig-rearrangements, showing that the level of B-cell contamination in DPs did not correlate with the percentage of CD19+ cells in SM, in the studied patient cohort. Moreover, we investigated whether CAR design may affect the control of CAR+ leukemia cells. We provided evidences that CAR.CD19 short linker (SL) prevents complete epitope masking in CD19+CAR+ leukemia cells and we demonstrated in vitro and in vivo that CD19 +CAR(SL)+leukemic cells are killed by CAR.CD19 T-cells.ConclusionsTaken together, these data suggest that a VL-VH SL may result in a safe CAR-T product, even when manufacturing starts from biological materials characterized by heavy contamination of leukemia blasts.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4221-4221
Author(s):  
Hiroaki Asai ◽  
Hiroshi Fujiwara ◽  
Toshiki Ochi ◽  
Yukihiro Miyazaki ◽  
Fumihiro Ochi ◽  
...  

Abstract Abstract 4221 Background & Purpose: Recent findings regarding leukemia stem cell (LSC) have emphasized the importance of suppression of LSC for the achievement of durable remission, the first requisite to establish cure of leukemia. For this subject, successful graft-vs.-leukemia (GvL) effect in allogeneic hematopoietic stem cell transplantation (allo-HSCT) against human leukemias has strongly illustrated the importance of anti-leukemia immunity. Additionally, WT1, one of well-known leukemia-associated antigens, has been obviously demonstrated to be expressed by LSCs in bone marrow niche (Saito Y et al, Sci Transl Med.2010). On the other hand, cell-cycle quiescence of LSCs in bone marrow niche is importantly implicated in their chemoresistance. Taking all above, in this study, we set out to answer questions whether therapeutically adopted T-cell immunity towards WT1 enabled to suppress LSC in vivo, and whether cell-cycle status of leukemia cells affected the sensitivity to cyotocidal activity mediated by WT1-specific cytotoxic T cells (CTLs). Methods: Approval for this study was obtained from the Institutional Review Board of Ehime University Hospital. Written informed consent was given by all patients, healthy volunteers in accordance with the Declaration of Helsinki. Peripheral CD8+ T cells obtained from AML or ALL patients in complete remission (CR) or healthy individuals were gene-modified to express HLA-A*2402-restricted and WT1235–243 nonamer -specific T-cell receptor (TCR) using our unique TCR-a/b gene expression vector carrying silencers for endogenous TCRs (WT1-siTCR vector) were generated as effector cells. Bone marrow CD34+ leukemia (L-BMCD34+) cells isolated using immunomagnetic beads from HLA-A*2402 positive or negative patients with AML or ALL were serially transplanted into NOD/scid/γcnull (NOG) mice as previously reported (Ochi T et al. Blood, 2011). 12 weeks later, engrafted leukemia cells in murine bone marrow were examined using a flowcytometry. In some experiments, after engrafted, first transplanted mice were treated with intraperitoneal administration of high dose (150mg/kg) of cytosine arabinoside (Ara-C). A week later, those mice received intravenous administration of gene-modified autologous CD8+ T cells to express WT1-specific TCR or non-gene-modified (NGM) ones in combination with intraperioneal administration of 500u of IL-2 every 2 days. A week after therapeutic T-cell infusion, bone marrow cells were harvested, and transplantation into second mice. 12 weeks later, engrafted human leukemia cells in murine bone marrow were assessed. Next, using a time-lapse photo assay and fluorescent ubiqutination-based cell-cycle indicator (Fucci)-labeled K562-A24 cells which are known to produce high amounts of WT1 mRNA and are positive for HLA-A*2402, we directly assessed the impact of cell-cycle status of leukemia cells on their sensitivity to redirected CTL towards WT1 in vitro. Results: Using isolated L-BMCD34+ cells, LSCs were detectable as leukemia initiating cell in serially transplanted NOG mice. High dose of Ara-C treatment alone was unable to eradicate LSCs. An experiment using samples from a patient with HLA-A*2402+ ALL revealed that intravenously infused gene-modified autologous peripheral CD8+ T cells in CR successfully reduced leukemia burden in bone marrow which were refractory to high dose of Ara-C. In serial transplantation experiments using samples from AML patients, therapeutic infusion of redirected CD8+ T cells to express WT1-specific TCR, but not NGM ones in nadir state successfully eradicated LSCs out of murine bone marrow. In vitro time-lapse photo assay directly illustrated that retargeted CD8+T cells towards WT1 killed fucci-labeled K562-A24 cells irrelevantly to cell-cycle status of target leukemia cells. Summary: In this study, when leukemia mass burden was reduced, therapeutically infused gene-modified CD8+ T cells targeting WT1 successfully enabled to inhibit LSCs in vivo. Furthermore cell-cycle status of leukemia cells which is importantly implicated in their chemoresistance in bone marrow niche, did not affect WT1-specific cytocidal activity mediated by genetically redirected CTLs at all. Although it is preliminary, our observation encourages us to actively introduce redirected T cell-based antileukemia adoptive immunotherapy, aiming at a cure of leukemias. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 216 (5) ◽  
pp. 1038-1049 ◽  
Author(s):  
Marine Cazaux ◽  
Capucine L. Grandjean ◽  
Fabrice Lemaître ◽  
Zacarias Garcia ◽  
Richard J. Beck ◽  
...  

CAR T cells represent a potentially curative strategy for B cell malignancies. However, the outcome and dynamics of CAR T cell interactions in distinct anatomical sites are poorly understood. Using intravital imaging, we tracked interactions established by anti-CD19 CAR T cells in B cell lymphoma–bearing mice. Circulating targets trapped CAR T cells in the lungs, reducing their access to lymphoid organs. In the bone marrow, tumor apoptosis was largely due to CAR T cells that engaged, killed, and detached from their targets within 25 min. Notably, not all CAR T cell contacts elicited calcium signaling or killing while interacting with tumors, uncovering extensive functional heterogeneity. Mathematical modeling revealed that direct killing was sufficient for tumor regression. Finally, antigen-loss variants emerged in the bone marrow, but not in lymph nodes, where CAR T cell cytotoxic activity was reduced. Our results identify a previously unappreciated level of diversity in the outcomes of CAR T cell interactions in vivo, with important clinical implications.


Sign in / Sign up

Export Citation Format

Share Document