Blood Flow Is Required for the Release of Hematopoietic Stem- and Progenitor Cells From Hemogenic Endothelium in the Placenta.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 698-698
Author(s):  
Katrin E Rhodes ◽  
Ben Van Handel ◽  
Michele Wang ◽  
Yanling Wang ◽  
Akanksha Chhabra ◽  
...  

Abstract Abstract 698 Hematopoietic stem cells (HSCs) are required for continuous blood cell production throughout life. HSCs emerge only within a short developmental time window during embryogenesis. Mounting evidence posits that HSCs arise directly from hemogenic endothelial cells during midgestation within the large arteries of the conceptus, which include the dorsal aorta, the umbilical and vitelline arteries and the chorioallantoic vessels of the placenta. However, the microenvironmental signals that mediate this temporally regulated process remain unclear. Here we examine, by using Ncx1−/− embryos that lack heartbeat and circulation, how blood flow imparts instructive cues that ensure proper HSC development. Immunostaining revealed that CD41+ hematopoietic cells, although present, were markedly decreased in Ncx1-/-placentas as compared to wild-type controls. Furthermore, mutant placentas evidenced large clusters of round CD31+ cells protruding into the lumens of the chorioallantoic vessels. Based on these data, we hypothesized that lack of blood flow may impede the generation of hematopoietic stem and progenitor cells (HS/PCs) and that the endothelial clusters represent hemogenic intermediates. FACS analysis and colony forming assays confirmed a dramatic reduction in the number of clonogenic progenitors in the placenta and the embryo proper of Ncx mutants, while the yolk sac was unaffected. However, HS/PC generation in the placenta and embryo could be rescued by culturing explants on OP9 stroma before plating in colony forming assays, verifying intact hematopoietic potential. To determine if the rescue observed was due to expansion of existing progenitors or generation of new HS/PCs, we sorted CD41medckit+hematopoietic progenitors and CD31+CD41− endothelial cells from hematopoietic tissues and co-cultured them on stroma. These experiments demonstrated that endothelial cells from placenta, embryo proper and yolk sac can generate HS/PCs following stroma stimulation, confirming the presence of hemogenic endothelium in these organs. Immunostaining of Ncx−/− placentas revealed that although the development of the arterio-venous vascular network was impaired, Notch1 signaling, required for both arterial specification and HSC development, was robust in cells of the endothelial clusters. Furthermore, positive staining for Runx1 and c-myb indicated that cells in the clusters had activated the hematopoietic program. Interestingly, electron microscopy demonstrated that cells in the clusters were tethered to each other via adherens junctions, a characteristic of endothelial cells. In addition, they also maintained high levels of Flk1, expressed VEGF and were actively proliferating, consistent with exposure to extended hypoxia. These data suggest that although cells in the clusters have initiated hematopoietic commitment, they are unable to down-regulate their endothelial identity and complete hematopoietic emergence, resulting in the formation of clusters of hemogenic intermediates. These results imply that cues imparted via circulation are required to complete the commitment to a hematopoietic fate from hemogenic endothelium. Data from co-culture experiments suggest that prolonged Notch1 signaling impairs hematopoietic emergence from hemogenic endothelial cells, and may account for the HSC emergence defect in the absence of blood flow. Overall, these data suggest that blood flow and circulating primitive red blood cells are critical components of the dynamic microenvironment necessary to both relieve the hypoxia required for the specification and proliferation of hemogenic endothelium and provide important mechanical and/or molecular signals required by HSCs to fully commit to the hematopoietic fate and complete emergence. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2362-2362
Author(s):  
Amelie Montel-Hagen ◽  
Ben Van Handel ◽  
Roberto Ferrari ◽  
Rajkumar Sasidharan ◽  
Tonis Org ◽  
...  

Abstract Abstract 2362 The endothelium in embryonic and extraembryonic hematopoietic tissues has the capacity to generate hematopoietic stem and progenitor cells (HS/PC). However, it is unknown how this unique endothelium is specified. Microarray analysis of endothelial cells from hematopoietic tissues of embryos deficient for the bHLH transcription factor Scl/tal1 revealed that Scl establishes a robust hematopoietic transcriptional program in the endothelium. Surprisingly, lack of Scl also induced an unexpected fate switching of the prospective hemogenic endothelium to the cardiac lineage. Scl deficient embryos displayed a dramatic upregulation of cardiac transcription factors and structural proteins within the yolk sac vasculature, resulting in the generation of spontaneously beating cardiomyocytes. Ectopic cardiac potential in Scl deficient embryos arose from endothelial-derived CD31+Pdgfrα+ cardiogenic progenitor cells (CPCs), which were present in all sites of HS/PC generation. Analysis of Runx1-deficient embryos revealed, that although Runx1 acts downstream of Scl during the emergence of definitive HS/PCs, it is not required for the suppression of the cardiac fate in the endothelium. The only wild type tissue that contained CD31+Pdgfrα+ putative CPCs was the heart, and this population was greatly expanded in Scl deficient embryos. Strikingly, endocardium in Scl−/− hearts also activated a robust cardiomyogenic transcriptional program and generated Troponin T+ cardiomyocytes both in vivo and in vitro. Although CD31+Pdgfrα+ CPCs from wild type hearts did not generate readily beating cells in culture, they produced cells expressing endothelial, smooth muscle and cardiomyocyte specific genes, implying multipotentiality of this novel CPC population. Furthermore, CD31+Pdgfrα+ CPCs were greatly reduced in Isl1−/− hearts, which fail to generate functional, multipotential CPCs. Lineage tracing using VE-cadherin Cre Rosa-YFP mouse strain demonstrated that, in addition to generating HS/PCs in hematopoietic tissues, endothelial cells are also the cell of origin for CD31+Pdgfrα+ CPCs in the heart. Together, these data suggest a broader role for embryonic endothelium as a potential source of tissue-specific stem and progenitor cells and implicate Scl/tal1 as an important regulator of endothelial fate choice. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 371-371
Author(s):  
Ryohichi Sugimura ◽  
Areum Han ◽  
Deepak Jha ◽  
Yi-Fen Lu ◽  
Jeremy A Goettel ◽  
...  

Abstract A variety of tissues can be differentiated from pluripotent stem cells (PSCs) in vitro through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors (TFs). Despite considerable effort, neither approach has yielded functional human hematopoietic stem cells (HSCs). Building upon recent evidence that HSCs derive from definitive hemogenic endothelium (HE), we performed morphogen-directed differentiation of human PSCs into HE followed by screening of 26 candidate HSC-specifying TFs for the capacity to promote multi-lineage hematopoietic engraftment in irradiated immune deficient murine hosts. From genomic PCR of engrafted cells, we recovered seven TFs (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, SPI1) that were sufficient to convert HE into hematopoietic stem and progenitor cells (HSPCs) that engraft GLY-A+ erythrocytes, CD33+ myeloid, CD15+ CD31+ neutrophils, CD19+ IgM+ B and CD3+ T cells in primary and secondary murine recipients for 12-14 weeks. Limiting dilution analysis indicated that the frequency of repopulating cells generated by this method was 1 in 4,707-15,029, lower than the frequency in CD34+ cord blood cells (1 in 1,819-5,173). Functional characterization of terminally differentiated cells demonstrated features of definitive erythropoiesis (expression of adult beta globin and enucleation). Engrafted neutrophils responded to cytokine stimuli by activation of myeloperoxidase. Human IgM and IgG could be detected in the serum of engrafted mice, and titers of ovalbumin specific antibody increased in response to protein immunization, indicating boostable immunity. T-cells responded to PMA/Ionomycin stimuli by activation of IFNγ, and sequencing of the T cell receptor revealed a broad clonotype diversity. Proviral integration analysis demonstrated derivation of myeloid and lymphoid progeny from common clones in secondary animals, indicating generation of self-renewing, multipotential HSC-like cells from PSCs. Mechanistically, the seven TFs induced HOXA target genes (LMO2, SOX4, MEIS1 and ID2); upregulated expression of homing-related genes (CXCR4, VLA5 and S1PR1); and enhanced the endothelial to hematopoietic transition (EHT), as indicated by a 2.4-fold induction of a RUNX1c-reporter. Our combined approach of morphogen-driven differentiation and TF-mediated cell fate conversion produced HSPCs from PSCs that hold promise for modeling hematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. SCI-40-SCI-40
Author(s):  
Hanna Mikkola

Abstract Abstract SCI-40 During development, the embryo needs to rapidly produce differentiated blood cells to provide oxygen for its survival and growth, as well as establish a pool of undifferentiated HSCs for lifelong hematopoiesis. These opposing goals are achieved by segregating fetal hematopoiesis into multiple waves that occur in distinct anatomical niches that promote either differentiation or “stemness”. However, it has been unclear which anatomical sites and cellular precursors give rise to the different hematopoietic waves, impeding our ability to study the regulatory mechanisms dictating the fate of these cells. Understanding the development of self-renewing HSCs in the embryo will be crucial for generating these cells in vitro from pluripotent cells for therapeutic purposes. Recent studies have verified that HSCs develop through a hemogenic endothelial intermediate. Using Ncx1−/− (sodium/calcium exchanger) mouse embryos that are unable to initiate heartbeat and circulation, we showed that multipotential myelo-lymphoid HSPCs can be generated in the embryo proper, the yolk sac and the placenta. This implies that hemogenic endothelium extends more broadly than previously thought, spanning from the major intra-embryonic arteries to extra-embryonic hematopoietic tissues. In order to understand how hemogenic endothelium is established, we defined genomewide target genes for Scl/Tal1, a bHLH transcription factor that initiates hematopoietic specification from mesoderm. Our studies indicate that Scl governs the divergence of multiple mesodermal fates, activating major hemato-vascular transcription factor networks required for the establishment of hemogenic endothelium and generation of HSCs, as well as repressing regulators of competing mesodermal fates. Imbalance in these mesodermal networks in Scl-deficient embryos results in complete loss of hematopoietic cells, impaired establishment of hemogenic endothelium and profound cardiac defects with disorganized endocardium and ectopic activation of myocardial and mesenchymal transcriptional networks. These studies reveal a much broader role for Scl than previously anticipated and delineates Scl as a master regulator of mesoderm specification that coordinates proper development of both the blood and circulatory systems. The intimate relationship between the development of these mesodermal organ systems was also evidenced through studies using the heartbeat deficient Ncx1−/− embryos, which revealed that blood flow is essential for the emergence of HSCs from hemogenic endothelium in the placenta and in the embryo. Interestingly, the development of the lineage-restricted progenitors in the yolk sac was not affected, thus providing a unique opportunity to investigate the mechanisms that regulate HSC development specifically. We show that in the absence blood flow, hemogenic precursors are unable to be released from hemogenic endothelium to circulation and accumulate in placental vasculature. Our studies suggest that shear forces and changes in oxygen tension prompted by circulating red cells are required for suppressing endothelial signaling pathways, releasing adherens junctions in hemogenic endothelium and completing the emergence of HSCs. These studies emphasize the highly dynamic nature of the embryonic hematopoietic microenvironments and pinpoint the requirement of the earliest embryonic blood cells for proper HSC development. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 768-768
Author(s):  
Jenna M. Frame ◽  
Kathleen E McGrath ◽  
Katherine H. Fegan ◽  
James Palis

Abstract Hematopoietic stem cells (HSCs) emerge from arterial vessels of the mouse embryo through a Runx1-dependent process of endothelial-to-hematopoietic transition beginning at embryonic day 10.5 (E10.5). This arterial endothelial-to-hematopoietic transition is known to require embryonic circulation as well as beta-catenin signaling within the endothelial precursor, known as hemogenic endothelium. However, embryonic survival is dependent on the earlier emergence of a robust wave of yolk sac-derived definitive erythro-myeloid progenitors (EMPs), which have unilineage as well as multilineage potential, including high-proliferative potential colony forming cell (HPP-CFC) potential (Palis et al., PNAS, 2001). Like HSCs, EMP specification is dependent on Runx1, suggesting that they also emerge from a hemogenic endothelial precursor. However, the spatial localization of EMPs in the yolk sac and the mechanisms governing their emergence are not well understood. To visualize emerging EMPs in the yolk sac, we performed whole-mount immunohistochemistry for Kit, which we have demonstrated to contain nearly all EMP potential at E9.5. Kit+ cells coexpress Runx1 and CD31, and a subset have a polygonal/endothelial morphology, appear integrated into the vascular network, and are associated with rounded Kit+ cells in clusters, features consistent with an endothelial-to-hematopoietic transition. However, unlike HSCs, which emerge from major embryonic arteries, clusters of EMPs are located in larger and smaller caliber vessels in branches of both the arterial and venous vasculature, which is spatially organized within the yolk sac. To determine if EMP emergence from the vasculature is dependent on embryonic blood flow, which is required for HSC emergence, we analyzed the yolk sacs of Ncx1-null embryos, which fail to initiate heart contractions and subsequently lack embryonic circulation. Despite the lack of vascular remodeling in these circulation-deficient yolk sacs, Ncx1-null EMPs displayed normal cluster morphology, including both polygonal and rounded kit+ cells, indicating the endothelial-to-hematopoietic transition can occur without the mechanical influence of blood flow. To address whether EMP formation is responsive to other developmental signals, we utilized a yolk sac explant culture to evaluate the propensity of hemogenic endothelial cells to commit to hematopoiesis ex vivo. Culture of intact E8.5 yolk sacs for 48 hours with the canonical Wnt ligand Wnt3a resulted in an increase in both day 6-7 colony forming cells and day 13-14 HPP-CFC when compared with control yolk sacs. Preliminary treatment with Dkk1 alone did not adversely affect colony-forming activity when compared with untreated yolk sacs, and potentiation of endogenous canonical Wnt signaling with HLY78 did not augment colony production, suggesting that low levels of endogenous Wnt ligands are produced ex vivo. Despite the positive effect of Wnt3a on whole yolk sacs, treatment of isolated E9.5 Kit+CD41+CD16/32+ EMPs with Wnt3a did not increase colony formation, suggesting that Wnt signaling augments progenitor production at, or prior to, the hemogenic endothelial stage. Preliminary results utilizing imaging flow cytometry demonstrated increased beta-catenin intensity within the nuclear region in E9.5 Kit+VE-Cadherin/AA4.1+ endothelium following Wnt3a treatment, suggesting that hemogenic endothelial cells in the yolk sac are Wnt responsive. Consistent with this finding, in vitro Wnt3a treatment on primary E8.5-9.5 VE-Cadherin/AA4.1+CD16/32- endothelial cells resulted in upregulation of the beta-catenin target gene Axin2. To address whether Wnt signaling is endogenously active in vivo, we analyzed E8.5-E9 yolk sacs of BAT-gal reporter mice (Maretto et al., PNAS, 2003), and visualized a subset of cells with endothelial morphology expressing LacZ. Taken together, these data support the concept that EMPs, like HSCs, emerge from hemogenic endothelium. Surprisingly, this earlier endothelial-to-hematopoietic transition in the yolk sac is not dependent on blood flow or an arterial identity. However, similar to HSC emergence, EMP emergence from hemogenic endothelium is positively regulated by canonical Wnt signaling. These data highlight the presence of spatially, temporally, and functionally heterogeneous populations of hemogenic endothelium in the mammalian conceptus. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 6 (3) ◽  
pp. 864-876 ◽  
Author(s):  
Jennifer L. Gori ◽  
Jason M. Butler ◽  
Balvir Kunar ◽  
Michael G. Poulos ◽  
Michael Ginsberg ◽  
...  

Science ◽  
2020 ◽  
Vol 370 (6521) ◽  
pp. 1186-1191
Author(s):  
Dionna M. Kasper ◽  
Jared Hintzen ◽  
Yinyu Wu ◽  
Joey J. Ghersi ◽  
Hanna K. Mandl ◽  
...  

Definitive hematopoietic stem and progenitor cells (HSPCs) arise from the transdifferentiation of hemogenic endothelial cells (hemECs). The mechanisms of this endothelial-to-hematopoietic transition (EHT) are poorly understood. We show that microRNA-223 (miR-223)–mediated regulation of N-glycan biosynthesis in endothelial cells (ECs) regulates EHT. miR-223 is enriched in hemECs and in oligopotent nascent HSPCs. miR-223 restricts the EHT of lymphoid-myeloid lineages by suppressing the mannosyltransferase alg2 and sialyltransferase st3gal2, two enzymes involved in protein N-glycosylation. ECs that lack miR-223 showed a decrease of high mannose versus sialylated sugars on N-glycoproteins such as the metalloprotease Adam10. EC-specific expression of an N-glycan Adam10 mutant or of the N-glycoenzymes phenocopied miR-223 mutant defects. Thus, the N-glycome is an intrinsic regulator of EHT, serving as a key determinant of the hematopoietic fate.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1234-1234
Author(s):  
Robert S Welner ◽  
Giovanni Amabile ◽  
Deepak Bararia ◽  
Philipp B. Staber ◽  
Akos G. Czibere ◽  
...  

Abstract Abstract 1234 Specialized bone marrow (BM) microenvironment niches are essential for hematopoietic stem and progenitor cell maintenance, and recent publications have focused on the leukemic stem cells interaction and placement within those sites. Surprisingly, little is known about how the integrity of this leukemic niche changes the normal stem and progenitor cells behavior and functionality. To address this issue, we started by studying the kinetics and differentiation of normal hematopoietic stem and progenitor cells in mice with Chronic Myeloid Leukemia (CML). CML accounts for ∼15% of all adult leukemias and is characterized by the BCR-ABL t(9;22) translocation. Therefore, we used a novel SCL-tTA BCR/ABL inducible mouse model of CML-chronic phase to investigate these issues. To this end, BM from leukemic and normal mice were mixed and co-transplanted into hosts. Although normal hematopoiesis was increasingly suppressed during the disease progression, the leukemic microenvironment imposed distinct effects on hematopoietic progenitor cells predisposing them toward the myeloid lineage. Indeed, normal hematopoietic progenitor cells from this leukemic environment demonstrated accelerated proliferation with a lack of lymphoid potential, similar to that of the companion leukemic population. Meanwhile, the leukemic-exposed normal hematopoietic stem cells were kept in a more quiescent state, but remained functional on transplantation with only modest changes in both engraftment and homing. Further analysis of the microenvironment identified several cytokines that were found to be dysregulated in the leukemia and potentially responsible for these bystander responses. We investigated a few of these cytokines and found IL-6 to play a crucial role in the perturbation of normal stem and progenitor cells observed in the leukemic environment. Interestingly, mice treated with anti-IL-6 monoclonal antibody reduced both the myeloid bias and proliferation defects of normal stem and progenitor cells. Results obtained with this mouse model were similarly validated using specimens obtained from CML patients. Co-culture of primary CML patient samples and GFP labeled human CD34+CD38- adult stem cells resulted in selective proliferation of the normal primitive progenitors compared to mixed cultures containing unlabeled normal bone marrow. Proliferation was blocked by adding anti-IL-6 neutralizing antibody to these co-cultures. Therefore, our current study provides definitive support and an underlying crucial mechanism for the hematopoietic perturbation of normal stem and progenitor cells during leukemogenesis. We believe our study to have important implications for cancer prevention and novel therapeutic approach for leukemia patients. We conclude that changes in cytokine levels and in particular those of IL-6 in the CML microenvironment are responsible for altered differentiation and functionality of normal stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 217-217
Author(s):  
Karin Golan ◽  
Aya Ludin ◽  
Tomer Itkin ◽  
Shiri Cohen-Gur ◽  
Orit Kollet ◽  
...  

Abstract Hematopoietic stem and progenitor cells (HSPC) are mostly retained in a quiescent, non-motile mode in the bone marrow (BM), shifting to a cycling, differentiating and migratory state on demand. How HSC replenish the blood with new mature leukocytes on a daily basis while maintaining a constant pool of primitive cells in the BM throughout life is not clear. Recently, we reported that the bioactive lipid Sphingosine 1-Phosphate (S1P) regulates HSPC mobilization via ROS signaling and CXCL12 secretion (Golan et al, Blood 2012). We hypothesize that S1P influences the daily circadian egress of HSPC and their proliferation. We report that S1P levels in the blood are increased following initiation of light at the peak of HSPC egress and are reduced towards the termination of light when circulating HSPC reach a nadir. Interestingly, mice with constitutively low S1P plasma levels due to lack of one of the enzymes that generates S1P (Sphingosine kinase 1), do not exhibit fluctuations of HSPC levels in the blood between day and night. We report that HSPC numbers in the BM are also regulated in a circadian manner. Unexpectedly, we found two different daily peaks: one in the morning, following initiation of light, which is accompanied by increased HSPC egress and the other at night after darkness, which is associated with reduced HSPC egress. In both peaks HSPC begin to cycle and differentiate via up-regulation of reactive oxygen species (ROS) however, the night peak had lower ROS levels. Concomitant with the peak of primitive stem and progenitor cells, we also observed (to a larger extent in the night peak), expansion of a rare activated macrophage/monocyte αSMA/Mac-1 population. This population maintains HSPC in a primitive state via COX2/PGE2 signaling that reduces ROS levels and increases BM stromal CXCL12 surface expression (Ludin et al, Nat. Imm. 2012). We identified two different BM peaks in HSPC levels that are regulated by the nervous system via circadian changes in ROS levels. Augmented ROS levels induce HSPC proliferation, differentiation and motility, which take place in the morning peak; however, they need to be restored to normal levels in order to prevent BM HSPC exhaustion. In the night peak, HSPC proliferate with less differentiation and egress, and activated macrophage/monocyte αSMA/Mac-1 cells are increased to restore ROS levels and activate CXCL12/CXCR4 interactions to maintain a HSPC primitive phenotype. Additionally, S1P also regulates HSPC proliferation, thus mice with low S1P levels share reduced hematopoietic progenitor cells in the BM. Interestingly S1P is required more for the HSPC night peak since in mice with low S1P levels, HSPC peak normally during day time but not at darkness. We suggest that the first peak is initiated via elevation of ROS by norepinephrine that is augmented in the BM following light-driven cues from the brain (Mendez-Ferrer at al, Nature 2008). The morning elevated ROS signal induces a decrease in BM CXCL12 levels and up-regulated MMP-9 activity, leading to HSC proliferation, as well as their detachment from their BM microenvironment, resulting in enhanced egress. Importantly, ROS inhibition by N-acetyl cysteine (NAC) reduced the morning HSPC peak. Since norepinephrine is an inhibitor of TNFα, upon light termination norepinephrine levels decrease and TNFα levels are up-regulated. TNFα induces activation of S1P in the BM, leading to the darkness peak in HSPC levels. S1P was previously shown also to induce PGE2 signaling, essential for HSPC maintenance by the rare activated αSMA/Mac-1 population. Indeed, in mice with low S1P levels, we could not detect a peak in COX2 levels in these BM cells during darkness. We conclude that S1P not only induces HSPC proliferation via augmentation of ROS levels, but also activates PGE2/COX2 signaling in αSMA/Mac-1 population to restore ROS levels and prevent HSPC differentiation and egress during the night peak. We hypothesize that the morning HSPC peak, involves proliferation, differentiation and egress, to allow HSPC to replenish the blood circulation with new cells. In contrast, the second HSPC night peak induces proliferation with reduced differentiation and egress, allowing the renewal of the BM HSPC pool. In summary, we identified two daily circadian peaks in HSPC BM levels that are regulated via light/dark cues and concomitantly allow HSPC replenishment of the blood and immune system, as well as maintenance of the HSPC constant pool in the BM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2409-2409
Author(s):  
Yiwen Song ◽  
Sonja Vermeren ◽  
Wei Tong

Abstract ARAP3 is a member of the dual Arf-and-Rho GTPase-activating proteins (GAP) family, functioning specifically to inactivate its substrates Arf6 and RhoA GTPases. ARAP3 is translocated to the plasma membrane after PIP3 binding to the first two of its five PH domains, facilitating its GAP activity in a PI3K-mediated manner. Rho family GTPases are found to play critical roles in many aspects of hematopoietic stem and progenitor cells (HSPCs), such as engraftment and migration, while a role for Arf family GTPases in hematopoiesis is less defined. Previous studies found that either exogenous ARAP3 expression in epithelial cells or RNAi-mediated ARAP3 depletion in endothelial cells disrupts F-actin or lamellipodia formation, respectively, resulting in a cell rounding phenotype and failure to spread. This implies that ARAP3 control of Arf6 and RhoA is tightly regulated, and maintaining precise regulation of ARAP3 levels is crucial to actin organization in the cell. Although ARAP3 was first identified in porcine leukocytes, its function in the hematopoietic system is incompletely understood. Germline deletion of Arap3 results in embryonic lethality due to angiogenic defects. Since endothelial cells are important for the emergence of HSCs during embryonic development, early lethality precludes further studying the role of ARAP3 in definitive hematopoiesis. Therefore, we generated several transgenic mouse models to manipulate ARAP3 in the hematopoietic compartment: (1) Arap3fl/fl;Vav-Cretg conditional knockout mice (CKO) deletes ARAP3 specifically in hematopoietic cells, (2) Arap3fl/fl;VE-Cadherin -Cretg CKO mice selectively deletes ARAP3 in embryonic endothelial cells and thereby hematopoietic cells, and (3) Arap3R302,3A/R302,3A germline knock-in mice (KI/KI) mutates the first PH domain to ablate PI3K-mediated ARAP3 activity in all tissues. We found an almost 100% and 90% excision efficiency in the Vav-Cretg- and VEC-Cretg- mediated deletion of ARAP3 in the bone marrow (BM), respectively. However, the CKO mice appear normal in steady-state hematopoiesis, showing normal peripheral blood (PB) counts and normal distributions of all lineages in the BM. Interestingly, we observed an expansion of the Lin-Scal+cKit+ (LSK) stem and progenitor compartment in the CKO mice. This is due to an increase in the multi-potent progenitor (MPP) fraction, but not the long-term or short-term HSC (LT- or ST-HSC) fractions. Although loss of ARAP3 does not alter the frequency of phenotypically-characterized HSCs, we performed competitive BM transplantation (BMT) studies to investigate the functional impact of ARAP3 deficiency. 500 LSK cells from Arap3 CKO (Arap3fl/fl;Vav-Cretg and Arap3fl/fl;VEC-Cretg) or Arap3fl/fl control littermate donors were transplanted with competitor BM cells into irradiated recipients. We observed similar donor-derived reconstitution and lineage repopulation in the mice transplanted with Arap3fl/fl and Arap3 CKO HSCs. Moreover, Arap3 CKO HSCs show normal reconstitution in secondary transplants. Arap3 KI/KI mice are also grossly normal and exhibit an expanded MPP compartment. Importantly, Arap3KI/KI LSKs show impaired reconstitution compared to controls in the competitive BMT assays. Upon secondary and tertiary transplantation, reconstitution in both PB and BM diminished in the Arap3KI/KI groups, in contrast to sustained reconstitution in the control group. Additionally, we observed a marked skewing towards the myeloid lineage in Arap3KI/KI transplanted secondary and tertiary recipients. These data suggest a defect in HSC function in Arap3KI/KI mice. Myeloid-skewed reconstitution also points to the possibility of selection for “myeloid-primed” HSCs and against “balanced” HSCs, as HSCs exhaust during aging or upon serial transplantation. Taken together, our data suggest that ARAP3 plays a non-cell-autonomous role in HSCs by regulating HSC niche cells. Alternatively, the ARAP3 PH domain mutant that is incapable of locating to the plasma membrane in response to PI3K may exert a novel dominant negative function in HSCs. We are investigating mechanistically how ARAP3 controls HSC engraftment and self-renewal to elucidate the potential cell-autonomous and non-cell-autonomous roles of ARAP3 in HSCs. In summary, our studies identify a previously unappreciated role of ARAP3 as a regulator of hematopoiesis and hematopoietic stem and progenitor cell function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-33
Author(s):  
Adedamola Elujoba-Bridenstine ◽  
Lijian Shao ◽  
Katherine Zink ◽  
Laura Sanchez ◽  
Kostandin V. Pajcini ◽  
...  

Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells which differentiate to maintain and replenish blood lineages throughout life. Due to these characteristics, HSPC transplants represent a cure for patients with a variety of hematological disorders. HSPC function and behavior is tightly regulated by various cell types and factors in the bone marrow niche. The nervous system has been shown to indirectly influence hematopoiesis by innervating the niche; however, we present a direct route of HSPC regulation via expression of neurotransmitter receptors on HSPC surface. We have identified Gamma Aminobutyric acid (GABA) receptor B subunit 1 (Gabbr1), a hitherto unknown hematopoietic player, as a regulator of HSPC function. GABBR1 is known to be expressed on human HSPCs (Steidl et al., Blood 2004), however its function in their regulation remains unknown. Based on published RNA-seq data (Nestorowa et al., Blood 2016), we discovered that Gabbr1 is expressed on a subset of HSPCs. We confirmed this expression using RT-qPCR to assay hematopoietic populations in the bone marrow (BM). Surface receptor expression analysis showed that Gabbr1 protein is expressed on a subset of BM HSPCs. To detect GABA, the ligand for Gabbr1 in the BM microenvironment, we utilized imaging mass spectrometry (IMS). We detected regionally specific GABA signal in the endosteal region of the BM. We further identified B cells as a cellular source of GABA in the BM. To understand the role of Gabbr1 in hematopoiesis, we generated CRISPR-Cas9 Gabbr1 null mutants on a C57/BL6 background suitable for hematopoietic studies and studied their hematopoietic phenotype. We discovered a decrease in the absolute number of Lin-Sca1+cKit+ (LSK) HSPCs, but the long-term hematopoietic stem cells (LT-HSCs) remain unaffected. Further analysis of peripheral blood of Gabbr1 null mutants showed decreased white blood cells due to reduced B220+ cells. This differentiation defect was confirmed in an in vitro differentiation assay where Gabbr1 null HSPCs displayed an impaired ability to produce B cells. We show that Gabbr1 null HSCs show diminished reconstitution ability when transplanted in a competitive setting. Reduced Gabbr1 null HSC reconstitution persisted in secondary transplant recipients indicating a cell autonomous role for Gabbr1 in regulating reconstitution of HSCs in transplant recipients. Our results show a crucial role for Gabbr1 in HSPC regulation and may translate to human health as a rare human SNP within the GABBR1 locus that correlates with altered leukocyte counts has been reported (Astle et al., Cell 2016). Our studies indicate an important role for Gabbr1 in HSPC reconstitution and differentiation into B cell lineages. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document