Rational Drug Design: Proteasome Inhibitor Mediated Down-Regulation of the FA/BRCA Pathway Is Synergistic with PARP Inhibition in Myeloma Cell Lines

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2922-2922
Author(s):  
Liang Nong ◽  
Linda Mathews ◽  
Mark B Meads ◽  
William Dalton ◽  
Kenneth H. Shain

Abstract Abstract 2922 The development of new and biologically-based therapeutic regimens is critical for the successful control, if not cure, of multiple myeloma. Incorporation of the novel agents, including the proteasome inhibitor bortezomib, harbored large strides in disease modification. However, even with the success of bortezomib containing regimens, drug resistance and disease relapse remain inevitable. As such, it is critical that we use preclinical models to not only develop drugs, but also to consider strategies for co-development of novel drug combinations capitalizing on complementary biological activities. Our investigations in drug resistance recently revealed that increased homologous recombination (HR) potential, via over-expression of the FA/BRCA DNA repair pathway (FA/BRCA pathway), contributed to acquired melphalan-resistance in myeloma cell lines.(Yarde et al 2009) Drug resistance was causally linked to a novel transcriptional regulation of the FA/BRCA by NF-κB. Further examination demonstrated that bortezomib attenuated this component of the HR repair pathway and reversed melphalan resistance. To this end, we anticipated that bortezomib treatment may sensitize cells to inhibitors of complementary DNA repair pathways in a manner similar to the synthetic lethality elicited in by PARP1/2 inhibition in BRCA1 or FANCD1/ BRCA2 mutant cancers.(Farmer 2005, Bryant 2005) Consistent with this rationale, treatment of myeloma cells with bortezomib and the PARP inhibitor AZD2281/olaparib demonstrated synergism in specific myeloma cell lines. Pre-treatment of RPMI8226 myeloma cells with bortezomib for 6 hours greatly enhanced myeloma cell sensitivity to PARP inhibition with AZD2281/olaparib. The inhibitory concentration(IC)-50 was decreased by 17.7-fold (n=3; IC50 AZD2281 alone: 62.7 microM (39.0–84.0) and pretreated with bortezomib 3.54 microM (2.4–4.6)). Combination Index (CI) demonstrated a mean of 0.41 in 8226 and 0.43 in U266 myeloma cells, consistent with a synergistic relationship. Further analysis confirmed that synergism correlated with decreased expression of FANCD2 mRNA and protein by 6 hours. In contrast to sequential treatment, concomitant treatment with these agents did not elicit the synergistic phenotype. Interestingly, sequential treatment of NCIH929 myeloma cells did not demonstrate the same synergistic response (CI :0.89, slight synergism). Consistent with this, treatment of NCIH929 cells with bortezomib did not negatively regulate FANCD2 mRNA or protein expression, suggesting that FA/BRCA pathway can be differentially regulated in myeloma cells. To more specifically determine if FANCD2 was a key factor regulated by bortezomib, we targeted FANCD2 with siRNA. Pretreatment of myeloma cells with FANCD2 siRNA also sensitized cells to AZD2281/olaparib relative to siRNA control (IC50: 19.0 microM vs 35.0 microM n=4; p<0.05). These results show that bortezomib (or other proteosome inhibitors) and AZD2281/olaparib (or other PARP inhibitors) may represent an exciting new combination therapy for myeloma. We are currently examining the applicability of these studies to other proteosome inhibitors and the clinical relevance with ex vivo studies with myeloma patient samples. We believe that data presented here are innovative as they introduce a novel biological rationale, the abrogation complementary pathways in DNA damage repair, for the preclinical development of novel targeted drug combinations in myeloma. Further, we anticipate that although this study has focused on multiple myeloma, the results of the proposed research will be applicable to a wide range of hematologic and solid tumors. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4337-4337
Author(s):  
Chang-Xin Shi ◽  
Yuan Xiao Zhu ◽  
Laura Ann Bruins ◽  
Cecilia Bonolo De Campos ◽  
William Stewart ◽  
...  

Background Bortezomib (BTZ) is highly effective in the treatment of multiple myeloma; however, emergent drug resistance is common. The underlying mechanisms of such proteasome inhibitor resistance are still incompletely understood. Methods To further understand its resistant mechanism, we generated eight multiple myeloma (MM) cell lines resistant to bortezomib (BTZ) by exposure to increasing drug concentration: five of them acquired novel PSMB5 mutations. Given the rarity of similar mutations in over 1,500 analyzed MM patients, we explored in depth the role of the proteasome on MM cell viability and BTZ sensitivity by systematically deleting the major proteasome targets of BTZ by CRISPR. Results We demonstrated that MM cell lines without PSMB5 were surprisingly viable (mutation corresponding yeast gene pre2 is lethal). PSMB5 mutated, BTZ resistant, MM cell lines were re-sensitized to BTZ when PSMB5 was experimentally deleted, implying that this mutation is activating in its drug resistance function. In contrast PSMB6 knockout was lethal to MM cell lines, which were efficiently rescued by re-introduction of wild type PSMB6. Interestingly, reduction in PSMB6 levels also prevented the splicing of the major catalytic subunits PSMB5, PSMB7, PSMB8 and PSMB10. PSMB6 engineered with no splicing function or catalytic activity, also restored viability, inferring that the contribution of PSMB6 to proteasome structure is more important than functional activity. Supporting this observation, BTZ sensitivity was restored in resistant MM cells line by introducing low level expression of mutated PSMB6 lacking splicing function. As with PSMB6, PSMB7 knockout was lethal to MM cell lines. In contrast, loss of immunoproteasome subunits PSMB8 and PSMB9 was neither lethal nor restored sensitivity to BTZ. Our results demonstrate that expression of the three constitutive proteasome subunits PSMB5, PSMB6 and PSMB7 is highly co-dependent. This dependence is relying on the structure, but not the function, of PSMB5 and PSMB6. Conclusions In summary, PSMB5 and PSMB6, but not PSMB8 and PSMB9, are highly relevant for BTZ sensitivity in MM. Absence of PSMB6 or PSMB7, but not PSMB5, was lethal in MM cell lines. Expression of PSMB5, PSMB6 and PSMB7 was highly co-dependent. Together these findings suggest that the modulation of expression rather than function of PSMB5, PSMB6 or PSMB7 may be a new therapeutic strategy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4344-4344
Author(s):  
Seiichi Okabe ◽  
Yuko Tanaka ◽  
Mitsuru Moriyama ◽  
Akihiko Gotoh

Introduction: Multiple myeloma (MM) is one of the hematological malignancy and characterized by the clonal expansion of plasma cells in the bone marrow. The treatment of MM patients has been dramatically changed by new agents such as proteasome inhibitors and immunomodulatory drugs, however, many patients will relapse even if new agents provide therapeutic advantages. Therefore, a new strategy is still needed to increase MM patient survival. Hypoxia is an important component of the bone marrow microenvironment. Hypoxia may increase myeloma cell survival. Because cells shift primarily to a glycolytic mode for generation of energy in hypoxic conditions, glycolytic activities can be targeted therapeutically in MM patients. The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) is responsible for maintaining the cellular levels of fructose-2,6-bisphosphate which is a regulator of glycolysis. Materials and Methods: In this study, we investigated whether PFKFB was involved in myeloma cells in hypoxia condition. We also investigated whether PFKFB inhibitors could suppress myeloma cells and enhance the sensitivity of myeloma cells to proteasome inhibition. Results: We first investigated the expression of PFKBP in the myeloma cell lines in hypoxia condition. PFKFB family contains four tissue-specific isoenzymes encoded by four different genes. We found expression of PFKBP3 and PFKBP4 were increased in hypoxia condition. We found gene expression of PFKBP3 and PFKBP4 were involved in myeloma cell lines and myeloma patient samples in hypoxia condition from the public microarray datasets (GSE80140 and GSE80545). In hypoxia condition, expression of hypoxia-inducible factor 1α (HIF1α) was increased and phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was activated in myeloma cell lines. Expression of PFKBP3 and PFKBP4 were inhibited by HIF1α inhibitor and p38 MAPK inhibitor treatment. In the hypoxia condition, activity of proteasome inhibitors were reduced compared to normoxia condition. We next investigated whether PFKBP3 inhibitor, PFK158 and PFKBP4 inhibitor, 5MPN could inhibit the proliferation of myeloma cells. We found PFK158 and 5MPN treatment inhibited the growth of myeloma cells in a dose dependent manner in hypoxia condition. Combined treatment of myeloma cells with carfilzomib and PFK158 or 5MPN caused more cytotoxicity than each drug alone. Caspase 3/7 activity and cellular cytotoxicity was also increased. We found proteasomal activity was also reduced by carfilzomib and PFK158 or 5MPN treatment. Adenosine triphosphate (ATP) is the most important source of energy for intracellular reactions. Intracellular ATP levels drastically decreased after carfilzomib and PFK158 or 5MPN treatment. Because mitochondria generate ATP and participate in signal transduction and cellular pathology and cell death. The quantitative analysis of JC-1 stained cells changed mitochondrial membrane potential in cell death, which were induced by carfilzomib and PFK158 or 5MPN on myeloma cells. In the hypoxia condition and inhibitor treatment, glycolytic activities (e.g. glucose and lactate) were changed in myeloma cells. Conclusion: The PFKBP3 and PFKBP4 are enhanced in hypoxia condition and involved in proteasome inhibitor sensitivity. Our data also suggested that administration of PFKBP3 and PFKBP4 inhibitors may be a powerful strategy against myeloma cells and enhance cytotoxic effects of proteasome inhibitors in hypoxia condition. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1889-1889
Author(s):  
Elena Viziteu ◽  
Bernard Klein ◽  
Angelique Bruyer ◽  
Dirk Hose ◽  
Hartmut Goldschmidt ◽  
...  

Abstract Multiple Myeloma (MM) is a still lethal disease in 2013 characterized by the accumulation in the bone marrow of a clone of malignant plasma cells. Recent studies have shown that epigenetic modifications play a role by silencing various cancer-related genes in MM. We initiated a microarray-based genome-wide screen for genes responding to DNMT inhibition in MM cells and built a “DNA methylation gene score” that makes it possible identification of myeloma patients that will be sensitive to DNMT inhibitors. Among the genes regulated by DNMT inhibitor and associated with the worst prognostic value in patients, RECQ1 was identified. RECQ helicase are DNA unwinding enzymes involved in the maintenance of chromosome stability. RECQ1 is highly expressed in various types of solid tumors. RECQ1 silencing in cancer cells results in mitotic catastrophe and prevents tumor growth in murine models. In glioblastoma cells, depletion of RECQ1 induces reduction in cellular proliferation, spontaneous γ-H2AX foci formation and hypersensitivity to drugs. Furthermore, it was described that RECQ1 protein could interact with MSH proteins, RAD51 and PARP1 involved in DNA repair pathways. RECQ1 protein is expressed in human myeloma cell lines (HMCLs) and primary myeloma cells of patients. In four HMCLs (XG2, XG7, XG19 and LP1), RECQ1 was downregulated by conditional shRNA expression through lentiviral delivery. RECQ1 knock down inhibits growth of myeloma cells, induces 53BP1 foci formation and apoptosis. RECQ1 depletion sensitizes myeloma cells to DNA alkylating agent (melphalan) but not to corticosteroid (dexamethasone) or proteasome inhibitor (bortezomib). Using immunoprecipitation of myeloma cell nuclear proteins with anti-RECQ1 antibody, RECQ1 was shown to interact with PARP1 but not RAD51 or MSH2. An increased association of the two proteins was found upon DNA damages induced by melphalan. In agreement, RECQ1 depletion sensitizes myeloma cell lines to the PJ34 hydrochloride hydrate PARP inhibitor. In conclusion, RECQ1 could represent a biomarker of drug resistance in MM, which is targeted by DNMT inhibitor. This suggests association of alkylating agents and/or PARP inhibitors with DNMT inhibitor may represent a promising therapeutic approach. Disclosures: Goldschmidt: Celgene and Janssen: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1787-1787
Author(s):  
Sho Ikeda ◽  
Fumito Abe ◽  
Matsuda Yuka ◽  
Akihiro Kitadate ◽  
Takahiro Kobayashi ◽  
...  

(background) The drug resistance of multiple myeloma (MM) cells is thought to be induced by various factors of the bone marrow microenvironment. Of these factors, hypoxic stress may be associated with drug resistance in various hematologic malignancies, including MM. Hypoxic stress lead MM cells to induce distinct gene expressions. It has been reported that oncogenic transcription factors such as IRF4 and Myc are suppressed under hypoxia. Instead, accumulation of another transcription factor, HIF-1α upregulates anti-apoptotic proteins, increases glycolysis, and enhances neovascularization leading MM cells to represent anti-apoptotic phenotype. Autophagy is an intracellular process that encapsulates cytoplasmic components, which are directed to the lysosome for degradation. Autophagy and proteasomal degradation prevent apoptosis caused by endoplasmic reticulum (ER) stress. Although proteasome inhibitor such as bortezomib, is a key drug for MM, it may induce treatment resistance. This might be because autophagy is induced in hypoxic microenvironment. Autophagy associated molecules might be therapeutic target in MM cells adapted to hypoxia. (Aim and methods) To clarify the association of hypoxia inducible genes and autophagy, and to obtain rational basis for a new therapeutic strategy against MM, we performed following experiments in vitro using myeloma cell lines (MM.1S, KMS-12-PE, KMS-11, and H929) and primary samples (n=6) that were subjected to hypoxia (1% O2). (Results) First, we examined volcano plot analysis on our cDNA microarray data (GSE80545) of patient samples incubated in normoxia or hypoxia for 48 hours. 546 probes were significantly elevated in hypoxia (fold change > 2.0, p < 0.05). Gene ontology analysis revealed that "Glycolytic Process" contained 13 genes such as PFKFB4, ENO2, ALDOC, PFKFB3, HK2, PFKP, GPI, PGK1, LDHA, ALDOA, ENO1, PKM, and GAPDH. We focused on hexokinase-2 (HK2) because it has been reported that HK2 activates autophagy under stress conditions. Western blot analysis for patient samples revealed that HK2 expression was remarkably upregulated under hypoxia. Apoptosis assay showed that viable cells of HK2 knockdowned cell lines were significantly lower than that of control cells under hypoxia, but not under normoxia. Also, in hypoxia, we found that number of 3-bromopyruvate (3-BrPA, a HK2 inhibitor) subjected viable cells were significantly lower than that of normoxia. This suggested that HK2 contributes to anti-apoptotic phenotype of MM cells under hypoxia. Next, we examined the role of HK2 in autophagy under hypoxia. Because degradation of p62 and increase of LC3-II/LC3-I ratio is considered to be useful for autophagy detection, we examined these factors by Western blot analysis. We found that hypoxic stress decreased expression of p62 and increased the ratio of LC3-II/LC3-I in myeloma cell lines, indicating that hypoxia activates autophagy. However, under hypoxia, these changes were canceled by HK2 knockdown. We confirmed that the number of autophagosome were significantly decreased in HK2-knockdowned myeloma cells by electron microscopy analysis. These data suggested that HK2 is required for hypoxia-inducible autophagy in MM. Finally, we examined the effect of combined inhibition of HK2 and proteasome. In hypoxia, apoptosis by bortezomib was significantly increased in HK2-knockdowned myeloma cells when compared with control. Moreover, we found that the combination of 3-BrPA and bortezomib increased apoptotic cells in both normoxia and hypoxia. These results suggested that HK2-inhibition can induce apoptosis against MM cells with enhancement of sensitivity to proteasome inhibitors. (Conclusion) These results suggest that hypoxia induced HK2 promotes autophagy and inhibits apoptosis. Thus, the combination of proteasome inhibitors and HK2 inhibition may bring about a deep response against treatment resistant MM. Disclosures Ikeda: Nippon Shinyaku Research Grant: Research Funding. Takahashi:Bristol-Myers Squibb: Speakers Bureau; Eisai Pharmaceuticals: Research Funding; Pfizer: Research Funding, Speakers Bureau; Otsuka Pharmaceutical: Research Funding, Speakers Bureau; Kyowa Hakko Kirin: Research Funding; Chug Pharmaceuticals: Research Funding; Ono Pharmaceutical: Research Funding; Novartis Pharmaceuticals: Research Funding, Speakers Bureau; Astellas Pharma: Research Funding; Asahi Kasei Pharma: Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2518-2518
Author(s):  
Masayoshi Kobune ◽  
Yutaka Kawano ◽  
Rishu Takimoto ◽  
Takuya Matsunaga ◽  
Junji Kato ◽  
...  

Abstract Adhesion of myeloma cells to BM stromal cells is now considered to play a critical role in chemo-resistance. However, little is known about the molecular mechanism of cell adhesion mediated drug resistance (CAM-DR) in multiple myeloma. In this study, we focused on relationship between drug resistance and expression of Wnts, the factor regulating the cell adhesion and proliferation, in myeloma cells. To gain insight into involvement of Wnt signaling in CAM-DR, we first screened the expression of Wnt family in myeloma cell lines (RPMI8226, ARH77, KMS-5 and MM1S) by reverse transcription-polymerase chain reaction analysis. Although the mRNAs of Wnt2b, Wnt7a and Wnt10b were variably expressed in some of myeloma cell lines, Wnt3 mRNA was detected in all the myeloma cells examined. KMS-5 and ARH77, which highly expressed Wnt3 protein, tightly adhered to human BM stromal cells and accumulation of β-catenin and GTP-bounded RhoA was observed in these myeloma cell lines. Conversely, RPMI8226 and MM1S, which modestly expressed Wnt3 protein, rather weakly adhered to human BM stromal cells. We then examined the relevance of Wnt3 expression to adhesive property to stromal cells and to CAM-DR of myeloma cells. KMS-5 and ARH-77 exhibited apparent CAM-DR against Doxorubicin. This CAM-DR was significantly reduced by anti-integrinβ1 antibody, anti- integrinα6 antibody and a Wnt-receptor competitor, secreted Frizzled related protein-1 and Rho kinase inhibitor (Y27632 and OH-fasudil), but not by the specific inhibitor of canonical signaling (DKK-1), indicating that Wnt-mediated CAM-DR which is dependent on integrinα6/β1 (VLA-6)-mediated attachment to stromal cells is induced by Wnt/RhoA-Rho kinase (ROCK) pathway signal. This CAM-DR for doxorubicin was also significantly reduced by Wnt3 siRNA transfer to KMS-5 and further augmented by addition of Wnt3 conditioned medium. These results indicate that Wnt3 contributes to VLA-6-mediated CAM-DR via the Wnt/RhoA/ROCK pathway of myeloma cells. Thus, the Wnt3/RhoA/ROCK signaling pathway could be a promising molecular target to overcome CAM-DR.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3453-3453
Author(s):  
Apollina Goel ◽  
Angela Dispenzieri ◽  
Susan M. Geyer ◽  
Suzanne Greiner ◽  
Stephen J. Russell

Abstract Multiple myeloma is a highly radiosensitive malignancy but, at the present time, radionuclide-based interventions have no proven place in disease management. Bone-seeking radionuclides such as 153-Sm-EDTMP and 166-Ho-DOTMP are promising agents for systemic delivery of ionizing radiation to sites of myeloma disease activity, but they are associated with significant myelosuppression at therapeutically effective doses and have therefore been used only in the context of myeloma stem cell transplantation protocols. We previously reported that the proteasome inhibitor PS-341 potently and selectively sensitizes myeloma cell lines and primary myeloma cells to the lethal effects of ionizing X-irradiation (Goel et al, Exp Hematol. 33, 784, 2005). To determine whether PS-341 is equally effective in sensitizing myeloma cells to ionizing beta-radiation and to extend our initial observations to an in vivo model, we combined PS-341 with the bone-seeking radionuclide 153-Sm-EDTMP. In vitro clonogenic assays were performed using a panel of myeloma cell lines and demonstrated synergistic killing following co-treatment with PS-341 and 153-Sm-EDTMP. Using the orthotopic, syngeneic 5TGM1 myeloma model, the median survivals of mice treated with saline, two doses of PS-341 (0.5 mg/kg), or a single non-myeloablative dose of 153-Sm-EDTMP (22.5 MBq) were 21, 22 and 28 days, respectively. In contrast, mice treated with combination therapy comprising two doses of PS-341 (0.5 mg/kg), one day prior to and one day following 153-Sm-EDTMP (22.5 MBq) showed a greatly prolonged median survival of 49 days. Correlative studies indicated that, compared to single-agent therapy, combination treatment with PS-341 and 153-Sm-EDTMP rapidly reduced the clonogenicity of bone-marrow resident 5TGM1 cells, slowed the elevation of serum myeloma-associated paraprotein levels, and was associated with longer term preservation of bone mineral density. The myelotoxicity of single agent and combination therapies was evaluated by comparing peripheral blood cell counts in each of the treatment groups, and by clonogenicity assays of hematopoietic progenitors isolated form normal mice receiving identical treatment regimens. Treatment with 153-Sm-EDTMP led to significant, but transient, myelosuppression which did not differ between animals treated with 153-Sm-EDTMP alone versus those treated with the combination of PS-341 plus 153-Sm-EDTMP. In summary, PS-341 is a potent in vivo radiosensitizer that greatly enhances the therapeutic potency, without increasing myelotoxicity, of skeletal targeted radiotherapy in the syngeneic, orthotopic 5TGM1 myeloma model. Based on these findings, we propose to conduct a phase I clinical trial at Mayo Clinic to evaluate the combination of PS-341 plus non-myeloablative skeletal targeted radiotherapy (using 153-Sm-EDTMP) in patients with advanced or treatment-refractory multiple myeloma.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4476-4476 ◽  
Author(s):  
Yong-sheng Tu ◽  
Jin He ◽  
Huan Liu ◽  
Richard Eric Davis ◽  
Robert Z. Orlowski ◽  
...  

Abstract In multiple myeloma, disease relapse and drug resistance occurs in the majority of myeloma patients after standard treatment despite recent improvements offered by new therapies. Therefore, there is an urgent need for new drugs that can overcome drug resistance and prolong patient survival after failure of standard therapies. ONC201, the founding member of a novel class of anti-tumor agents called impridones, has selective preclinical efficacy against a variety of tumor types. It is currently in phase I and phase II clinical trials for patients with advanced solid tumors and hematological malignancies. Given the pronounced sensitivity of B-cell lymphomas to ONC201, we assessed the efficacy of ONC201 in preclinical models of multiple myeloma. We treated human myeloma cell lines and primary myeloma cells isolated from bone marrow aspirates of myeloma patients with ONC201 for 72 hours. CellTiter-Glo Luminescent and annexin-V binding assays for assessing myeloma cell viability and apoptosis were performed, along with immunoblotting for cleavage of caspases, phosphorylation of signaling kinases, and expression of pro- or anti-apoptotic proteins. ONC201 treatment decreased myeloma cell viability, with IC50 values that were 1 μM to 1.5 μM, even in high risk myeloma cell line RPMI8226. The status of TP53 did not appear to affect the efficacy of ONC201, as MM.1S or NCI-H929 cells with wild-type TP53 and OPM-2 or RPMI8226 with mutated TP53 had a similar sensitivity towards ONC201. These results agree with prior reports in other tumor types that have demonstrated that the efficacy of ONC201 is independent of TP53. Western blot analysis showed increased apoptosis, cleavage of caspase-9, caspase-3, and PARP. We also found that ONC201 induced expression of the pro-apoptotic protein Bim in myeloma cells, which can occur downstream of ERK inactivation. Knockdown of Bim expression in myeloma cells by shRNAs abrogated ONC201-induced apoptosis. Phosphorylation of Bim at Ser69 by Erk1/2 has been shown to promote proteasomal degradation of Bim. In accordance with this mechanism, we observed that ONC201 treatment reduced levels of phosphorylated Erk1/2, an indicator of Erk1/2 kinase activity, and Bim pSer69. In addition, ONC201 induced apoptosis in dexamethasome-, bortezomib-, and carfilzomib-resistant myeloma cell lines with the same efficacy as in wild-type cells. As a rational strategy to increase the efficacy of ONC201 by enhancing its inhibition of proteasome-mediated Bim degradation, we tested combinations of ONC201 with proteasome inhibitors bortezomib or carfilzomib. These combinations were synergistic in reducing cell viability and enhancing Bim expression and PARP cleavage in myeloma cells. Overall, these findings demonstrate that ONC201 inhibits the Erk1/2 signaling pathway and induces Bim expression to induce apoptosis in multiple myeloma regardless of resistance to standard-of-care therapies. Our studies suggest that ONC201 should be evaluated clinically in relapsed/refractory multiple myeloma. Disclosures Allen: Oncoceutics: Employment, Equity Ownership.


Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1829-1837 ◽  
Author(s):  
Karène Mahtouk ◽  
Michel Jourdan ◽  
John De Vos ◽  
Catherine Hertogh ◽  
Geneviève Fiol ◽  
...  

Abstract We previously found that some myeloma cell lines express the heparin-binding epidermal growth factor–like growth factor (HB-EGF) gene. As the proteoglycan syndecan-1 is an HB-EGF coreceptor as well as a hallmark of plasma cell differentiation and a marker of myeloma cells, we studied the role of HB-EGF on myeloma cell growth. The HB-EGF gene was expressed by bone marrow mononuclear cells in 8 of 8 patients with myeloma, particularly by monocytes and stromal cells, but not by purified primary myeloma cells. Six of 9 myeloma cell lines and 9 of 9 purified primary myeloma cells expressed ErbB1 or ErbB4 genes coding for HB-EGF receptor. In the presence of a low interleukin-6 (IL-6) concentration, HB-EGF stimulated the proliferation of the 6 ErbB1+ or ErbB4+ cell lines, through the phosphatidylinositol 3-kinase/AKT (PI-3K/AKT) pathway. A pan-ErbB inhibitor blocked the myeloma cell growth factor activity and the signaling induced by HB-EGF. This inhibitor induced apoptosis of patients'myeloma cells cultured with their tumor environment. It also increased patients' myeloma cell apoptosis induced by an anti–IL-6 antibody or dexamethasone. The ErbB inhibitor had no effect on the interaction between multiple myeloma cells and stromal cells. It was not toxic for nonmyeloma cells present in patients' bone marrow cultures or for the growth of hematopoietic progenitors. Altogether, these data identify ErbB receptors as putative therapeutic targets in multiple myeloma.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 610-618 ◽  
Author(s):  
Inge Tinhofer ◽  
Ingrid Marschitz ◽  
Traudl Henn ◽  
Alexander Egle ◽  
Richard Greil

Interleukin-15 (IL-15) induces proliferation and promotes cell survival of human T and B lymphocytes, natural killer cells, and neutrophils. Here we report the constitutive expression of a functional IL-15 receptor (IL-15R) in 6 of 6 myeloma cell lines and in CD38high/CD45low plasma cells belonging to 14 of 14 patients with multiple myeloma. Furthermore, we detected IL-15 transcripts in all 6 myeloma cell lines, and IL-15 protein in 4/6 cell lines and also in the primary plasma cells of 8/14 multiple myeloma patients. Our observations confirm the existence of an autocrine IL-15 loop and point to the potential paracrine stimulation of myeloma cells by IL-15 released from the cellular microenvironment. Blocking autocrine IL-15 in cell lines increased the rate of spontaneous apoptosis, and the degree of this effect was comparable to the pro-apoptotic effect of depleting autocrine IL-6 by antibody targeting. IL-15 was also capable of substituting for autocrine IL-6 in order to promote cell survival and vice versa. In short-term cultures of primary myeloma cells, the addition of IL-15 reduced the percentage of tumor cells spontaneously undergoing apoptosis. Furthermore, IL-15 lowered the responsiveness to Fas-induced apoptosis and to cytotoxic treatment with vincristine and doxorubicin but not with dexamethasone. These data add IL-15 to the list of important factors promoting survival of multiple myeloma cells and demonstrate that it can be produced and be functionally active in an autocrine manner.


2016 ◽  
Vol 103 (3) ◽  
pp. 261-267 ◽  
Author(s):  
Xiaoxuan Xu ◽  
Junru Liu ◽  
Beihui Huang ◽  
Meilan Chen ◽  
Shiwen Yuan ◽  
...  

Purpose Proteasome inhibition with bortezomib eliminates multiple myeloma (MM) cells by partly disrupting unfolded protein response (UPR). However, the development of drug resistance limits its utility and resistance mechanism remains controversial. We aimed to investigate the role of IRE1α/Xbp-1 mediated branch of the UPR in bortezomib resistance. Methods The expression level of Xbp-1s was measured in 4 MM cell lines and correlated with sensitivity to bortezomib. LP1 and MY5 cells with different Xbp-1s level were treated with bortezomib; then pivotal UPR regulators were compared by immunoblotting. RPMI 8226 cells were transfected with plasmid pEX4-Xbp-1s and exposed to bortezomib; then apoptosis was determined by immunoblotting and flow cytometry. Bortezomib-resistant myeloma cells JJN3.BR were developed and the effect on UPR signaling pathway was determined. Results By analyzing 4 MM cell lines, we found little correlation between Xbp-1s basic level and bortezomib sensitivity. Bortezomib induced endoplasmic reticulum stress-initiated apoptosis via inhibiting IRE1α/Xbp-1 pathway regardless of Xbp-1s basic level. Exogenous Xbp-1s reduced cellular sensitivity to bortezomib, suggesting the change of Xbp-1s expression, not its basic level, is a potential marker of response to bortezomib in MM cells. Furthermore, sustained activation of IRE1α/Xbp-1 signaling pathway in JJN3.BR cells was identified. Conclusions Our data indicate that reduced response of IRE1α/Xbp-1 signaling pathway to bortezomib may contribute to drug resistance in myeloma cells.


Sign in / Sign up

Export Citation Format

Share Document