Azacitidine in Combination with the mTOR Inhibitor Everolimus in Relapsed and Refractory AML

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2599-2599 ◽  
Author(s):  
Andrew H Wei ◽  
Peter T. Tan ◽  
John Catalano ◽  
Patricia A. Walker ◽  
Anthony P. Schwarer ◽  
...  

Abstract Abstract 2599 Background: FLT3-ITD is a major risk factor for relapse and poor clinical outcome in AML. Markedly elevated levels of FLT3 ligand (FLT3L) occur after intensive chemotherapy and in patients with relapsed AML. In addition, elevated circulating FLT3L in relapsed/refractory FLT3-ITD+ AML has been proposed to limit the response to FLT3 inhibitors (Sato T, et al. Blood 2011; 3286). Novel agents including hypomethylating agents and mTOR inhibitors are being investigated as salvage options in AML but their impact on circulating FLT3 ligand is unknown. Aim: To investigate the effect of azacitidine in combination with mTOR inhibitors on FLT3 ligand levels in relation to clinical outcome in relapsed and refractory AML. Methods: A phase Ib/II open label dose escalation study using azacitidine 75 mg/m2 sc daily on days 1–5 and 8–9 of each 28-day cycle with 2.5, 5 or 10 mg everolimus orally on days 5–21. Serum was sampled at baseline and on days 5, 12 19 and 25 of cycle 1 and FLT3 ligand measured quantitated by ELISA. Results: 37 patients, median age 65 years (range 17–78), with relapsed (73%) or refractory (27%) AML, after failing 1 (n=16), 2 (n=13) or 3 (n=8) previous lines of chemotherapy received azacitidine in combination with 2.5mg (n=6), 5mg (n=12) or 10mg (n=19) everolimus. Poor risk karyotype was present in 10/34 (29%) and FLT3-ITD in 4/16 (25%) of those evaluable. Clinical response was 32% (2 CR, 10 PR). At a median follow up of 252 days, median OS is 211 days (194d in primary refractory and 211d in relapsed AML) and median PFS 178 days. 3/5 patients treated for relapsed AML after allo-SCT had clinical responses and remain alive at 245, 252 and 525 days. In comparison to the typically large increase in FLT3L in a patient given intensive HiDAC-based induction chemotherapy (Figure 1), only 4/26 patients given azacitidine + everolimus had FLT3L levels above 1000 pg/ml within the first month of therapy (Figure 2). Furthermore, patients A, B and C (Figure 2) achieved CR, PR or had SD on therapy, suggesting that elevated FLT3L was unlikely to affect the clinical response to this treatment regimen. Finally, of 4 patients with FLT3-ITD+ AML failing prior intensive chemotherapy, absolute changes in the number of bone marrow blasts in those given azacitidine + everolimus were −80%, −85%, +5% and +7%. Conclusion: Azacitidine in combination with the mTOR inhibitor everolimus has notable activity in chemoresistant AML, including those with FLT3-ITD and does not trigger clinically significant changes in circulating FLT3L that may impact on the efficacy of other therapeutic options. Disclosures: Wei: Novartis: Honoraria, Research Funding; Celgene: Honoraria, Research Funding. Schwarer:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen-Cilag: Honoraria; Hospira: Membership on an entity's Board of Directors or advisory committees. Patil:Celgene: Research Funding.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2585-2585 ◽  
Author(s):  
Frauke Theis ◽  
Peter Paschka ◽  
Daniela Weber ◽  
Verena I. Gaidzik ◽  
Lars Bullinger ◽  
...  

Abstract Background: Activating mutations in receptor tyrosine kinases like FLT3 (FLT3mut) lead to an aberrant signal transduction thereby causing an increased proliferation of hematopoietic cells. Internal tandem duplications (FLT3-ITD) or mutations in the tyrosine kinase domain (FLT3-TKD) occur in about 25% of younger adult patients (pts) with acute myeloid leukemia (AML), with FLT3 -ITD being associated with an unfavourable outcome. FLT3mut present an excellent target for small molecule tyrosine kinase inhibitors (TKI). The multi-targeted kinase inhibitor midostaurin (PKC412) is currently under investigation as a FLT3-inhibitor in combination with intensive chemotherapy. Monitoring of the efficacy of such a targeted therapy and correlation of the results with clinical outcome will be of major importance. The plasma inhibitor activity (PIA) assay allows the visualization of the level of dephosphorylation of the target under TKI therapy. Preliminary data suggest a correlation between the grade of dephosphorylation, as a marker for the activity of the TKI, and clinical outcome. Aims: To individually measure the level of FLT3 dephosphorylation by PIA analysis in a large cohort of FLT3-ITD AML pts treated within our AMLSG16-10 trial (NCT: NCT01477606) which combines midostaurin with intensive chemotherapy, and to correlate the results with clinical outcome. Methods: Plasma samples from pts (age 18-70 years) with newly diagnosed FLT3-ITD AML were obtained at different time points for PIA analysis. All pts were enrolled on the ongoing AMLSG 16-10 trial applying intensive therapy in combination with midostaurin (50mg twice a day). For consolidation therapy, pts proceeded to allogeneic hematopoietic stem cell transplantation (alloHSCT) as first priority; pts not eligible for alloHSCT were intended to receive 3 cycles of age-adapted high-dose cytarabine (HiDAC) in combination with midostaurin from day 6 onwards. In all pts one year of maintenance therapy with midostaurin was intended. PIA analyses were performed at defined time points (day 15 of induction, each consolidation cycle, at the end of each treatment cycle, every 3 months during maintenance therapy) as previously described (Levis MJ, et al. Blood 2006; 108:3477-83). Results: So far, PIA analyses were performed in 63 pts (median age, 51.6 years; range, 20-70 years) during (n=63) and after (n=73) first and second induction cycle, during (n=40) and after (n=53) consolidation therapy with HiDAC as well as during maintenance therapy (n=82). During and after induction therapy median levels of phosphorylated FLT3 (p-FLT3) were 46.6% (4.5-100%, <20% in 7.9%) and 39.4% (0.3-100%, <20% in 20.5%), respectively. Co-medication with azoles had no impact on p-FLT3 levels. In pts with a FLT3-ITD mutant to wildtype ratio above our recently defined cut-off value of 0.5, levels of p-FLT3 <20% were associated with a complete remission (CR)-rate of 100%, whereas in those pts with p-FLT3 levels ≥20%, 4 out of 22 pts (18%) had resistant disease. In contrast, response in pts with a mutant to wildtype ratio below 0.5 was independent of the p-FLT3 level. During and at the end of consolidation cycles as well as during maintenance therapy p-FLT3 levels in pts treated with midostaurin were 52% (14.8-100%, <20% in 5%), 63% (7.6-100%, <20% in 7.4%) and 60.2% (11.5-100%, <20% in 3.7%), respectively. In pts concomitantly treated with azoles levels of p-FLT3 were lower without reaching significance. 39 of 63 pts received alloHSCT in first CR; those pts with p-FLT3 levels <20% after induction therapy had an in trend better survival, whereas no impact of phosphorylation levels was evident in pts receiving chemotherapy alone. Conclusion: In our study of FLT3-ITD AML pts treated with midostaurin in combination with intensive chemotherapy we could show that the lowest levels of p-FLT3 were reached during and after induction therapy. In pts with a FLT3-ITD mutant to wildtype ratio >0.5, levels of p-FLT3 <20% during and after induction therapy were associated with a high CR-rate. When receiving alloHSCT these pts had an in trend better survival compared to those with p-FLT3 levels >20%. An update of the data will be presented at the meeting. Disclosures Salwender: Celgene: Honoraria; Janssen Cilag: Honoraria; Bristol Meyer Sqibb: Honoraria; Amgen: Honoraria; Novartis: Honoraria. Horst:Amgen: Honoraria, Research Funding; Pfizer: Research Funding; Ingleheim: Research Funding; Boehringer: Research Funding; MSD: Research Funding; Gilead: Honoraria, Research Funding. Schlenk:Novartis: Honoraria, Research Funding; Boehringer-Ingelheim: Honoraria; Janssen: Membership on an entity's Board of Directors or advisory committees; Daiichi Sankyo: Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Research Funding; Teva: Honoraria, Research Funding; Arog: Honoraria, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1357-1357 ◽  
Author(s):  
Hannah Asghari ◽  
Dasom Lee ◽  
Yehuda E. Deutsch ◽  
Onyee Chan ◽  
Najla Al Ali ◽  
...  

Background: Patients with acute myeloid leukemia (AML) have dismal overall outcomes and survival is exceptionally poor in patients who experience relapse or are refractory (R/R) to frontline therapy. Since December 2018, combination therapy with hypomethylating agents (HMA) and venetoclax (HMA+Ven) has become standard frontline therapy for older patients or younger unfit patients. Moreover, it has been routinely utilized in patients experiencing relapsed or refractory AML yet response and outcome data is limited in patients with R/R disease. Thus, we investigated outcomes after HMA+Ven in patients with relapsed or refractory AML. Methods: We retrospectively annotated 72 patients who received treatment with HMA+Ven at Moffitt Cancer Center and Memorial Healthcare System between 2017 and 2019. Patients were divided into two subgroups: 1) initial remission therapy and 2) salvage therapy. Clinical and molecular data were abstracted in accordance with the Institutional Review Board approved protocol. Overall response rate (ORR) included patients achieving complete remission (CR), CR with incomplete count recovery (CRi), and morphologic leukemia free state (MLFS). Patients achieving CR, CRi, or MLFS were termed as responders (RES) and patients without CR, CRi, or MLFS were nonresponders (NRES). Fisher's Exact method was used to determine significance for categorical variables. Kaplan-Meier analysis was performed to determine median overall survival (mOS) and log-rank test was utilized to determine significance. All p-values are two-sided. Results: Out of 72 patients, 41 received HMA+Ven as initial therapy and 31 received it in the R/R setting. Baseline characteristics are outlined in Table 1. Median age was 63 years for patients with R/R AML with 58% female. In the R/R cohort, ORR was 34.5% with 0 (0%) patients achieving CR, 8 (27.6%) patients achieving CRi, and 2 (6.9%) achieving MLFS (Table 2). When compared to patients receiving HMA+Ven as initial therapy, ORR was significantly lower in the R/R cohort (64.1% vs. 34.5%, p=0.03). Among 31 patients in the R/R cohort, 6.5% (n=2) proceeded to allogeneic stem cell transplant (allo-SCT) after achieving CRi. European LeukemiaNet (ELN) risk stratification was known in 22 patients in the R/R cohort and ORR were similar in patients in the favorable/intermediate risk group (n=8) compared to adverse risk group (n=14) (37.5% vs. 28.6%, p=1.0). When compared to HMA+Ven used as initial therapy, ORR among the R/R cohort were not different among adverse risk groups (58.3% vs. 28.6%, p=0.10); however, ORR were significantly lower among patients with favorable/intermediate risk (100% vs. 37.5%, p=0.009). At a median follow-up of 7.6 months (mo), mOS was 4.9mo in the R/R cohort with mOS among RES superior to NRES (not reached vs. 2.4mo, p=0.0009) (Figure 1). Moreover, mOS was inferior in R/R patients compared to initial therapy (4.9mo vs. 13.8mo, p=0.0013) (Figure 2). A total of 15 (48.4%) patients had HMA exposure prior to receiving HMA+Ven without apparent impact on mOS (3.7mo (prior HMA) vs. 4.9mo (no prior HMA), p=0.97). The median duration of CR/CRi was 5.2mo and the median time to CR/CRi was 2.4mo. Based on ELN risk groups, mOS was not statistically different among patients with favorable/intermediate risk disease compared to adverse risk disease (8.6mo (fav/int) vs. 2.8mo (adverse), p=0.07). Responses were also analyzed based upon somatic mutations (Figure 2). In patients with isocitrate dehydrogenase 1 and 2 mutations (IDH1/IDH2) compared to patients without IDH1/2, ORR were 60% vs. 25%, respectively (p=0.28) with no significant difference in mOS (7.2mo (IDHmut) vs. 3.1mo (IDHwt), p=0.38). Comparing patients with TP53 mutation to those without TP53 mutations, no significant difference in ORR (25% vs. 33%, p=1.0) or mOS (4.4mo vs. 6.9mo, p=0.0.84) was noted. Conclusion: Although combination therapy with HMA+Ven has yielded impressive responses as frontline therapy, response rates with this combination in the salvage setting are less encouraging with the possible exception of those patients with IDH1/IDH2 mutations. Nevertheless, responders to salvage HMA+Ven had a significant survival benefit compared to nonresponders, suggesting that this combination is a reasonable salvage option in patients with relapsed or refractory AML. Disclosures Padron: Incyte: Research Funding. Kuykendall:Incyte: Honoraria, Speakers Bureau; Celgene: Honoraria; Janssen: Consultancy; Abbvie: Honoraria. List:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Lancet:Agios, Biopath, Biosight, Boehringer Inglheim, Celator, Celgene, Janssen, Jazz Pharmaceuticals, Karyopharm, Novartis: Consultancy; Pfizer: Consultancy, Research Funding; Daiichi Sankyo: Consultancy, Other: fees for non-CME/CE services . Sallman:Celyad: Membership on an entity's Board of Directors or advisory committees. Komrokji:JAZZ: Speakers Bureau; JAZZ: Consultancy; Agios: Consultancy; DSI: Consultancy; pfizer: Consultancy; celgene: Consultancy; Novartis: Speakers Bureau; Incyte: Consultancy. Sweet:Abbvie: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Agios: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Speakers Bureau; Jazz: Speakers Bureau; Incyte: Research Funding; Pfizer: Consultancy; Stemline: Consultancy. Talati:Jazz Pharmaceuticals: Honoraria, Speakers Bureau; Daiichi-Sankyo: Honoraria; Astellas: Honoraria, Speakers Bureau; Pfizer: Honoraria; Celgene: Honoraria; Agios: Honoraria. OffLabel Disclosure: Venetoclax is approved in combination with hypomethylating agents (azacitidine or decitabine) or low dose cytarabine for treatment of newly diagnosed AML in adults aged 75 years or older, or those who have comorbidities that preclude the use of induction chemotherapy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3127-3127
Author(s):  
Magali Le Garff-Tavernier ◽  
Claire Quiney ◽  
Lauren Veronese ◽  
Florence Nguyen-Khac ◽  
Pauline Robbe ◽  
...  

Abstract Introduction: The 17p deletion (del(17p)) resulting in loss of the TP53 gene is associated with impaired response to genotoxic agents and has an impact on PFS following BTK inhibitor and possibly also venetoclax. The del(17p) usually coincides with TP53 mutation, leading to the impairment of the p53-associated pathway. Sole TP53 mutations appear also associated with poor outcome in prospective trials. The iwCLL guidelines recommend to look for del(17p) and TP53 mutation before each line of treatment. An original approach is the functional assay, which highlights the functional abnormalities of p53 whether it is a TP53 gene disruption (del(17p) and/or TP53 mutation) or a defect of another actor in the p53 pathway. We aim to validate this functional assay on a prospective trial and to study the impact of p53 status on the clinical response regardless of the biological method. Methods: Clinical and biological data were collected from 74 CLL patients (pts) enrolled in the BOMP phase II trial of the French Innovative Leukemia Organization (FILO) (NCT01612988) evaluating 6 monthly courses of BOMP including bendamustine, ofatumumab and high dose methylprednisolone in fit pts with relapsing CLL. In addition to conventional screening, we focused on p53 evaluation at time of inclusion. FISH analysis for del(17p) was done with a 5% cut-off for positive result. TP53 gene mutation screening was performed by Sanger sequencing of the coding region (exons 2-11). A targeted NGS screening (19 genes including TP53, Illumina MiSeq) was also performed. The p53 functional status was determined by a flow cytometry assay based on induction of p53 and p21 protein expression after etoposide and nutlin-3 exposition, as previously described (Le Garff-Tavernier M., 2011), which allows the detection of 3 types of p53 dysfunction (A, B and C), irrespective of an ATM default. Clinical response was evaluated by PFS, OS and TTNT Kaplan-Meier analyses (MedCalc stat). Results: Data from the whole cohort are available. Median age was 64 yrs. Pts had a median of 1 (1-3) lines of treatment previous to this trial, including FCR in >90%. Concerning p53 evaluation, a del(17p) was found in 30% of cases by FISH (22/73 pts with a median of 68% positive cells, range 10-98). The percentage of p53 abnormalities increased to 41% when TP53 mutations were screened (30/73 pts with 1 to 8 mutations, median VAF 10 %, range 1.6-90). Results from the p53 functional assay were available for 69 pts showing the highest level of p53 abnormalities. Indeed, p53 dysfunction was observed in 48% of pts (33/69) including type A (n=11), type B (n=17) and type C (n=5) dysfunction. Thus, the sensitivity and specificity of the p53 functional assay to detect pts with del(17p) and/or TP53 mutation were of 87% and 84% respectively (n=68 pts for which the 3 tests were available). Interestingly, discordant results were observed in 10 pts: 4 pts with a functional p53 despite a TP53 gene disruption (3 with TP53 mutation only and 1 with del(17p) only) and conversely 6 pts with a p53 dysfunction (all with type B dysfunction) but without any TP53 gene disruption, suggesting alternative alterations of the p53 pathway. The only similarity for those latter pts is the occurrence of at least one ATM abnormality (del(11q) and/or ATM mutation). The combination of the 3 assays defines 3 groups: (1) "intact p53" (no TP53 disruption and functional p53, n=32), (2) "altered p53" (TP53 disruption and p53 dysfunction, n=26) and (3) "discordant p53" (n=10). PFS and TTNT were higher in pts without (n=38) compared to those with TP53 gene disruption (n=30) (p=0.04 for both). The OS, even though not significant, presented a similar trend. When considering the functional status, a similar profile is observed but with a better discrimination between pts with normal p53 function (n=36) and pts with p53 dysfunction (n=32) (p=0.002 and 0.003, respectively). Combining the 3 assays, PFS and TTNT of the group 3 "discordant p53" profiles' appeared intermediate (Figure 1). Conclusion: This study shows that a p53 functional analysis can predict with an acceptable sensitivity the presence of a TP53 gene disruption. Interestingly, this functional assay coupled with cytogenetic and mutational screening could reveal a sub-group of pts with discordant results for which PFS and TTNT appeared intermediate. Evaluation of other discordant cases is mandatory to confirm these results and could lead to a wider use of this global functional approach. Figure 1. Figure 1. Disclosures Feugier: Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Sylvain:Gilead: Other: scientific advisor board. Schuh:Giles, Roche, Janssen, AbbVie: Honoraria. Guieze:abbvie: Honoraria; janssen: Honoraria; gilead: Honoraria. Leblond:Abbvie: Consultancy, Honoraria, Other: Travel, Accommodations, Expenses, Speakers Bureau; Roche: Consultancy, Honoraria, Other: Travel, Accommodations, Expenses, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau; Gilead: Honoraria, Speakers Bureau; Sandoz: Honoraria; Amgen: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5156-5156
Author(s):  
Jill Fulcher ◽  
Zahra Abdrabalamir Alshammasi ◽  
Nathan Cantor ◽  
Christopher Bredeson ◽  
Grace Christou ◽  
...  

INTRODUCTION: Despite accumulating evidence supporting the efficacy of hypomethylating agents in patients with AML and > 30% bone marrow blasts as well as in relapsed/refractory AML, this therapy is not yet funded by National Health Plans / Healthcare Funding Agencies in a number of countries including Canada. The assistance of an industry-sponsored compassionate program has enabled provision of azacitidine for this group of patients at The Ottawa Hospital. We report here our local "real-world" experience of azacitidine efficacy in this diverse group of AML patients and identify a sub-group whose outcomes are equivalent to that of patients with higher-risk Myelodysplastic Syndrome (MDS) and AML with 20-30% blasts for whom azacitidine therapy has funding approval in Canada. METHODS: All patients who received azacitidine at The Ottawa Hospital between 2009 and 2016 were included in this single-center, retrospective analysis. Azacitidine was administered at a dose of 75mg/m2 subcutaneously daily for 7 consecutive days every 28 days. Response was evaluated with a repeat bone marrow aspirate and trephine biopsy after the 6th cycle. In those patients confirmed to have stable or responsive disease, azacitidine was continued until progression of disease, intolerable side-effects of the drug or the patient chose to discontinue therapy. Overall survival curves were generated using the Kaplan-Meier method and log-rank tests were used to compare subgroups of patients. Actuarial median survival months were calculated with 95% confidence intervals (CI). P-values less than 0.05 were considered statistically significant. RESULTS: During the study period, 109 patients received azacitidine: 54 had MDS /AML with 20-30% blasts (the 'funded' group) and 55 had either AML with > 30 % blasts (n=23), AML relapsed post-intensive chemotherapy (n=14), AML relapsed post-allogeneic stem cell transplant (n=10) or primary refractory AML (n=8) (the 'unfunded' group). Median survival of the 'funded' group was 12.2 months while median survival of the 'unfunded' group was 5.6 months (95% CI 3.3-7.7; p=0.0058). Of the AML patients in the 'unfunded' group, 24% completed more than 6 cycles of azacitidine compared to 52% of patients in the 'funded' group. In both the 'funded' and 'unfunded' groups, patients who completed more than 6 cycles of azacitidine had similar survival outcomes (p=0.7277): the 'funded' group had a median survival of 19 months (95% CI 14.4-25.3) while the median survival of this sub-population of the 'unfunded' AML group was 22 months (95% CI 11.7-24.9). Patients in both groups who failed to complete more than 6 cycles of azacitidine also had a similar outcome (p=0.39), with a median survival of 5.7 months (95% CI 4.0-6.3) for patients with MDS/AML 20-30% blasts and 3.6 months (95% CI 2.2-5.1) for AML patients with > 30% blasts or relapsed/refractory disease. Reasons for patients not completing at least 6 cycles of azacitidine included progression of disease (25%), bacterial infections most commonly pneumonia (53%) and patient preference (7%). CONCLUSION: A significant sub-population of AML patients with > 30% blasts or refractory/relapsed AML can achieve a meaningful survival benefit with the hypomethylating agent, azacitidine. A higher proportion of this AML patient population discontinued azacitidine as a result of infective complications. The provision of routine prophylactic antibiotics may enable more patients with AML to receive an adequate amount of azacitidine to achieve therapeutic benefit and warrants further investigation. Our results add to the growing body of 'real-world' evidence that supports healthcare funding agencies to provide coverage of azacitidine for patients with AML who in some countries at present do not fulfill government funding criteria. Disclosures Bredeson: Otsuka: Research Funding. Maze:Pfizer Inc: Consultancy; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees. Sabloff:Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees; ASTX: Membership on an entity's Board of Directors or advisory committees, Research Funding; Actinium Pharmaceuticals, Inc: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer Canada: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Astellas Pharma Canada: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi Canada: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1127-1127
Author(s):  
Dong-Wook Kim ◽  
Camille Granvil ◽  
Eren Demirhan ◽  
John Reynolds ◽  
Yu Jin ◽  
...  

Abstract Abstract 1127 Poster Board I-149 Background In the TOPS study, IM trough levels (Cmin) were collected from different race groups, mainly Caucasian and Asian, but also Black and others. Inter-ethnic differences in the PK of a drug are known to be important factors accounting for inter-individual variation in drug responsiveness. This analysis reports the comparison between Caucasian and Asian CML patients (pts) treated at doses of 400 mg QD and 400 mg bid (800 mg daily) of IM Cmin on Day 29 of initial treatment, clinical response, safety and tolerability. Methods Steady state IM Cmin on Day 29 and clinical response and safety data obtained during the first 12 months (mos) of treatment were obtained from pts randomized 2:1 to 800 mg or 400 mg daily IM. The steady-state Cmin was defined as predose concentration collected approximately within ±3 hours of the scheduled dosing time on Day 29. The associations of race with the rates of major molecular response (MMR) and complete cytogenetic response (CCyR) were evaluated. Correlation of IM exposure with clinical response (MMR and CCyR) was assessed by grouping pts into quartiles based on their measured IM Cmin levels at Day 29. The safety endpoint for each pt was the presence or absence of an adverse event (AE) of grade 3 or higher in the first 12 mos from the first dose. Results IM Cmin levels were available from 229 pts in TOPS including 54 Caucasians, 18 Asians, and 14 Black and others at 400 mg (total 86) and 103 Caucasians, 29 Asians, and 11 Black and others at 800 mg (total 143). For the first 12 mos, the means of the average dose intensities for Asian (mean [range], 362 [267-400] in 400 mg and 666 [226-800] in 800 mg) were not significantly different from Caucasian (386 [204-597] in 400 mg and 666 [289-800] in 800 mg) (P=0.070 and P=0.995 for the 400 mg and 800 mg arms, respectively). Mean (± SD) of IM Cmin levels (ng/mL) with respect to race are shown in Table 1. IM Cmin was slightly over-proportional to dose and showed large interpatient variability (CV=42-60%) for both dose groups regardless of the race group. In the lower quartile Cmin group (Cmin<1290 ng/mL), the differences in CCyR and MMR rates between Asian and Caucasian pts were significant (P=0.031 and P=0.022 respectively), which was probably due to a higher rate of dose interruptions in the 1st 12 mos in Asian pts. A definitive conclusion cannot be drawn due to the small number of Asian pts. Occurrences of at least one grade 3 or 4 adverse event were found to be significantly higher in Asian pts (69% and 75% in the 1st 6 and 12 mos respectively) compared to Caucasian pts (53% and 57% in the 1st 6 and 12 mos respectively) (P=0.028 and P=0.008 respectively). Conclusion The results of this analysis from TOPS show that IM Cmin levels were similar between Caucasian and Asian CML pts in each treatment arm. There were no major differences in efficacy, as measured by MMR and CCyR rates by 12 mos, between Asian and Caucasian pts. There were no unexpected differences in patterns of AEs between Caucasian and Asian pts; however, occurrences of one or more grade 3 AEs were higher in Asian. Further analysis on a larger group of CML pts will be needed to evaluate the impact of AE rate differences between Caucasian and Asian pts. Disclosures Kim: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Wyeth: Research Funding. Granvil:Novartis: Employment. Demirhan:Novartis: Employment. Reynolds:Novartis: Employment. Jin:Novartis: Employment. Wang:Novartis: Employment, Equity Ownership. Baccarani:Novartis Pharma: Consultancy, Honoraria, Research Funding, Speakers Bureau; Bristol-Mayer Squibb: Consultancy, Honoraria, Research Funding, Speakers Bureau. Cortes-Franco:Novartis: Honoraria, Research Funding, Speakers Bureau; Wyeth: Honoraria, Research Funding, Speakers Bureau; BMS: Honoraria, Research Funding, Speakers Bureau. Druker:OHSU patent #843 - Mutate ABL Kinase Domains: Patents & Royalties; MolecularMD: Equity Ownership; Roche: Consultancy; Cylene Pharmaceuticals: Consultancy; Calistoga Pharmaceuticals: Consultancy; Avalon Pharmaceuticals: Consultancy; Ambit Biosciences: Consultancy; Millipore via Dana-Farber Cancer Institute: Patents & Royalties; Novartis, ARIAD, Bristol-Myers Squibb: Research Funding. Hughes:Bristol-Myers Squibb: Advisor, Honoraria, Research Funding; Novartis: Advisor, Honoraria, Research Funding. Guilhot:Novartis: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2089-2089 ◽  
Author(s):  
Mark Kirschbaum ◽  
Ivana Gojo ◽  
Stuart L. Goldberg ◽  
Lisa Kujawski ◽  
Ehab Atallah ◽  
...  

Abstract Abstract 2089 Poster Board II-66 Introduction: Although the introduction of epigenetic therapies, such as the DNA methyltransferase inhibitor (DNMT) decitabine, has improved options for the treatment of myeloid malignancies, use is limited by sub-optimal response rates. Therefore, there remains a need for more effective treatment strategies to improve outcomes in AML/MDS. Preclinical and clinical data suggest that broadening epigenetic targeting by adding histone deacetylase (HDAC) inhibitors to DNMTs may improve responses. In addition, it has been reported that outcomes may differ according to the sequence in which HDAC and DNMT inhibitors are combined. Aim: Here we present preliminary data from a Phase I, open-label, multicenter, dose-escalating study, designed to determine the maximum-tolerated dose (MTD) and recommended Phase II dose of the HDAC inhibitor vorinostat combined either concurrently or sequentially with decitabine in patients (pts) with AML/MDS. Other endpoints include tolerability and exploratory assessments of activity. Methods: Pts (≥18 years) with intermediate-high risk MDS, relapsed/refractory AML, or untreated AML (≥60 years; unsuitable for standard chemotherapy), with an ECOG performance status of ≤2, were enrolled into one of six dosing levels (Table) and received treatment for up to 24 months or until disease progression (PD). Results: As of August 3, 2009, 72 pts have entered the study: median age was 68 years (range 18-85) and 58% were male. To date, 69 pts have discontinued due to PD/lack of efficacy (n=37), withdrawal of consent (n=12), adverse events (AEs) (n=16), physician decision (n=3), and protocol deviation (n=1). Of 70 pts evaluable for safety, 69 experienced AEs, the majority of which were Grade 1/2 in severity and included nausea (n=48), diarrhea (n=41), fatigue (n=36), constipation (n=32), and vomiting (n=28). 62 (89%) pts experienced treatment-related AEs and 17 (24%) pts experienced treatment-related serious AEs. 14 deaths occurred during the study, although none were related to study treatment. One dose-limiting toxicity, prolonged QT interval, was documented in dose level 3a. Combinations of vorinostat and decitabine in the schedules in this protocol did not reach MTD. As per protocol, dose levels 3 and 3a were the maximum administered doses and have been expanded. Of the 61 pts evaluable for response, 11 had MDS, 25 had relapsed/refractory AML, and 25 had untreated AML. In pts with MDS receiving concurrent therapy (n=5), complete remission (CR) was achieved in 2 pts, stable disease (SD) in 1 pt, partial remission (PR) in 1 pt, hematologic improvement (HI) in 1 pt; all 6 of the pts who received sequential treatment experienced SD. In pts with relapsed/refractory AML receiving concurrent therapy (n=12), CR was achieved in 1 pt, CR without recovery of counts (CRi) in 1 pt, HI in 1 pt, SD in 6 pts, while 3 pts had PD; in those receiving sequential therapy (n=13), SD was achieved in 9 pts while 4 had PD. In pts with untreated AML receiving concurrent therapy (n=12), CR was achieved in 4 pts, CRi in 1 pt, PR in 1 pt, and SD in 6 pts, and in those receiving sequential therapy (n=13), CR was achieved in 2 pts, CRi in 2 pts, PR in 1 pt, HI in 2 pts, and SD in 5 pts. Overall, CR or CRi was achieved by 18% pts with MDS, 8% with relapsed/refractory AML, and 36% with untreated AML; and HI was reported in 9% pts with MDS, 4% with relapsed/refractory AML, and 8% with untreated AML. Conclusion: These preliminary data indicate that the combination of vorinostat with decitabine, either concurrently or sequentially, is possible without significant toxicity. In addition, the combination shows promising activity in MDS and untreated AML. Disclosures: Kirschbaum: Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celegene: Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Off Label Use: Vorinostat is a histone deacetylase (HDAC) inhibitor that was approved in the FDA in October 2006 for the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma (CTCL) who have progressive, persistent, or recurrent disease on or following two systemic therapies. Goldberg:Merck: Research Funding. Marks:Merck: Research Funding. Di Gravio:Merck: Employment, Equity Ownership. Pyle:Merck: Employment, Equity Ownership. Rizvi:Merck: Employment, Equity Ownership. Issa:Eisai: Consultancy, Research Funding; Celegene: Research Funding; MGI Pharma: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3876-3876 ◽  
Author(s):  
Andrzej J Jakubowiak ◽  
William Bensinger ◽  
David Siegel ◽  
Todd M. Zimmerman ◽  
Jan M. Van Tornout ◽  
...  

Abstract Abstract 3876 Poster Board III-812 Background Elotuzumab is a humanized monoclonal IgG1 antibody directed against CS1, a cell surface glycoprotein, which is highly and uniformly expressed in multiple myeloma (MM). In mouse xenograft models of MM, elotuzumab demonstrated significantly enhanced anti-tumor activity when combined with bortezomib compared to bortezomib alone (Van Rhee et al., Mol. Cancer Ther., in press, 2009). This phase 1/2 trial will determine the maximum tolerated dose (MTD), overall safety, pharmacokinetics (PK) and clinical response of elotuzumab in combination with bortezomib in patients with relapsed MM following 1-3 prior therapies. Methods The study consists of 4 escalating cohorts of elotuzumab (2.5 mg/kg to 20 mg/kg) administered on Days 1 and 11 and bortezomib (1.3 mg/m2) administered on Days 1, 4, 8 and 11 of a 21-day cycle. Patients with progressive disease at the end of Cycle 2 or 3 also receive oral dexamethasone (20 mg) on Days 1, 2, 4, 5, 8, 9, 11 and 12 of each subsequent cycle. Patients with stable disease or better at the end of 4 cycles will continue treatment for 6 or more cycles unless withdrawn earlier due to unexpected toxicity or disease progression. Key entry criteria: age ≥ 18 years; confirmed diagnosis of MM and documentation of 1 to 3 prior therapies; measurable disease M-protein component in serum and/or in urine; and no prior bortezomib treatment within 2 weeks of first dose. Results To date, a total of 16 MM patients with a median age of 64 years have been enrolled in the study. The median time from initial diagnosis of MM was 3.5 years and patients had received a median of 2 prior MM treatments. Patients have been treated in four cohorts; 3 each in 2.5, 5 and 10 mg/kg elotuzumab cohorts, and 7 in the 20 mg/kg elotuzumab cohort. No dose limiting toxicity (DLT) was observed during the first cycle of the study and the MTD was not established. Five SAEs have been reported in four patients in later treatment cycles; two events, chest pain and gastroenteritis, occurring in one patient, were considered elotuzumab-related. Other SAEs include grade 3 sepsis, vomiting, pneumonia and grade 2 dehydration. The most common AEs reported include Grade 1-3 diarrhea, constipation, nausea, fatigue, thrombocytopenia, neutropenia, anemia and peripheral neuropathy. The best clinical response (EBMT criteria) for the 16 patients who have received at least two cycles of treatment is shown in the table below. Preliminary PK analysis suggests a serum half-life of 10-11 days at higher doses (10 and 20 mg/kg). Preliminary analysis of peripheral blood mononuclear cells and bone marrow of patients on study indicates that objective responses in the study correlate well with complete saturation of CS1 sites by elotuzumab on bone marrow plasma and NK cells. Conclusions The combination of elotuzumab with bortezomib has a manageable adverse event profile and shows promising preliminary efficacy with ≥PR in 44% and ≥MR in 75% of all enrolled patients. Accrual is ongoing in the expanded 20 mg/kg cohort. Updated safety, efficacy, and PK data will be presented at the meeting. Disclosures: Jakubowiak: Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Centocor Ortho Biotech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Exelixis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Off Label Use: Bortezomib in combination with elotuzumab for the treatment of relapsed/refractory multiple myeloma. Bensinger:Millennium: Membership on an entity's Board of Directors or advisory committees. Siegel:Millennium: Speakers Bureau; Celgene: Speakers Bureau. Zimmerman:Millennium: Speakers Bureau; Centecor: Speakers Bureau. Van Tornout:BMS: Employment. Zhao:Facet Biotech: Employment. Singhal:Facet Biotech: Employment. Anderson:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2406-2406
Author(s):  
Neil E. Kay ◽  
Jeanette Eckel Passow ◽  
Esteban Braggio ◽  
Scott Van Wier ◽  
Tait Shanafelt ◽  
...  

Abstract Abstract 2406 The outcome for a given CLL patient is difficult to predict. While there are promising models, they require collation of multiple clinical and laboratory parameters, and it remains to be seen whether they will apply to typical CLL patients in the community. To further dissect out explanations for this dramatic clinical heterogeneity, we sought to understand genomic complexity of clonal B-cells as a possible explanation of clinical variability with specific application to genomic complexity as a predictor of therapeutic response and clinical outcome in CLL. Thus we wished to identified global gains and losses of genetic material in order to define copy-number abnormalities (CNA) in 48 clinically progressive CLL patients who were about to be treated on a chemoimmunotherapy protocol. This protocol was previously reported by us (Blood. 109:2007) and had an induction phase with pentostatin (2 mg/m2), cyclophosphamide (600 mg/m2) and rituximab (375 mg/m2) given every 3 weeks for 6 cycles and then responding patients were followed ever three months until relapse. In order to estimate CNA, we employed array-based comparative genomic hybridization (aCGH) using a one-million oligonucleotide probe array format on the leukemic B-cells from the 48 patients entering this trial. In those same patients, the aCGH data were compared to a) FISH detecxtable data using a panel for the common recurring genetic defects seen in CLL and b) to their clinical outcome on this trial. With aCGH we found that 288 CNA were identified (median of 4 per patient; range 0–32) of which 215 were deletions and 73 were gains. The aCGH method identified most of the FISH detected abnormalities with a complete concordance for 17p13.1- deletion (17p-) between aCGH and FISH. We also identified chromosomal gain or loss in ≥6% of the patients on chromosomes 3, 8, 9, 10, 11, 12, 13, 14 and 17. We found that CLL patients with ≥15 CNA had a significantly worse progression free survival (PFS) than patients with <15 CNA (p=0.004)(figure). Patients with ≥15 CNA also had a shorter duration of response than those with <15 CNA (p=0.0726). Of interest, more complex genomic features were found both in patients with a 17p13.1 deletion and in more favorable genetic subtypes such as 13q14.1. Thus, for 5 patients with >15 CNAs the following FISH patterns were seen: +12/13q14.1-x1/13q14.1 -x2, 13q14.1 ×1 (n=2), and 17p13.1 (n=2). In addition, a 17p- by FISH was positively associated with the number of CNA and total deletion size. The odds of having an overall response decreased by 28% (95% CI: 5–55%; p=0.015) with each additional CNA for the 17p13.1- patients. In addition to defining genomic complexity as the total number of CNA for each patient, we also defined complexity as the sum of the lengths of all interstitial chromosomal gains and losses. When defined as the total size of chromosomal gains or losses, genomic complexity was significantly associated with 17p13.1 and worse overall clinical response. In summary, this analysis utilized the global assessment of copy number abnormalities using a high-resolution aCGH platform for clinically progressive CLL patients prior to initiation of their treatment. One outcome was that we found higher genomic complexity was associated with shorter progression-free survival, reduced duration of response and predicted a poor response to treatment. In addition since we did find genomic complexity in more traditionally favorable FISH categories, such as 13q14.1 type defects, this may explain why some of the latter patients do not fare as well as might be expected even with aggressive chemoimmunotherapy approaches. This study adds information on the association between inferior trial response and increasing genetic complexity as CLL progresses. Disclosures: Off Label Use: Pentostatin. Kipps: GlaxoSmithKline: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Genzyme: Research Funding; Memgen: Research Funding; Igenica: Consultancy, Membership on an entity's Board of Directors or advisory committees; Sanofi Aventis: Research Funding; Abbott Laboratories: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2916-2916
Author(s):  
Diana Cirstea ◽  
Teru Hideshima ◽  
Loredana Santo ◽  
Homare Eda ◽  
Miriam Canavese ◽  
...  

Abstract Abstract 2916 Inhibition of the PI3K/mTOR pathway is a promising therapeutic strategy in targeting multiple myeloma (MM) cells in the bone marrow (BM) microenvironment, which abnormally activates PI3K/mTOR signaling cascade mediating proliferation, anti-apoptosis and drug resistance. Exploring the targeting of PI3K/mTOR pathway has led to the development of different therapeutic approaches; however, mTORC1 inhibitors (i.e., temsirolimus and everolimus) have demonstrated only modest activity as single agents. In this regard, several mechanisms underlying rapamycin resistance, including mTOR/S6K1-mediated feedback loops resulting in activation of PI3K/Akt and ERK signaling, have been proposed. Importantly, recent studies have identified mTOR kinase and the mTOR-DEPTOR counter-regulatory cascade as key mediators of mTORC1 and mTORC2 multi-protein complexes, with differential sensitivity to rapamycin. Indeed, targeting DEPTOR/mTORC1/mTORC2 signaling by inhibition of mTOR kinase proved an effective strategy to overcome some of the limitations of TORC1 inhibition in MM cells, evidenced in our studies of the novel dual mTORC1 and mTORC2 selective inhibitor AZD8055. Unlike rapamycin, AZD8055 induced apoptosis and inhibited MM cell growth even when co-cultured with cytokines (i.e., IL-6, IGF1) or BMSCs, presumably through simultaneous suppression of mTORC1 and mTORC2 signaling including the rapamycin-resistant 4E-BP1 (downstream of mTORC1) and Akt as well as NDRG1 (effectors of mTORC2). We examined mRNA and protein level of DEPTOR in MM cell lines treated with AZD8055 versus rapamycin and observed no significant changes. To examine the functional significance of DEPTOR in response to mTOR inhibitors, we utilized lentiviral shRNA to knockdown DEPTOR in OPM1 MM cells. DEPTOR-knockdown cells acquired resistance to AZD8055 treatment, suggesting that DEPTOR is a key modulator of mTORC1/2 signaling. Moreover, DEPTOR knockdown triggered decrease in Akt phosphorylation (Ser473), associated with suppression of Rictor phosphorylation (Thr1135). DEPTOR co-immunoprecipitation with Rictor was also abrogated by both AZD8055 and rapamycin treatment. Taken together, our results indicate the role of DEPTOR, either alone or as an mTOR/Rictor interacting molecule, in mediating the anti-MM activity induced by mTOR kinase inhibitors in MM cells. These data therefore both provide insights into the molecular profiles that may predict sensitivity/resistance to second generation of mTOR inhibitors in MM, and may be useful to select MM patients for mTOR inhibitor therapy. Disclosures: Hideshima: Acetylon: Consultancy. Anderson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees; Merck: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Acetylon: Membership on an entity's Board of Directors or advisory committees. Guichard:AstraZeneca, UK: Employment, Shares from AstraZeneca, UK. Raje:Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Acetylon: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 689-689
Author(s):  
John S. Welch ◽  
Allegra Petti ◽  
Christopher A. Miller ◽  
Daniel C. Link ◽  
Matthew J. Walter ◽  
...  

Abstract To determine how AML subclonal architecture changes during decitabine treatment, and whether specific mutations might correlate with sensitivity vs. resistance to decitabine, we performed exome sequencing at multiple time points during single agent decitabine therapy. We enrolled 69 patients with either AML (age ≥ 60, or with relapsed/refractory disease, N = 45) or MDS (N = 24) on a phase I clinical trial. All subjects were treated with decitabine 20 mg/m2 on days 1-10 of 28 day cycles. With a median follow-up of 13.7 months, the intention to treat clinical response (complete remission with or without complete count recovery: CR/CRi) is 40%, with survival correlating with response (median survival - CR/CRi: 583 days; partial response/stable disease (PR/SD): 260 days; progressive disease (PD) or failure to complete cycle 1: 36 days, p < 0.0001). We performed exome sequencing on unfractionated bone marrow cells at diagnosis (day 0), cycle 1 day 10, cycle 1 day 28, cycle 2 day 28, and, when possible, during remission and at clinical relapse/progression. We have completed sequencing analysis for the first 34 cases (outcomes: 5 CR, 15 CRi, 3 PR, 8 SD, and 3 PD). Several important themes have emerged, as follows: 1) We correlated mutation status at diagnosis with clinical response. All six patients with TP53 mutations obtained clinical CR or CRi, and exome analysis demonstrated near complete elimination of the TP53- associated founding clones by the end of cycle 2 (p < 0.03). Long-term outcomes were similar in these patients compared with other patients who achieved CR/CRi: four patients relapsed after 8, 9, 10, or 17 cycles; 1 patient is doing well post-transplant; and one patient died of an infectious complication after cycle 2. No other mutations were significantly associated with clinical response or with consistent mutation clearance. 2) We observed a reduction in blast counts, which preceded mutation elimination in fourteen cases with CR, CRi or PR. This suggests that decitabine may induce morphological blast differentiation in vivo prior to mutation elimination. 3) In eight of nine cases with a clinical response followed by relapse, clinical progression was associated with expansion of a pre-existing subclone. We have not yet observed any recurrent mutations that reliably predict whether a subclone will contribute to relapse. Intriguingly, in two of these cases, the relapse-associated subclone was detectable at diagnosis and was eliminated more slowly than the founding clone mutations, suggesting that this subclone harbored intrinsic decitabine-resistance. 4) Complete remission can occur with concomitant non-malignant, clonal hematopoiesis. In three cases with a CR, a new clonal population was selected for during the remission. In two of these cases, there were no shared mutations between the founding clone and the emergent, non-malignant, clonal hematopoiesis, suggesting that these clones were unrelated. 5) Mutational architecture is generally stable, but differential chemo-sensitivity can be detected even between subclones in the same patient. In ten cases with PR or SD, we observed minimal shifts within the mutational burden over the course of eight weeks, suggesting that "clonal drift" is a relatively slow process. However, in four cases with SD, what appeared clinically to be simple persistent disease was in fact a dynamic elimination of one subclone, and its replacement by a different subclone. Similarly, in three cases with CRi, we observed rapid clearance of a subclone with slower clearance of the founding clone, again suggesting differential chemo-sensitivity among subclones. 6) Finally, we correlated pharmacologic markers with clinical outcomes. We observed no correlation between steady-state plasma decitabine levels and clinical responses. Using Illumina 450k methylation arrays, we observed a correlation between response and the extent of decitabine-induced hypomethylation in total bone marrow cells that persisted on cycle 1 day 28 (p < 0.01), but not on cycle 1 day 10 (p < 0.1). In summary, these data reveal that response to decitabine is associated with morphologic blast clearance before mutations are eliminated, that relapse is associated with subclonal outgrowth that may be identified early in the treatment course, and that TP53 mutations may be predictive of rapid clinical responses, although, like most responses to decitabine, these are not necessarily durable. Disclosures Off Label Use: Decitabine treatment of AML.. Uy:Novartis: Research Funding. Oh:CTI Biopharma: Membership on an entity's Board of Directors or advisory committees; Incyte: Membership on an entity's Board of Directors or advisory committees. Abboud:Novartis: Research Funding; Gerson Lehman Group: Consultancy; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Pfizer: Research Funding; Merck: Research Funding; Teva Pharmaceuticals: Research Funding. Cashen:Celgene: Speakers Bureau. Schroeder:Celgene: Other: Azacitidine provided for this trial by Celgene; Incyte: Consultancy. Jacoby:Sunesis: Research Funding; Novo Nordisk: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document