Dissecting Clonal Diversity in Complex Leukemia Samples with Next Generation Single Nucleotide Polymorphism (SNP)-Copy Number Arrays,

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3550-3550
Author(s):  
Sanidad A Marc ◽  
Marilyn L Slovak ◽  
Philip N Mowry ◽  
Joey C Kelly ◽  
Daniel M Jones

Abstract Abstract 3550 Introduction: The genetic loci altered in many de novo leukemia cases are relatively well-understood and can be accurately assessed by current cytogenetic techniques including multi-probe fluorescence in situ hybridization (FISH). However, identifying the cancer genes involved in complex leukemia karyotypes remains problematic due to the presence of multiple secondary structural rearrangements observed in subclonal populations. These alterations often affect both chromosome (chr) homologues and predominantly involve chr 1, 3, 5, 7, 12 and 17. Such clonal diversity within a tumor reflects the underlying biologically-selected sequential and multiple rearrangements and can, if carefully mapped, highlight the locations of tumor suppressor genes and modifiers involved in disease progression. Previous generations of DNA microarrays have proven useful in dissecting genomic changes in the predominant tumor clone, including copy-neutral loss of heterozygosity (CN-LOH) when single nucleotide polymorphism (SNP) arrays are used. However, a well-known shortcoming of DNA microarrays to date has been their limited sensitivity for accurately detecting low level mosaicism (<20%) and subclonal changes that are common in complex karyotypes. Methods: Using leukemia cases that showed complex karyotypes with up to 4 subclones, we compared the ability of standard (SNP 6.0, Affymetrix) and next-generation (Cytoscan HD, Affymetrix) SNP/copy number oligonucleotide arrays to accurately detect the observed karyotypic subclones and more precisely delineate areas of complex chromosomal alterations. Genomic DNA extracted from fresh material or 24∼48 hour short-term cultures from 8 patients with either de novo or previously treated chronic lymphocytic leukemia (CLL) was assessed on the SNP 6.0 and Cytoscan HD platforms and then compared with their karyotype, and/or supporting FISH studies. Copy number alterations and CN-LOH calls were made using ChAS software (Affymetrix), with the degree of clonal mosaicism analyzed for segmental increments of each chromosome by averaging the smooth signal data. Results and Conclusion: For all 53 CN-LOH and copy number calls, the two arrays gave identical detection rates and similar alteration boundaries in 34 instances (64.1% concordance). The genetic alterations that differed among the cytogenetically-related clones (subclones) were subclonal, in all but 3 instances, and most frequently involved chr 1 and 5. In general, the Cytoscan HD arrays were able to accurately detect karyotypically-confirmed subclones down to the 20% level (as well as distinguishing 90% vs. 100% calls), as opposed to the 30–50% level seen with the SNP 6.0 arrays. Improved detection of the discrete subclones or lower level clonality was attributed to more precise allele peak heights that did not require smoothing. Next-generation SNP/copy number oligonucleotide arrays show great promise in providing additive value to leukemic genomic profiling by clear visual separation of multiple genomic alterations within clonally diverse samples with the potential of identifying novel genetic alterations that may be important in disease progression. Disclosures: No relevant conflicts of interest to declare.

2007 ◽  
Vol 81 (4) ◽  
pp. 768-779 ◽  
Author(s):  
Janine Wagenstaller ◽  
Stephanie Spranger ◽  
Bettina Lorenz-Depiereux ◽  
Bernd Kazmierczak ◽  
Michaela Nathrath ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Meiying Cai ◽  
Xianguo Fu ◽  
Liangpu Xu ◽  
Na Lin ◽  
Hailong Huang

Smith-Magenis syndrome and Potocki-Lupski syndrome are rare autosomal dominant diseases. Although clinical phenotypes of adults and children have been reported, fetal ultrasonic phenotypes are rarely reported. A retrospective analysis of 6,200 pregnant women who received invasive prenatal diagnosis at Fujian Provincial Maternal and Child Health Hospital between October 2016 and January 2021 was performed. Amniotic fluid or umbilical cord blood was extracted for karyotyping and single nucleotide polymorphism array analysis. Single nucleotide polymorphism array analysis revealed six fetuses with copy number variant changes in the 17p11.2 region. Among them, one had a copy number variant microdeletion in the 17p11.2 region, which was pathogenically analyzed and diagnosed as Smith-Magenis syndrome. Five fetuses had copy number variant microduplications in the 17p11.2 region, which were pathogenically analyzed and diagnosed as Potocki-Lupski syndrome. The prenatal ultrasound phenotypes of the six fetuses were varied. The parents of two fetuses with Potocki-Lupski syndrome refused verification. Smith-Magenis syndrome in one fetus and Potocki-Lupski in another were confirmed as de novo. Potocki-Lupski syndrome in two fetuses was confirmed to be from maternal inheritance. The prenatal ultrasound phenotypes of Smith-Magenis syndrome and Potocki-Lupski syndrome in fetuses vary; single nucleotide polymorphism array analysis is a powerful diagnostic tool for these diseases. The ultrasonic phenotypes of these cases may enrich the clinical database.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2807-2807
Author(s):  
Ryoko Okamoto ◽  
Seishi Ogawa ◽  
Tadayuki Akagi ◽  
Motohiro Kato ◽  
Masashi Sanada ◽  
...  

Abstract Acute lymphoblastic leukemia (ALL) is a malignant disease of bone marrow cells, resulting from accumulation of genetic alterations of these cells. We analyzed 74 adult ALL samples by single-nucleotide polymorphism DNA microarray (SNP-Chip) using the new algorithm AsCNAR (allele-specific copy-number analysis using anonymous references). 71 samples (96%) showed genomic abnormalities in a mean 4.5 chromosomes including duplications, deletions and loss of heterozygosity with normal copy number [we call this uniparental disomy (UPD)]. About 25% of samples had a normal karyotype but each had genomic changes detectable by SNP-Chip. Importantly, 21 cases (28%) had UPD, and 29% of these had 9p UPD. Other genomic defects included deletions of p16INK4A in 18 cases (24%), deletions of ETV6 in 7 cases (9%), and hyperdiploidy (>50 chromosomes) in 3 cases (4%). In contrast, we also analyzed 399 pediatric ALL samples and deletions occurred in p16INK4A (28%) and ETV6 (22%) and 29% cases had hyperdiploidy. Hyperdiploidy is associated with a good prognosis and occured much more frequency in pediatric ALL (29%) than adult ALL (4%) which may in part explain the better prognosis in pediatric ALL compared to adult ALL. Also, small copy number changes were detected in adult ALL including deletion of B-cell differentiation genes: EBF (4 cases, 5%), Pax5 (5 cases, 7%) and IKZF (Ikaros) (8 cases, 11%), as well as, deletion of miR-15a and miR-16-1 (2 cases, 3%), which is often found in CLL. Amplification of Rel and BCL11A occurred in one case and amplification of Akt2 occurred in another case. Moreover, we found PAX5/ETV6 fusion in one case (1%); in comparison, 14 of 399 pediatric ALL cases (4%) had PAX5 fusion genes. In summary, we discovered hidden abnormalities including small copy number change and UPD in adult ALL and identified differences between adult and pediatric ALLs. In the future, routine SNP-Chip analysis may provide novel subclassification criteria for ALL and identify unique therapeutic targets.


2020 ◽  
Vol 65 (3) ◽  
Author(s):  
Heather J. Painter ◽  
Joanne M. Morrisey ◽  
Michael W. Mather ◽  
Lindsey M. Orchard ◽  
Cuyler Luck ◽  
...  

ABSTRACT The continued emergence of drug-resistant Plasmodium falciparum parasites hinders global attempts to eradicate malaria, emphasizing the need to identify new antimalarial drugs. Attractive targets for chemotherapeutic intervention are the cytochrome (cyt) bc1 complex, which is an essential component of the mitochondrial electron transport chain (mtETC) required for ubiquinone recycling and mitochondrially localized dihydroorotate dehydrogenase (DHODH) critical for de novo pyrimidine synthesis. Despite the essentiality of this complex, resistance to a novel acridone class of compounds targeting cyt bc1 was readily attained, resulting in a parasite strain (SB1-A6) that was panresistant to both mtETC and DHODH inhibitors. Here, we describe the molecular mechanism behind the resistance of the SB1-A6 parasite line, which lacks the common cyt bc1 point mutations characteristic of resistance to mtETC inhibitors. Using Illumina whole-genome sequencing, we have identified both a copy number variation (∼2×) and a single-nucleotide polymorphism (C276F) associated with pfdhodh in SB1-A6. We have characterized the role of both genetic lesions by mimicking the copy number variation via episomal expression of pfdhodh and introducing the identified single nucleotide polymorphism (SNP) using CRISPR-Cas9 and assessed their contributions to drug resistance. Although both of these genetic polymorphisms have been previously identified as contributing to both DSM-1 and atovaquone resistance, SB1-A6 represents a unique genotype in which both alterations are present in a single line, suggesting that the combination contributes to the panresistant phenotype. This novel mechanism of resistance to mtETC inhibition has critical implications for the development of future drugs targeting the bc1 complex or de novo pyrimidine synthesis that could help guide future antimalarial combination therapies and reduce the rapid development of drug resistance in the field.


2016 ◽  
Vol 36 (8) ◽  
Author(s):  
Livia Moura de Souza ◽  
Guilherme Toledo-Silva ◽  
Claudio Benicio Cardoso-Silva ◽  
Carla Cristina da Silva ◽  
Isabela Aparecida de Araujo Andreotti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document