C-Type Lectin Receptor Mediated Immune Recognition of ADAMTS13 Promotes HLA-DRB1*11 Dependent Presentation of CUB1-2 Derived Peptides by Dendritic Cells

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 196-196
Author(s):  
Nicoletta Sorvillo ◽  
Simon D van Haren ◽  
Wouter Pos ◽  
Eszter Herczenik ◽  
Rob Fijnheer ◽  
...  

Abstract Abstract 196 ADAMTS13 is a plasma metalloproteinase that regulates platelet adhesion and aggregation by virtue of its ability to process newly released ultra-large von Willebrand factor (VWF) multimers on the surface of endothelial cells. Autoantibodies directed against ADAMTS13 prohibit the processing of VWF multimers initiating a rare and life-threatening disorder called acquired thrombotic thrombocytopenic purpura (TTP). HLA-DRB1*11 has recently been identified as a risk factor for acquired TTP. This finding implies that formation of autoantibodies towards ADAMTS13 depends on appropriate presentation of ADAMTS13 derived peptides to CD4+ T-cells by antigen presenting cells. Here, we investigate endocytosis of recombinant ADAMTS13 by immature monocyte-derived dendritic cells (iDCs) using flow cytometry and confocal microscopy. Upon incubation of fluorescently labeled-rADAMTS13 with DCs, a time- and concentration dependent uptake of ADAMTS13 was observed. Endocytosis of ADAMTS13 was completely blocked upon addition of EGTA and mannan. We subsequently explored involvement of C-type lectins (CLRs) in the uptake of ADAMTS13 using specific blocking antibodies and siRNA silencing. We found that ADAMTS13 endocytosis was significantly decreased in cells treated with a monoclonal antibody directed towards macrophage mannose receptor (MR). Furthermore siRNA silencing of MR reduced the uptake of ADAMTS13 by dendritic cells. In vitro binding studies revealed that ADAMTS13 interacts with the carbohydrate recognition domains of MR. These data show that ADAMTS13 is internalized by iDCs in a MR-dependent manner. Antigen presenting cells continuously process endogenous and exogenous antigens into small peptides that are loaded on MHC class I or MHC class II for presentation to T lymphocytes. We have recently developed a method to analyze HLA-DR-presented peptide repertoires of dendritic cells pulsed with antigen (van Haren et al., 2011). Here, we addressed which ADAMTS13-derived peptides were presented on MHC class II alleles of a panel of both HLA-DRB1*11 positive and negative donors. Compared to previous studies with model antigens only a limited number of ADAMTS13-derived peptides were presented on MHC class II. Inspection of peptide-profiles obtained from DRB1*11 positive individuals revealed that two antigenic “core” peptides derived from the CUB1-2 domains of ADAMTS13 were presented by a DR11-positive donor. In addition to these immuno-dominant peptides several other peptides were also presented although with a markedly reduced efficiency. Our findings show that DRB1*11 expressing antigen presenting cells preferentially present antigenic “core” peptides derived from the CUB1-2 domains of ADAMTS13. We hypothesize that functional presentation of these peptides on HLA-DRB1*11 contributes to the onset of acquired TTP by stimulating low affinity self-reactive CD4+ T cells that have escaped negative selection in the thymus. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Vol 11 (18) ◽  
pp. 8557
Author(s):  
Piotr Szpakowski ◽  
Dominika Ksiazek-Winiarek ◽  
Andrzej Glabinski

Multiple sclerosis (MS) is common neurological disease of the central nervous system (CNS) affecting mostly young adults. Despite decades of studies, its etiology and pathogenesis are not fully unraveled and treatment is still insufficient. The vast majority of studies suggest that the immune system plays a major role in MS development. This is also supported by the effectiveness of currently available MS treatments that target immunocompetent cells. In this review, the role of antigen-presenting cells (APC) in MS development as well as the novel therapeutic options targeting those cells in MS are presented. It is known that in MS, peripheral self-antigen-specific immune cells are activated during antigen presentation process and they enter the CNS through the disrupted blood–brain barrier (BBB). Myelin-reactive CD4+ T-cells can be activated by dendritic cells, infiltrating macrophages, microglia cells, or B-cells, which all express MHC class II molecules. There are also suggestions that brain endothelial cells may act as non-professional APCs and present myelin-specific antigens with MHC class II. Similarly, astrocytes, the major glial cells in the CNS, were shown to act as non-professional APCs presenting myelin antigens to autoreactive T-cells. Several currently available MS drugs such as natalizumab, fingolimod, alemtuzumab, and ocrelizumab may modulate antigen presentation in MS. Another way to use this mechanism in MS treatment may be the usage of specific tolerogenic dendritic cells or the induction of tolerance to myelin antigens by peptide vaccines.


1993 ◽  
Vol 178 (2) ◽  
pp. 633-642 ◽  
Author(s):  
N Bhardwaj ◽  
J W Young ◽  
A J Nisanian ◽  
J Baggers ◽  
R M Steinman

Dendritic cells are potent antigen-presenting cells for several primary immune responses and therefore provide an opportunity for evaluating the amounts of cell-associated antigens that are required for inducing T cell-mediated immunity. Because dendritic cells express very high levels of major histocompatibility complex (MHC) class II products, it has been assumed that high levels of ligands bound to MHC products ("signal one") are needed to stimulate quiescent T cells. Here we describe quantitative aspects underlying the stimulation of human blood T cells by a bacterial superantigen, staphylococcal enterotoxin A (SEA). The advantages of superantigens for quantitative studies of signal one are that these ligands: (a) engage MHC class II and the T cell receptor but do not require processing; (b) are efficiently presented to large numbers of quiescent T cells; and (c) can be pulsed onto dendritic cells before their application to T cells. Thus one can relate amounts of dendritic cell-associated SEA to subsequent lymphocyte stimulation. Using radioiodinated SEA, we noted that dendritic cells can bind 30-200 times more superantigen than B cells and monocytes. Nevertheless, this high SEA binding does not underlie the strong potency of dendritic cells to present antigen to T cells. Dendritic cells can sensitize quiescent T cells, isolated using monoclonals to appropriate CD45R epitopes, after a pulse of SEA that occupies a maximum of 0.1% of surface MHC class II molecules. This corresponds to an average of 2,000 molecules per dendritic cell. At these low doses of bound SEA, monoclonal antibodies to CD3, CD4, and CD28 almost completely block T cell proliferation. In addition to suggesting new roles for MHC class II on dendritic cells, especially the capture and retention of ligands at low external concentrations, the data reveal that primary T cells can generate a response to exceptionally low levels of signal one as long as these are delivered on dendritic cells.


2010 ◽  
Vol 184 (10) ◽  
pp. 5654-5662 ◽  
Author(s):  
Yolanda C. Nesbeth ◽  
Diana G. Martinez ◽  
Seiko Toraya ◽  
Uciane K. Scarlett ◽  
Juan R. Cubillos-Ruiz ◽  
...  

Blood ◽  
2012 ◽  
Vol 119 (16) ◽  
pp. 3828-3835 ◽  
Author(s):  
Nicoletta Sorvillo ◽  
Wouter Pos ◽  
Linda M. van den Berg ◽  
Rob Fijnheer ◽  
Luisa Martinez-Pomares ◽  
...  

Abstract ADAMTS13 is a plasma metalloproteinase that regulates platelet adhesion and aggregation by cleaving ultra-large VWF multimers on the surfaces of endothelial cells. Autoantibodies directed against ADAMTS13 prohibit the processing of VWF multimers, initiating a rare and life-threatening disorder called acquired thrombotic thrombocytopenic purpura. The formation of autoantibodies depends on the activation of CD4+ T cells. This process requires immune recognition, endocytosis, and subsequent processing of ADAMTS13 into peptides that are presented on MHC class II molecules to CD4+ T cells by dendritic cells (DCs). In the present study, we investigated endocytosis of recombinant ADAMTS13 by immature monocyte-derived DCs using flow cytometry and confocal microscopy. After incubation of fluorescently labeled ADAMTS13 with DCs, significant uptake of ADAMTS13 was observed. Endocytosis of ADAMTS13 was completely blocked by the addition of EGTA and mannan. ADAMTS13 endocytosis was decreased in the presence of a blocking mAb directed toward the macrophage mannose receptor (MR). Furthermore, siRNA silencing of MR reduced the uptake of ADAMTS13 by DCs. In addition, in vitro binding studies confirmed the interaction of ADAMTS13 with the carbohydrate recognition domains of MR. The results of the present study indicate that sugar moieties on ADAMTS13 interact with MR, thereby promoting its endocytosis by APCs.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2027-2027
Author(s):  
Dhanalakshmi Chinnasamy ◽  
Pawel Muranski ◽  
Manuel Franco-Colon ◽  
Sawa Ito ◽  
Nancy F. Hensel ◽  
...  

Abstract Adoptive transfer of antigen-specific T cells is a potentially curative strategy for patients with solid tumors and leukemia. Most clinical trials of adoptive T cell therapy have used cytotoxic CD8+ T cells recognizing MHC class I-restricted tumor antigens. Despite overwhelming evidence suggesting the fundamental influence of CD4+ T cells on the immune system, clinical experience with tumor-specific CD4+ Th cells is almost non-existent. Unlike most other tissues, bone marrow-derived cells constitutively express MHC class II and CD4+ T cells play crucial role in mediating the curative GVL effect after allogeneic SCT and donor lymphocyte infusion (DLI). Furthermore, experimental evidences suggest that MHC class II-restricted antigenic targets recognized by CD4+ T cells exist in both solid cancers and in hematological malignancies. Therefore adoptive immunotherapy using CD4+ T cells in the setting of leukemia might be especially relevant. The goal of this study is to establish a simplified non-individualized protocol of generating LAA-reactive CD4+ T cells from patients and normal donors for adoptive immunotherapy directed against common leukemia-associated antigens (LAA) expressed in acute myeloid leukemias (AML) and myelodysplastic syndrome (MDS). We isolated naïve and memory CD4+ T cells from 3 normal donors and stimulated with twice at weekly interval with autologous monocytes pulsed with libraries of overlapping 15-amino acid length peptides (pepmixes) derived from WT-1, MAGE A3 and A4, PRAME and SSX2 antigens. At the end of the experiment CD4+ T cells were evaluated for reactivity against each LAA by analyzing their ability to specifically release cytokines (IL-2, TNF-α, and IFNγ) using flow cytometry. LAA-specific cells were found in either naïve or memory-derived CD4+ T cells upon stimulation with relevant pepmixes in all donors tested. However specific cytokine production could not be demonstrated when the same T cells were exposed to LAA-transduced autologous targets (LCL and T cells), raising the possibility that the majority of pepmix-reactive cells recognized epitopes that were not naturally processed. Therefore, as an alternative strategy to induce LAA-specific cells capable of targeting only therapeutically-relevant epitopes, we used autologous dendritic cells (DCs) transduced with a lentiviral vector encoding MAGE A3 antigen. Autologous CD4+ T cells were stimulated with MAGE A3 or mock-transduced DCs at an interval of 7-10 days and tested for their antigen-specific cytokine secretion. At the end of the culture we observed that Th cells expanded in presence of MAGE A3-expressing DCs and contained a significant number of cells possessing specific reactive against MAGE A3 pepmix (Figure), but not to unrelated antigenic targets, suggesting induction of LAA-reactivity against naturally-processed MAGE A3 epitopes. In summary, we demonstrate the feasibility of generating specific anti-tumor CD4+ T cells using autologous DCs engineered to express a full-length tumor antigen. This approach allows for selective expansion of polyclonal Th cells recognizing only naturally processed MHC class II-restricted epitopes. Therefore, this strategy circumvents the limitation inherent to usage of overlapping peptide libraries that might induce the expansion of high-avidity T cells specific to epitopes that are irrelevant to in vivo recognition of tumor targets. Furthermore, this approach does not rely on a particular pre-defined MHC class II restriction element, thus it is applicable to majority of donors or patients irrespective of their MHC haplotype. Disclosures: No relevant conflicts of interest to declare.


1993 ◽  
Vol 178 (6) ◽  
pp. 1893-1901 ◽  
Author(s):  
P Paglia ◽  
G Girolomoni ◽  
F Robbiati ◽  
F Granucci ◽  
P Ricciardi-Castagnoli

Dendritic cells (DC) can provide all the known costimulatory signals required for activation of unprimed T cells and are the most efficient and perhaps the critical antigen presenting cells in the induction of primary T cell-mediated immune responses. It is now shown that mouse cell lines with many of the features of DC can be generated using the MIB phi 2-N11 retroviral vector transducing a novel envAKR-mycMH2 fusion gene. The immortalized dendritic cell line (CB1) displays most of the morphologic, immunophenotypic, and functional attributes of DC, including constitutive expression of major histocompatibility complex (MHC) class II molecules, costimulatory molecules B7/BB1, heat stable antigen, intracellular adhesion molecule 1, and efficient antigen-presenting ability. Granulocyte/macrophage colony-stimulating factor (GM-CSF) proved to be effective in increasing MHC class II molecule expression and in enhancing presentation of native protein antigens. In comparison with macrophages, CB1 dendritic cells did not exhibit phagocytic and chemotactic activity in response to various stimuli and lipopolysaccharide activation was ineffective in inducing tumor necrosis factor alpha or interleukin 1 beta production. CB1 cells, pulsed with haptens in vitro and injected into naive mice were able to induce delayed-type hypersensitivity responses, further increased with pretreatment with GM-CSF, indicating that these cells may represent an immature, rather than a mature DC. The ability of CB1 to prime T cells in vivo could provide a tool to design novel immunization strategies.


1998 ◽  
Vol 187 (5) ◽  
pp. 693-702 ◽  
Author(s):  
Ferry Ossendorp ◽  
Erica Mengedé ◽  
Marcel Camps ◽  
Rian Filius ◽  
Cornelis J.M. Melief

This study shows that induction of tumor-specific CD4+ T cells by vaccination with a specific viral T helper epitope, contained within a synthetic peptide, results in protective immunity against major histocompatibility complex (MHC) class II negative, virus-induced tumor cells. Protection was also induced against sarcoma induction by acutely transforming retrovirus. In contrast, no protective immunity was induced by vaccination with an unrelated T helper epitope. By cytokine pattern analysis, the induced CD4+ T cells were of the T helper cell 1 type. The peptide-specific CD4+ T cells did not directly recognize the tumor cells, indicating involvement of cross-priming by tumor-associated antigen-presenting cells. The main effector cells responsible for tumor eradication were identified as CD8+ cytotoxic T cells that were found to recognize a recently described immunodominant viral gag-encoded cytotoxic T lymphocyte (CTL) epitope, which is unrelated to the viral env-encoded T helper peptide sequence. Simultaneous vaccination with the tumor-specific T helper and CTL epitopes resulted in strong synergistic protection. These results indicate the crucial role of T helper cells for optimal induction of protective immunity against MHC class II negative tumor cells. Protection is dependent on tumor-specific CTLs in this model system and requires cross-priming of tumor antigens by specialized antigen-presenting cells. Thus, tumor-specific T helper epitopes have to be included in the design of epitope-based vaccines.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Eytan Breman ◽  
Jurjen M. Ruben ◽  
Kees L. Franken ◽  
Mirjam H. M. Heemskerk ◽  
Dave L. Roelen ◽  
...  

In organ transplantation, alloantigens are taken up by antigen presenting cells and presented via the indirect pathway to T-cells which in turn can induce allograft rejection. Monitoring of these T-cells is of major importance; however no reliable assay is available to routinely monitor indirect allorecognition. Recently we showed that HLA monomers can be successfully used to monitor indirect allorecognition. Targeting antigens to endocytic receptors on antigen presenting cells may further enhance the presentation of antigens via HLA class II and improve the efficiency of this assay. In the current study we explored targeting of HLA monomers to either CD89 expressing monocytes or mannose receptor expressing dendritic cells. Monomer-antibody complexes were generated using biotin-labeled monomers and avidin labeling of the antibodies. We demonstrate that targeting the complexes to these receptors resulted in a dose-dependent HLA class II mediated presentation to a T-cell clone. The immune-complexes were efficiently taken up and presented to T-cells. However, the level of T-cell reactivity was similar to that when only exogenous antigen was added. We conclude that HLA-A2 monomers targeted for presentation through CD89 on monocytes or mannose receptor on dendritic cells lead to proper antigen presentation but do not enhance indirect allorecognition via HLA-DR.


Sign in / Sign up

Export Citation Format

Share Document