JAK/STAT Signal Transduction Pathway Activation During Hematopoietic Differentiation From Human Embryonic Stem Cells (hESC)

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2346-2346
Author(s):  
Chun Fan ◽  
Richard Yunkang Liu ◽  
Kristine Li ◽  
Kenneth S. Zuckerman

Abstract Abstract 2346 The ability to produce hematopoietic cells from human embryonic stem cells (hESC) has been demonstrated, using different multistage culture systems with multiple growth factor combinations. However, very little is understood about the molecular mechanisms that regulate the differentiation from hESC to hematopoietic stem and progenitor cells and further to specific lineages of differentiated hematopoietic cells. Among many signaling pathways involved in stem and progenitor cell differentiation, the JAK/STAT pathways are known to play critical roles in hematopoietic stem cell maintenance and hematopoietic differentiation. STAT3 activation is known to be essential for maintenance of murine ESC, but not human ESC, but it appears not to play a major role in myeloid cell differentiation. Although different levels of JAK2 and STAT5 signaling are important for erythroid and megakaryocytic differentiation, JAK/STAT signaling is not thought to play a role in hESC maintenance or differentiation and is not known to be essential for early stages of differentiation to hematopoietic stem and progenitor cells (HSC/HPC). We have established a serum-free, feeder cell-free system for maintaining hESC (H1 and H9 cells) and for differentiating the hESC to embryoid bodies (EB), from which end-stage hematopoietic cells, notably megakaryocytes and platelets, are produced. We used a multi-stage culture system to produce megakaryocytes and platelets from EBs, including 2 days with vascular endothelial growth factor (VEGF) and bone morphogenic protein (BMP4), 2 more days with VEGF, BMP4, stem cell factor (SCF), Flt3 ligand (FL), and thrombopoietin (TPO), 10 days with VEGF, BMP4, TPO, SCF, FL, IL3, IL6, and IL11, and 2–6 weeks with TPO, SCF, FL, IL3, IL6, and IL11. We used serial western blots, immunofluorescence with confocal microscopy and systematically observed changes of JAK/STAT signal transduction molecule activation. We found a consistent, dynamic change of STAT5 protein phosphorylation during the hematopoietic differentiation process. Interestingly, although JAK2, STAT3 and STAT5 protein were present, and JAK2 and STAT3 were phosphorylated in hESC, there was no evidence of STAT5 phosphorylation/activation in the undifferentiated hESC. During the early phases of differentiation of hESC-derived EBs toward hematopoietic progenitors in the presence of hematopoiesis-related cytokines, STAT5 was phosphorylated and activated in CD34+ HSCs and in CD61+/CD235a (glycophorin A)+ or CD41+/CD235a+ early megakaryocytic/erythroid progenitor cells (MEP). Although there was no detectable change in total STAT5 protein expression levels through hematopoietic differentiation, there was a slowly progressive decrease in phosphorylated/activated STAT5 with further maturation to megakaryocytes that express CD42b+, platelet factor 4, and von Willebrand factor and form proplatelets and platelets. Thus, in spite of hESC containing abundant phosphorylated JAK2, which is a known activator of STAT5, there was no phosphorylation/activation of STAT5 in undifferentiated hESC or early EBs. However, STAT5 became phosphorylated/activated early in hematopoiesis and declined over the course of progressive differentiation along the megakaryocytic lineage. These findings imply that activated JAK2 does not drive the activation of STAT5 that is an early event in differentiation from EBs and mesoderm to HSC and HPC in vitro. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 125 (12) ◽  
pp. 1890-1900 ◽  
Author(s):  
Sarah A. Kinkel ◽  
Roman Galeev ◽  
Christoffer Flensburg ◽  
Andrew Keniry ◽  
Kelsey Breslin ◽  
...  

Key Points Depletion of Jarid2 in mouse and human hematopoietic stem cells enhances their activity. Jarid2 acts as part of PRC2 in hematopoietic stem and progenitor cells.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1738-1743 ◽  
Author(s):  
DA Williams ◽  
B Lim ◽  
E Spooncer ◽  
J Longtine ◽  
TM Dexter

Abstract A recombinant retrovirus (DHFR*-SVADA) in which human adenosine deaminase (ADA) cDNA is transcribed from an internal SV40 promoter was used to infect murine hematopoietic stem and progenitor cells. Human ADA enzyme was not expressed in infected primary murine pluripotent stem cell-derived spleen or progenitor colonies (CFU-GM, CFU-Mix, BFU- E). In contrast, human ADA enzyme activity was readily detected in progenitor colonies derived from immortalized multipotent factor- dependent cells. The level of human enzyme was near endogenous murine enzyme levels and was equivalent in undifferentiated stem cells and differentiated myeloid, erythroid, and mixed colonies. These results indicate that cellular properties other than the stage of differentiation are important in determining the expression of foreign sequences introduced by retroviruses. Cell lines that are immortalized but still capable of induced differentiation may contain factors that abrogate blocks to expression that are manifested in primary hematopoietic stem cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Katharina Seiler ◽  
Motokazu Tsuneto ◽  
Fritz Melchers

We review here our experiences with thein vitroreprogramming of somatic cells to induced pluripotent stem cells (iPSC) and subsequentin vitrodevelopment of hematopoietic cells from these iPSC and from embryonic stem cells (ESC). While, in principle, thein vitroreprogramming and subsequent differentiation can generate hematopoietic cell from any somatic cells, it is evident that many of the steps in this process need to be significantly improved before it can be applied to human cells and used in clinical settings of hematopoietic stem cell (HSC) transplantations.


2021 ◽  
Vol 21 ◽  
Author(s):  
Ali Hassanzadeh ◽  
Somayeh Shamlou ◽  
Niloufar Yousefi ◽  
Marzieh Nikoo ◽  
Javad Verdi

: Recently, genetic engineering by various strategies to stimulate gene expression in a specific and controllable mode is a speedily growing therapeutic approach. Genetic modification of human stem or progenitor cells, such as embryonic stem cells (ESCs), neural progenitor cells (NPCs), mesenchymal stem/stromal cells (MSCs), and hematopoietic stem cells (HSCs) for direct delivery of specific therapeutic molecules or genes has been evidenced as an opportune plan in the context of regenerative medicine due to their supported viability, proliferative features, and metabolic qualities. On the other hand, a large number of studies have investigated the efficacy of modified stem cells in cancer therapy using cells from various sources, disparate transfection means for gene delivery, different transfected yields, and wide variability of tumor models. Accordingly, cell-based gene therapy holds substantial aptitude for the treatment of human malignancy as it could relieve signs or even cure cancer succeeding expression of therapeutic or suicide transgene products; however, there exist inconsistent results in this regard. Herein, we deliver a brief overview of stem cell potential to use in cancer therapy and regenerative medicine and importantly discuss stem cells based gene delivery competencies to stimulate tissue repair and replacement in concomitant with their potential to use as an anti-cancer therapeutic strategy, focusing on the last two decades in vivo studies.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4209-4209
Author(s):  
Daniel J. Pearce ◽  
Catherine Simpson ◽  
Kirsty Allen ◽  
Ayad Eddaoudi ◽  
Derek Davies ◽  
...  

Abstract It has been postulated that as we age, accumulated damage causes stem cells to die by apoptosis. This could lead to a diminished stem cell pool and consequently a reduced organ regeneration potential that contributes to somatic senescence. Hematopoietic stem cells have evolved many mechanisms to cope with their exposure to toxins during life. Cell surface transporters and anti-toxic enzymes are highly expressed in hematopoietic stem cells. If toxins do get the opportunity to damage the DNA of stem cells then the cell is more likely to die by apoptosis than attempt DNA repair and risk an error. Summarised below are our results from an investigation of the frequency, phenotype, cell cycle status and repopulation potential (in young recipients) of C57BL6 side population (SP) cells from mice with a range of ages. The absolute frequency of SP cells increases with age (Figure-A). The proportion of the lineage negative, Sca-1+, c-kit+ (KLS) cell population that is an SP stem cell increases from ~1% to over 30% during the murine lifetime (red bars in Figure-B). These SP cells from older mice have a reduced 4-month competitive repopulation potential when compared to SP cells from younger mice but contain a similarly low proportion of phenotypically-defined mature cells (blue bars in Figure-B) and have a similar cell cycle profile and progenitor cell output (2% of 3 x 96 well plates for each). SP cells from older mice contained a higher proportion of SP cells with the highest efflux ability (61 vs 414 days, p=<0.001, n=6) Engrafted cells derived from old SP cells 4 months previously still displayed an increased SP frequency when compared to engrafted cells derived from SP cells of young mice. Hence, more progenitors or committed cells have not gained the SP ability; rather this difference in SP distribution reflects an age-dependent change in hematopoietic stem cell biology that is independent of the microenvironment. Specifically, the proportion of stem and progenitor cells (KLS) that is a stem cell (SP fraction of KLS) increases with age. We hypothesize that this may be a progressive enrichment of primitive cells over time via selection. As we age, accumulative damage to hematopoietic stem and progenitor cells causes more cells to die by apoptosis. It may be that the stem/progenitor cells with the lowest hoechst efflux ability are most susceptible to damage and hence most likely to die by apoptosis. Since the HSCs with the highest efflux of hoechst are thought to be the most primitive, it may be that there is an enrichment of primitive cells. This could account for the increased SP proportion observed within KLS cells. As there may be cells with ABC/G2 activity that is undetectable via the SP technique, selection of cells with a higher pump activity could also explain the increased SP frequency we observed. This hypothetical mechanism would also be independent of microenvirinment. In summary, we surmise that HSCs have a mechanism that copes with cellular damage while compensating for the reduced cellular output of HSCs with age by increasing the absolute number of HSCs. Figure Figure


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1345-1345
Author(s):  
Erin J. Oakley ◽  
Gary Van Zant

Abstract It is well documented that both quantitative and qualitative changes in the murine hematopoietic stem cell (HSC) population occur with age. In mice, the effect of aging on stem cells is highly strain-specific, thus suggesting genetic regulation plays a role in HSC aging. We have previously mapped a quantitative trait locus (QTL) to murine Chr 2 that is associated with the variation in frequency of HSCs between aged B6 and D2 mice. In C57BL/6 (B6) mice the HSC population steadily increases with age, whereas in DBA/2 mice, this population declines. A QTL regulating the natural variation in lifespan between the two strains was mapped to the same location on mouse Chr 2, thus leading to the hypothesis that stem cell function affects longevity. B6 alleles, associated with expansion of the stem cell pool, are also associated with a ~50% increase in lifespan. Using a congenic mouse model, in which D2 alleles in the QTL interval were introgressed onto a B6 background, genome wide gene expression analyses were performed using sorted lineage negative hematopoietic cells, which are enriched for primitive stem and progenitor cells. Three variables were examined using Affymetrix M430 arrays:the effect of strain--congenic versus background;the effect of age--2 months versus 22 months; andthe effects of 2 Gy of radiation because previous studies indicated that congenic animals were highly sensitive to the effects of mild radiation compared to B6 background animals. Extensive analysis of the expression arrays pointed to a single strong candidate, the gene encoding ribosome binding protein 1 (Rrbp1). Real-time PCR was used to validate the differential expression of Rrbp1 in lineage negative, Sca-1+, c-kit+ (LSK) cells, a population highly enriched for stem and progenitor cells. Further analysis revealed the presence eight non-synonymous, coding single nucleotide polymorphisms (SNPs), and at least one of them because of its location and nature may significantly alter protein structure and function. The Rrbp1 gene consists of 23 exons in mouse and is highly conserved among mammalian species including mouse, human, and canine. The Rrbp1 protein is present on the surface of the rough endoplasmic reticulum where it tethers ribosomes to the membrane, stabilizes mRNA transcripts, and mediates translocation of nascent proteins destined for the cell secretory pathway. It is well established that the interaction of HSCs with microenvironmental niches in the bone marrow is crucial for their maintenance and self-renewal, and that this interaction is mediated in part by the molecular repertoires displayed on the cell surfaces of both HSCs and niche stromal cells. Therefore, we hypothesize that age and strain specific variation in Rrbp1, through its role in the secretory pathway, affects the molecular repertoire at the cell surface of the HSC, thus altering the way stem cells interact with their niches. This altered microenvironmental interaction could have profound effects on fundamental properties relevant to stem cell aging such as pluripotency, self-renewal, and senescence.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4787-4787
Author(s):  
Marion Brenot ◽  
Annelise Bennaceur-Griscelli ◽  
Marc Peschanski ◽  
Maria Teresa Mitjavila-Garcia

Abstract Human embryonic stem cells (hES) isolated from the inner cell mass of a blastocyst have the ability to self renew indefinitely while maintaining their pluripotency to differentiate into multiple cell lineages. Therefore, hES represent an important source of cells for perspective cell therapies and serve as an essential tool for fundamental research, specifically for understanding pathophysiological mechanisms of human diseases for the development of novel pharmacological drugs. The generation of hematopoietic stem cells from hES may serve as an alternative source of cells for hematopoietic reconstitution following bone marrow transplantation and an interesting approach to understand early stages of hematopoietic development which are difficult to study in human embryos. Using two different methods, we have differentiated three hES cell lines (SA01, H1 and H9) into hematopoietic cells by generating embryoid bodies and co-culturing on the murine Op9 cell line. In both experimental approaches, we obtain cells expressing CD34 and when cultured in hematopoietic conditions, SA01 and H1 cell lines differentiate into various hematopoietic lineages as demonstrated by BFU-E, CFU-GM and CFU-GEMM colony formation, whereas H9 have almost exclusively granulo-macrophage differentiation. Cells composing these hematopoietic colonies express CD45, CD11b, CD31, CD41 and CD235 and staining with May Grundwald-Giemsa demonstrate neutrophil and erythrocyte morphology. These results demonstrate the capacity of hES to differentiate into mature hematopoietic cells in vitro. Nevertheless, there exist some quantitative and qualitative differences about hematopoietic differentiation between the hES cell lines used. However, we still have to evaluate their capacity to reconstitute hematopoiesis in vivo in an immune deficient mouse model. We will also be interested in developing in vitro methods to expand these hematopoietic precursor cells derived from hES which may be used as a viable source for future cell therapy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 98-98
Author(s):  
Rebekka K. Schneider ◽  
Dirk Heckl ◽  
Marcus Järås ◽  
Lisa Chu ◽  
McConkey Marie ◽  
...  

Abstract Casein kinase 1α (Ck1α) is a serine/threonine kinase located in the common deleted region (5q32) in del(5q) myelodysplastic syndrome (MDS). Ck1α is a regulator of the canonical WNT signaling pathway and may play a role in the clonal advantage of del(5q) cells. In addition, we identified CK1α as a therapeutic target in myeloid malignancies in an in vivo RNA interference screen, and haploinsufficiency for CK1α could further sensitize del(5q) cells to CK1α inhibition. To explore the biology and therapeutic potential of CK1α in MDS, we generated a conditional Ck1α knockout mouse model. Conditional homozygous inactivation of Ck1α resulted in bone marrow failure, ablation of hematopoietic stem and progenitor cells, a severe anemia and rapid lethality within 7-12 days, confirming that Ck1α is essential for hematopoietic stem and progenitor cell survival. In contrast, mice with haploinsufficiency of Ck1α developed a hypercellular bone marrow, as is typical in MDS, a significantly elevated white blood cell count (p=0.002) and normal hemoglobin levels. The hematopoietic stem cells (LSK, LT-HSC, ST-HSC) as well as progenitor cells (LK, pre-GMP, GMP, pre-CFU-e, CFU-e, pre-megakaryocytes-erythrocytes) were not affected by Ck1α haploinsufficiency 14 days after induction. Only the megakaryocytic progenitor cells (p=0.04) were significantly reduced. This finding was in line with severe dysplasia and hypolobulated micromegakaryocytes observed in the bone marrow, another typical histomorphological feature of del(5q) MDS. In long-term experiments up to 8 months, the survival of mice with Ck1α haploinsufficiency was not impaired, although we observed an exhaustion of the stem cell pool with significant reduction of ST-HSC (p<0.001), LT-HSC (p=0.003), and MPP (p=0.007). We were able to demonstrate that this significant reduction is a cell-extrinsic effect. In transplantation and HSC repopulation assays, an intact HSC function and even a significant expansion of hematopoietic stem cells and progenitor cells with Ck1α haploinsufficiency was confirmed in comparison to MxCre controls (LSK p=0.019; LK p=0.035; CMP p=0.036; GMP p=0.027; MEP p=0.005), suggesting a repopulation advantage of HSC with Ck1α haploinsufficiency. In contrast, Ck1α homozygous deletion leads to a cell-autonomous, p53-mediated HSC failure in transplantation assays. To dissect the mechanism of hematopoietic stem cell expansion in Ck1α haploinsufficiency on the one hand and the hematopoietic stem cell ablation after Ck1α ablation on the other hand, we analyzed regulatory mechanisms including proliferation and apoptosis in LK cells (myeloid progenitor cells) and LSK cells (enriched for hematopoietic stem cells). Ablation of Ck1α led to a significant increase (p=0.001) in the number of LSK and LK in the S/M/G2 phase, accompanied by a significant reduction in the G0/G1 fraction, suggesting their exit from quiescence. Ck1α haploinsufficiency led to a significant increase in the fraction of cycling cells in myeloid progenitor cells (LK, p=0.052), the quiescent hematopoietic stem cells were not significantly affected. In Western Blots of ckit+ hematopoietic stem and progenitor cells, a significant increase of intracellular ß-catenin levels was detected in both Ck1α haploinsufficient and even stronger in Ck1α ablated cells, accompanied by an exit from stem cell quiescence shown by loss of p21-mediated growth arrest and up-regulation of phosphorylated retinoblastoma protein indicating cell cycle progression from G0 to G1 in comparison to the MxCre+ control cells. Ck1α ablation led to p53-mediated apoptosis in stem and progenitor cells (Annexin V/7-AAD). In Ck1α haploinsufficient cells, apoptosis was not significantly induced in neither LK cells or in LSK cells although p53 induction was observed in the bone marrow. Taken together, our results indicate that Ck1α is essential for hematopoietic stem and progenitor cell survival, but that Ck1α haploinsufficiency does not decrease, and may increase, hematopoietic stem cell function. This finding highlights the potential of preferential elimination of the del(5q) hematopoietic stem cells through Ck1α inhibtion and thus provides a potential therapeutic window. Consistent with this hypothesis, targeting the haploinsufficient kinase activity in vitro with the Ck1α small molecule inhibitor D4476, selectively targets CK1α haploinsufficient cells relative to wild-type cells. Disclosures: Järås: Cantargia: Equity Ownership.


Blood ◽  
2001 ◽  
Vol 98 (7) ◽  
pp. 2028-2038 ◽  
Author(s):  
Zheng Tu ◽  
John M. Ninos ◽  
Zhengyu Ma ◽  
Jia-Wang Wang ◽  
Maria P. Lemos ◽  
...  

SH2–containing inositol 5′-phosphatase (SHIP) modulates the activation of immune cells after recruitment to the membrane by Shc and the cytoplasmic tails of receptors. A novel SHIP isoform of approximately 104 kd expressed in primitive stem cell populations (s-SHIP) is described. It was found that s-SHIP is expressed in totipotent embryonic stem cells to the exclusion of the 145-kd SHIP isoform expressed in differentiated hematopoietic cells. s-SHIP is also expressed in primitive hematopoietic stem cells, but not in lineage-committed hematopoietic cells. In embryonic stem cells, s-SHIP partners with the adapter protein Grb2 without tyrosine phosphorylation and is present constitutively at the cell membrane. It is postulated that s-SHIP modulates the activation threshold of primitive stem cell populations.


Sign in / Sign up

Export Citation Format

Share Document