sirna silencing
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Li Liu ◽  
Li Jia ◽  
Jun Shao ◽  
Hanhua Liu ◽  
Qinke Wu ◽  
...  

It has been reported that circNF1, a type of circular RNA (circRNA), promotes gastric cancer. This study aimed to analyze the role of circNF1 in glioblastoma (GBM). The expression of circNF1, mature miR-340, and miR-340 precursor in paired GBM and non-cancer tissues from GBM patients (n = 50) was analyzed by RT-qPCR. GBM cells were transfected with circNF1 siRNA, followed by the analysis of the expression of mature miR-340 and miR-340 precursor, to study the effects of circNF1 knockdown on the maturation of miR-340. The CCK-8 assay was carried out to explore the role of circNF1 and miR-340 in the proliferation of GBM cells. circNF1 expression was found to be upregulated in GBM and was correlated with patient survival. In glioma tissue, circNF1 was inversely correlated with mature miR-340, but not with the miR-340 precursor. In GBM cells, circNF1 siRNA silencing resulted in the upregulation of mature miR-340, but not the miR-340 precursor. The cell proliferation assay showed that circNF1 siRNA silencing and miR-340 overexpression decreased the proliferation of GBM cells. In addition, the miR-340a inhibitor suppressed the role of circNF1 siRNA silencing in cell proliferation. Therefore, circNF1 siRNA silencing may inhibit GBM cell proliferation by promoting the maturation of miR-340.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Yang Chen ◽  
Seethalakshmi R Iyer ◽  
Viacheslav Nikolaev ◽  
Fabio Naro ◽  
Manuela Pellegrini ◽  
...  

Aldosterone is a critical driver for cardiovascular disease (CVD). We recently discovered that MANP, a novel atrial natriuretic peptide (ANP) analog, possessed more potent aldosterone inhibitory action than ANP. MANP is currently entering clinical trials for hypertension and thus understanding its aldosterone suppressing mechanism is important. The mechanism of aldosterone inhibition by natriuretic peptides (NPs) remains to be clearly defined. Conflicting results were reported on the roles of particulate guanylyl cyclase A receptor (pGC-A) and NP clearance receptor (NPRC) in aldosterone inhibition. Furthermore, the functions of protein kinase G (PKG) and phosphodiesterases (PDE) on aldosterone regulation are not clear. Herein, we investigated the molecular mechanism of aldosterone regulation in the human adrenocortical cell line H295R and in mice. We firstly showed that pGC-A mediates aldosterone inhibition. In contrast, with NPRC agonist and antagonist, we showed that NPRC did not inhibit aldosterone. Next, we confirmed that MANP inhibits aldosterone via PDE2, not PKG, with specific agonists, antagonists, siRNA silencing, and fluorescence resonance energy transfer (FRET) experiments. Specifically, MANP suppressed ANGII mediated activation of aldosterone (fold change) MANP+ANGII 3.2±0.1* vs. ANGII 3.8±0.1 (*p<0.05) with IBMX, a PDEs inhibitor and the PDE2 antagonist Bay 60-7550 reversed MANP-mediated aldosterone suppression (IBMX+MANP+ANGII 3.9±0.2 and Bay+MANP+ANGII 4.1±0.1). With PKG agonists and inhibitors, aldosterone levels were not changed. In PDE2 activity FRET studies, aldosterone control was 3.7±0.4 and with MANP 0.9±0.2* supporting PDE2 activation by MANP. Further, the inhibitory effect of PDE2 is mediated by a reduction of intracellular Ca2+ concentration (~22%). We then showed that MANP directly reduced aldosterone synthase CYP11B2 expression in vitro. Lastly, in PDE2 knockout mice (embryonic lethal), embryonic adrenal CYP11B2 expression is markedly increased (wild type: 1±0.2, KO: 2.8±0.5*). Our findings innovatively elucidate the pGC-A/cGMP/PDE2 pathway in aldosterone inhibition by MANP in vitro and in vivo. Additionally, our data also support the development of MANP as a novel ANP analog drug for CVD.


2021 ◽  
Author(s):  
Guido Papa ◽  
Janine Vetter ◽  
Michael Seyffert ◽  
Kapila Gunasekera ◽  
Giuditta De Lorenzo ◽  
...  

The rotavirus (RV) VP4 spike protrudes as a trimeric structure from the five-fold axes of the virion triple-layer. Infectious RV particles need to be proteolytically cleaved in VP4 into two subunits, VP8* and VP5*, constituting both the distal part and central body of the virus spike. Modification of VP4 has been challenging as it is involved in biological processes such as the interaction with sialic acid and integrins, cell tropism and hemagglutinin activity. Using RV reverse genetics, four loops in the lectin domain of the VP8* subunit were engineered independently to harbor a small biotin acceptor peptide (BAP) tag and then tested for their ability to rescue virus. Only a single recombinant virus, rRV/VP4-BAP, harboring VP4 with a modified loop at position K145-G150 was rescued. This rRV/VP4-BAP internalizes, replicates, and generates virus progeny, demonstrating that the VP4 spike of RV particles can be genetically manipulated by the incorporation of at least 15 exogenous amino acids. VP4-BAP had a similar distribution as VP4 in infected cells by localizing in the cytoskeleton and surrounding viroplasms. However, compared to wild-type RV, rRV/VP4-BAP featured a reduced replication fitness and impaired viroplasm stability. Upon treatment with 1,6-hexanediol, a drug disrupting liquid-liquid phase-separated condensates, the kinetic of rRV/VP4-BAP viroplasm recovery was delayed, and their size and numbers reduced when compared to viroplasms of wild type RV. Moreover, siRNA silencing of VP4 expression in RV strain SA11 showed similar recovery patterns as rRV/VP4-BAP, revealing a novel function of VP4 in viroplasm stability.


Nanoscale ◽  
2021 ◽  
Author(s):  
Claudia Conte ◽  
Patrícia F. Monteiro ◽  
Pratik Gurnani ◽  
Snow Stolnik ◽  
Francesca Ungaro ◽  
...  

Redox-responsive NPs, delivering DTX in combination with TUBB3 siRNA, increased DTX activity in lung cancer (LC) cells. After local administration in LC mice models, NPs were retained into the lungs thus exerting high siRNA silencing efficacy.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242970
Author(s):  
Haley C. Dahl ◽  
Mohammed Kanchwala ◽  
Shayna E. Thomas-Jardin ◽  
Amrit Sandhu ◽  
Preethi Kanumuri ◽  
...  

Chronic inflammation promotes prostate cancer (PCa) initiation and progression. We previously reported that acute intereluekin-1 (IL-1) exposure represses androgen receptor (AR) accumulation and activity, providing a possible mechanism for IL-1-mediated development of androgen- and AR-independent PCa. Given that acute inflammation is quickly resolved, and chronic inflammation is, instead, co-opted by cancer cells to promote tumorigenicity, we set out to determine if chronic IL-1 exposure leads to similar repression of AR and AR activity observed for acute IL-1 exposure and to determine if chronic IL-1 exposure selects for androgen- and AR-independent PCa cells. We generated isogenic sublines from LNCaP cells chronically exposed to IL-1α or IL-1β. Cells were treated with IL-1α, IL-1β, TNFα or HS-5 bone marrow stromal cells conditioned medium to assess cell viability in the presence of cytotoxic inflammatory cytokines. Cell viability was also assessed following serum starvation, AR siRNA silencing and enzalutamide treatment. Finally, RNA sequencing was performed for the IL-1 sublines. MTT, RT-qPCR and western blot analysis show that the sublines evolved resistance to inflammation-induced cytotoxicity and intracellular signaling and evolved reduced sensitivity to siRNA-mediated loss of AR, serum deprivation and enzalutamide. Differential gene expression reveals that canonical AR signaling is aberrant in the IL-1 sublines, where the cells show constitutive PSA repression and basally high KLK2 and NKX3.1 mRNA levels and bioinformatics analysis predicts that pro-survival and pro-tumorigenic pathways are activated in the sublines. Our data provide evidence that chronic IL-1 exposure promotes PCa cell androgen and AR independence and, thus, supports CRPCa development.


2020 ◽  
Author(s):  
Xuefeng Yuan ◽  
Yingchi Zhang ◽  
Cong Cai ◽  
Chaoxu Liu ◽  
Jie Xie ◽  
...  

Abstract Background Circular RNA circZNF652 promotes LPS-induced inflammation, which contributes to the development of osteoarthritis (OA), indicating the potential involvement of CRNDE in OA. This study was carried to explore the involvement of circZNF652 in OA. Methods RT-qPCR was performed to analyze the expression of circZNF652 and PTEN mRNA in synovial fluid samples from 60 OA patients and 60 healthy controls. Correlations between circZNF652 and PTEN mRNA were analyzed by Pearson’s correlation coefficient. Overexpression and siRNA silencing of circZNF652 were achieved in chondrocytes, followed by performing RT-qPCR and Western blot to analyze the expression of PTEN. The role of circZNF652 and PTEN in regulating the apoptosis of chondrocytes induced by LPS was analyzed by cell apoptosis assay. Results We found that circZNF652 was overexpressed in OA and positively correlated with PTEN mRNA. In chondrocytes, circZNF652 overexpression increased the expression of PTEN, and circZNF652 siRNA silencing decreased the expression of PTEN. Moreover, circZNF652 and PTEN positively regulated the apoptosis of chondrocytes induced by LPS. PTEN overexpression reversed the inhibitory effects of circZNF652 siRNA silencing on cell apoptosis. Conclusion CircZNF652E is overexpressed in OA and positively regulates LPS-induced apoptosis of chondrocytes by upregulating PTEN.


2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaoyan Zhang ◽  
Taigang Liang ◽  
Wanxia Yang ◽  
Lanfang Zhang ◽  
Shuting Wu ◽  
...  

Astragalus membranaceus (AM), used in traditional Chinese medicine, has been shown to enhance immune functions, and recently, its anti-inflammatory effects were identified. However, the mechanisms of action remain unclear. Most studies have shown that autophagy might be involved in the immune response of the body, including inflammation. Here, we developed an inflammatory model by stimulating macrophages with lipopolysaccharides (LPS) to explore the anti-inflammatory effect and mechanisms of AM injection from the perspective of the regulation of autophagy. Immunoblot, immunofluorescence, and ELISA were used to determine the effects of AM injection on the production of interleukin-6 (IL-6) and alterations of autophagy markers. It was found that AM injection reduced the expression of IL-6 in LPS-stimulated macrophages and reversed the LPS-induced inhibition of cellular autophagy. After treatment with inhibitors of signaling pathways, it was shown that LPS downregulated autophagy and upregulated the production of IL-6 in macrophages via the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. AM injection reversed the effects of LPS by activating the AMP-activated protein kinase (AMPK) instead of inhibiting Akt. These results were further confirmed by testing activators and siRNA silencing of AMPK. Hence, these 2 distinct signaling molecules appear to exert opposite effects on mTOR, which integrates information from multiple upstream signaling pathways, negatively regulating autophagy. In addition, we demonstrated that autophagy might play a key role in regulating the production of IL-6 by testing activators and inhibitors of autophagy and siRNA silencing of ATG5. These findings showed that AM injection might enhance autophagy by activating AMPK and might further play a repressive effect on the LPS-stimulated expression of IL-6. This study explored the relationship between autophagy, signaling pathways, and the production of inflammatory factors in a model of endotoxin infection and treatment with AM injection.


2020 ◽  
Author(s):  
Kai Chen ◽  
Zhuqing Zhang ◽  
Aijun Yu ◽  
Jian Li ◽  
Jinlong Liu ◽  
...  

Abstract Background:DLGAP1-AS2 has been characterized as an oncogenic lncRNA in glioma. This study was performed to explore the role of DLGAP1-AS2 in hepatocellular carcinoma (HCC). Methods:Expression of DLGAP1-AS2 and miR-154-5p in paired HCC and non-tumor tissues from 62 HCC patients was determined by RT-qPCR. The 62 HCC patients were followed up for 5 years to analyze the prognostic value of DLGAP1-AS2 for HCC. DLGAP1-AS2 siRNA silencing and miR-154-5p overexpression was achieved in HCC cells to study the relationship between them. Methylation of miR-154-5p was analyzed by methylation-specific PCR. Cell proliferation was analyzed by CCK-8 assay.Results: DLGAP1-AS2 was upregulated in HCC and predicted poor survival. MiR-154-5p was downregulated in HCC and inversely correlated with DLGAP1-AS2. In HCC cells, DLGAP1-AS2 siRNA silencing resulted in the upregulation of miR-154-5p and decreased methylation of miR-154-5p gene. Transwell assay showed that, DLGAP1-AS2 siRNA silencing and miR-154-5p overexpression inhibited cell invasion and migration, and the combination of LGAP1-AS2 siRNA silencing and miR-154-5p overexpression showed stronger effects.Conclusion: DLGAP1-AS2 siRNA silencing may inhibit HCC cell migration and invasion by up-regulating miR-154-5p through methylation.


2020 ◽  
Author(s):  
H.C. Dahl ◽  
M. Kanchwala ◽  
S.E. Thomas-Jardin ◽  
A. Sandhu ◽  
P. Kanumuri ◽  
...  

AbstractChronic inflammation promotes prostate cancer (PCa) initiation and progression. We previously reported that acute intereluekin-1 (IL-1) exposure represses androgen receptor (AR) accumulation and activity, providing a possible mechanism for IL-1-mediated development of androgen- and AR-independent PCa. Given that acute inflammation is quickly resolved, and chronic inflammation is, instead, co-opted by cancer cells to promote tumorigenicity, we set out to determine if chronic IL-1 exposure leads to similar repression of AR and AR activity observed for acute IL-1 exposure and to determine if chronic IL-1 exposure selects for androgen- and AR- independent PCa cells. We generated isogenic sublines from LNCaP cells chronically exposed to IL-1α or IL-1β. Cells were treated with IL-1α, IL-1β, TNFα or HS-5 bone marrow stromal cells conditioned medium to assess cell viability in the presence of cytotoxic inflammatory cytokines. Cell viability was also assessed following serum starvation, AR siRNA silencing and enzalutamide treatment. Finally, RNA sequencing was performed for the IL-1 sublines. MTT, RT-qPCR and western blot analysis show that the sublines evolved resistance to inflammation- induced cytotoxicity and intracellular signaling and evolved reduced sensitivity to siRNA- mediated loss of AR, serum deprivation and enzalutamide. Differential gene expression reveals that canonical AR signaling is aberrant in the IL-1 sublines, where the cells show constitutive PSA repression and basally high KLK2 and NKX3.1 mRNA levels and bioinformatics analysis predicts that pro-survival and pro-tumorigenic pathways are activated in the sublines. Our data provide evidence that chronic IL-1 exposure promotes PCa cell androgen and AR independence and, thus, supports CRPCa development.


Sign in / Sign up

Export Citation Format

Share Document