Mir-155 Contributed to Chronic Lymphocytic Leukemia Survival by Modulation of BCR-Signalling

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 620-620
Author(s):  
Liguang Chen ◽  
Bing Cui ◽  
George Chen ◽  
Michelle Salcedo ◽  
Carlo M. Croce ◽  
...  

Abstract Abstract 620 The microRNA miR-155 is encoded within the B-cell integration cluster bic, which is a frequent integration site for avian leucosis virus. This microRNA is over-expressed in certain B cell lymphomas, including chronic lymphocytic leukemia (CLL), suggesting miR-155 contributes to lymphoma development. Consistent with this are observations that mice made transgenic for miR-155 under a B-cell-specific promoter develop pre-B cell lymphomas. One of the target genes regulated by miR-155 is SHIP-1, a phosphatase that plays a critical role in down-modulating B-cell receptor (BCR) signaling, which appears to provide a growth and/or survival stimulus for CLL B cells. To test for this, we examined for relationships between the CLL-cell expression of miR-155, SHIP-1, magnitude of BCR-signaling, and time from diagnosis to initial therapy (TFS) in 33 pts with CLL. The relative level of miR-155 was determined by real-time PCR. SHIP-1 protein was determined by flow cytometry and immunoblot analyses. We noted variations in expression levels of miR-155 among patient samples studied. CLL cells that expressed levels of miR-155 higher than the median level of miR-155 for all patients studied had significantly lower expression levels of SHIP-1 protein than CLL cells that expressed levels of miR-155 lower than the median level of miR-155 had (7.0 ± 0.2 vs. 8.3 ± 0.47, mean ± SEM, P<0.05). CLL B cells were stimulated with anti-μ or control Ig and then examined for relative protein phosphorylation and calcium influx. CLL cases were segregated into groups with high-BCR signaling versus low BCR-signaling based on their responses to anti-μ stimulation. We found that CLL cells with high-BCR signaling expressed significantly higher levels of miR-155 (1.54 ± 0.22) than did CLL cells with low-BCR signaling (0.90 ± 0.13, p<0.05). CLL cells with high BCR-signaling had significantly lower amounts of SHIP-1 protein (7.1 ± 0.39) than did CLL cells with low BCR-signaling (9.12 ± 0.7, p<0.05). Moreover, Kaplan-Meier survival analysis revealed an association between higher expression levels or miR-155 and shorter survival times from diagnosis to initial therapy (TFS) (P<0.05). CLL patients with greater miR-155 expression had a median TFS of 25.9 months that was significantly shorter than the median TFS of 112.8 months for patients with low miR-155 expression. To further investigate its function role, CLL cells were transfected with miR155 mimic or a miR-155 inhibitor and examined for SHIP-1 expression, BCR signaling, and cell survival, with or without stromal cells. Introduction of miR-155 to CLL cells that had low expression levels of miR-155 significantly reduced SHIP-1 protein expression, enhanced BCR signaling and improved cell survival relative to that of mock transfect CLL cells or CLL cells tranfected with micro RNA. Conversely, transfection of CLL cells that had high expression levels of miR-155 with miR-155 inhibitor resulted in significantly increased SHIP-1 expression, reduced BCR signaling, and poor survival than mock transfected CLL cells. Moreover, transfection of miR-155 inhibitor significantly reduced the capacity of stromal cells to enhance CLL cell survival. We found that the viability of cells transfected with miR-155 inhibitor was significantly lower than that noted for cells transfected with control miRs when cocultured with stromal cells. These results demonstrate that expression of miR-155 can modulate CLL expression of SHIP-1, CLL cell BCR signaling, and survival. Disclosures: No relevant conflicts of interest to declare.

Haematologica ◽  
2022 ◽  
Author(s):  
Vera Kristin Schmid ◽  
Ahmad Khadour ◽  
Nabil Ahmed ◽  
Carolin Brandl ◽  
Lars Nitschke ◽  
...  

Chronic lymphocytic leukemia (CLL) is a frequent lymphoproliferative disorder of B cells. Although inhibitors targeting signal proteins involved in B cell antigen receptor (BCR) signaling constitute an important part of the current therapeutic protocols for CLL patients, the exact role of BCR signaling, as compared to genetic aberration, in the development and progression of CLL is controversial. To investigate whether BCR expression per se is pivotal for the development and maintenance of CLL B cells, we used the TCL1 mouse model. By ablating the BCR in CLL cells from TCL1 transgenic mice, we show that CLL cells cannot survive without BCR signaling and are lost within eight weeks in diseased mice. Furthermore, we tested whether mutations augmenting B cell signaling influence the course of CLL development and its severity. The Phosphatidylinositol-3-kinase (PI3K) signaling pathway is an integral part of the BCR signaling machinery and its activity is indispensable for B cell survival. It is negatively regulated by the lipid phosphatase PTEN, whose loss mimics PI3K pathway activation. Herein, we show that PTEN has a key regulatory function in the development of CLL, as deletion of the Pten gene resulted in greatly accelerated onset of the disease. By contrast, deletion of the gene TP53, which encodes the tumor suppressor p53 and is highly mutated in CLL, did not accelerate disease development, confirming that development of CLL was specifically triggered by augmented PI3K activity through loss of PTEN and suggesting that CLL driver consequences most likely affect BCR signaling. Moreover, we could show that in human CLL patient samples, 64% and 81% of CLL patients with a mutated and unmutated IgH VH, respectively, show downregulated PTEN protein expression in CLL B cells if compared to healthy donor B cells. Importantly, we found that B cells derived from CLL patients had higher expression levels of the miRNA-21 and miRNA-29, which suppresses PTEN translation, compared to healthy donors. The high levels of miRNA-29 might be induced by increased PAX5 expression of the B-CLL cells. We hypothesize that downregulation of PTEN by increased expression levels of miR-21, PAX5 and miR-29 could be a novel mechanism of CLL tumorigenesis that is not established yet. Together, our study demonstrates the pivotal role for BCR signaling in CLL development and deepens our understanding of the molecular mechanisms underlying the genesis of CLL and for the development of new treatment strategies.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3155-3155 ◽  
Author(s):  
Liguang Chen ◽  
Bing Cui ◽  
Suping Zhang ◽  
George Chen ◽  
Carlo M. Croce ◽  
...  

Abstract The immunoglobulin (Ig) repertoire expressed in chronic lymphocytic leukemia (CLL) appears highly selected, suggesting that stimulation of the B-cell receptor (BCR) by unknown self or environmental antigen(s) likely contributes to the pathogenesis and/or progression of this disease. Ligation of the BCR by F(ab)2 anti-μ can induce phosphorylation of p72Syk, BLNK, phospholipase Cgamma and other downstream adapter/signaling molecules, inducing intracellular calcium flux and cellular activation. Prior studies found that CLL cells that expressed unmutated Ig heavy-chain variable region genes (IGHV) and/or the zeta-associated protein of 70 kD (ZAP-70) generally experienced greater levels of activation following treatment with anti-μ than did CLL cells that use mutated IGHV and/or that lacked expression of ZAP-70. However, unusual cases that expressed mutated IGHV or that lack expression of ZAP-70 also were well stimulated by treatment with anti-μ, suggesting that other factors contribute to the noted differences in BCR-signaling observed between cases of CLL. We found that cases that used unmutated IGHV and that expressed ZAP-70 could be distinguished from cases that used mutated IGHV and that lacked expression of ZAP-70 by interrogating for differences in expression of selected microRNA, which are short non-coding RNA that each govern the post-transcriptional expression of a discrete set of genes. We focused attention on expression of miR-155, which generally is expressed at higher levels in CLL cells that express unmutated IGHV and ZAP-70 than CLL cells that use mutated IGHV and that lack ZAP-70. One of the putative target genes regulated by this microRNA is SHIP-1, a phosphatase that plays a critical role in modulating BCR signaling. We examined the MicroRNA-155 expression in CLL B cells and compared these values with the relative expression levels of SHIP-1 protein or ZAP-70 and use of unmutated IGHV. The relative levels of miR-155 were determined by real-time PCR. CLL B cells were stimulated with anti-μ or control Ig for 10 minutes and then examined for relative protein phosphorylation by flow cytometric and immunoblot analyses. CLL cases were segregated into groups with high-BCR signaling versus low BCR-signaling based on the relative levels of phosphorylation observed on signaling/adapter proteins following treatment with anti-μ. CLL cells with high-BCR signaling potential expressed significantly higher levels of miR-155 (1.62±0.33) than did CLL cells with low-BCR signaling potential (0.42±0.13, p&lt;0.05). We also examined for SHIP-1 protein by flow cytometry and phosphorylated SHIP-1 by immunoblot analyses. These analyses revealed that the expression levels of SHIP-1 protein inversely correlated with the expression levels of miR-155 in CLL and the proficiency of BCR-signaling. Moreover, CLL cells with high BCR-signaling potential had significantly lower amounts of SHIP-1 protein, and significantly higher relative levels of phosphorylated SHIP-1 following treatment with anti-μ, than did CLL cells with low BCR-signaling potential. Although SHIP-1 protein was significantly more abundant in cases that lacked ZAP-70 than in cases that expressed ZAP-70, we identified cases that lacked ZAP-70 and had low levels of SHIP-1 that also experienced high-levels of BCRsignaling following treatment with anti-μ. These results indicate that the proficiency of BCR-signaling in CLL could be influenced by the relative levels of ZAP-70 and SHIP-1, at least the latter of which appears regulated by microRNA that are differentially expressed in aggressive versus indolent cases of CLL.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1187-1187
Author(s):  
Jan A. Burger ◽  
Myriam Krome ◽  
Andrea Bürkle ◽  
Tanja N. Hartmann

Abstract There is growing evidence that the microenvironment confers survival signals to Chronic Lymphocytic Leukemia (CLL) B-cells that may result in disease progression and resistance to therapy. In the marrow or secondary lymphoid tissues, CLL cells are in close contact with non-tumoral accessory cells, such as mesenchymal stromal cells or nurselike cells. We previously characterized SDF-1 (CXCL12) as a central mediator for CLL cell migration and interaction with the protective microenvironment. Constitutive secretion of CXCL12 attracts CLL cells to stroma or NLC through its cognate receptor, CXCR4. These accessory cells protect CLL cells from spontaneous or drug-induced apoptosis, which is contact-dependent and partially mediated by CXCL12. B-cell receptor (BCR) signaling has been considered another important regulator of CLL cell survival. Typically, CLL cell that lack somatic mutations in the immunoglobulin (Ig) variable region (V) genes and display high levels of the tyrosine kinase ZAP-70 strongly responds to anti-IgM stimulation. Because both, CXCL12 stimulation and BCR signaling may represent important mechanism for maintenance of CLL cell within the microenvironment, we examined whether anti-IgM stimulation affects CXCL12 responses in correlation with the ZAP-70 status. BCR signaling was modulated either by crosslinking the BCR with IgM or by blocking the tyrosine kinase Syk. Effective BCR cross-linking with anti-IgM antibodies was demonstrated by phosphorylation of Syk and p44/42 MAP kinase. In ZAP-70 positive cells, BCR crosslinking resulted in a robust activation of Syk, p44/42 MAP kinases, and protein kinase B (Akt). ZAP-70 negative CLL cells displayed a weaker activation of p44/42 upon IgM crosslinking. Pretreatment of CLL cells with anti-IgM resulted in an enhanced calcium mobilization upon CXCL12 stimulation. This was not due to changes in surface expression of CXCR4. Accordingly, Syk inhibition by piceatannol resulted in a loss of calcium response upon CXCL12 stimulation. Furthermore, anti-IgM stimulation significantly increased CLL cell chemotaxis towards CXCL12 1.4 ± 1.2fold (n=9, p=0.027), and Syk inhibition by piceatannol decreased chemotaxis to 0.6 ± 0.2fold of controls (n=8). In these experiments, we could not detect differences between ZAP-70 positive or negative cells. However, there was a strong difference regarding the spontaneous, CXCL12-dependent migration of CLL cells beneath marrow stromal cells (pseudoemperipolesis). BCR crosslinking significantly increased pseudoemperipolesis of ZAP-70 expressing CLL cells 13.4 ± 21.0fold (n=7, p=0.043), whereas there was no significant increase in pseudoemperipolesis of ZAP-70 negative cells (1.4 ± 0.2fold increase, n=8). Syk inhibition by piceatannol significantly decreased the pseudoemperipolesis of ZAP-70 positive as well as ZAP-70 negative CLL cells to 0.4 ± 0.07 of controls (n=5, p=0.043). Interestingly, spontaneous migration of CLL cells beneath follicular dendritic cells (HK cells) was also significantly enhanced by anti-IgM stimulation, in particular in ZAP-70 positive cases. In summary, BCR signaling enhances calcium mobilization, CLL cell migration to CXCL12, and pseudoemperipolesis beneath marrow stroma or follicular dendritic cells. These data suggest that BCR stimulation co-operates with CXCL12 for localization and/or maintenance of CLL cells within distinct tissue microenvironments.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 178-178
Author(s):  
Stefania Gobessi ◽  
Aleksandar Petlickovski ◽  
Luca Laurenti ◽  
Dimitar G. Efremov

Abstract The protein tyrosine kinase ZAP-70 is expressed at high levels in leukemic B-cells from chronic lymphocytic leukemia (CLL) patients with progressive disease and short survival. ZAP-70 is a key component of the proximal T-cell receptor signaling pathway and is highly homologous to Syk, an important B-cell receptor signaling (BCR) molecule. Recent studies indicate that ZAP-70 may participate in BCR signaling as well, but the mechanism of action is still not well understood. In T-cells, upon TCR stimulation ZAP-70 becomes phosphorylated on Tyr319 by the Src-like kinase Lck, which results in the release of the ZAP-70 kinase domain from an autoinhibited state to a fully active conformation. The Tyr319 site in ZAP-70 corresponds to the Tyr352 site in Syk, which is phosphorylated in B-cells following BCR stimulation. We therefore investigated the activation status of ZAP-70 and Syk in BCR stimulated CLL B-cells, using phosphorylation of Tyr319 and Tyr352 as markers of their activation. Analysis of 10 ZAP-70-positive CLL samples by immunoblotting with the phospho-ZAP70Tyr319/SykTyr352 antibody revealed that ZAP-70 is not phosphorylated at this site either before or after BCR stimulation, although in control experiments with Jurkat T-cells ZAP-70 became phosphorylated on Tyr319 upon TCR stimulation. Moreover, the Tyr352 site in Syk was phosphorylated following BCR stimulation in 6 of the 10 CLL B-cell samples. To further investigate the reasons for the unexpected lack of ZAP-70 activation in CLL B-cells, we produced stable transfectants of the BJAB lymphoma B-cell line that expressed ZAP-70 at levels similar to those found in CLL cases with progressive disease. In agreement with the CLL B-cell experiments, the Tyr319 site in ZAP-70 was not phosphorylated either before or after BCR stimulation. Since phosphorylation of Tyr319 is Lck-dependent in T-cells, and this kinase is expressed also in CLL B-cells, we ectopically expressed Lck in the ZAP-70-positive BJAB clones. Again, the Tyr319 site was not phosphorylated, indicating that ZAP-70 does not undergo activation of the kinase domain also in this cellular system. In contrast, BCR crosslinking in BJAB cells induced significant phosphorylation of Tyr352 in Syk, which was further enhanced in the clones that coexpressed ZAP-70. Furthermore, analysis of downstream signaling pathways following BCR stimulation showed stronger and prolonged activation of ERK and to a lesser extent Akt in the ZAP-70 positive clones, whereas no difference was observed in terms of activation of PLC-γ 2, JNK and degradation of the NF-kB inhibitor IkB. These data indicate that ZAP-70 does not undergo full activation in B-cells, but can still enhance activation of certain downstream BCR signaling pathways, possibly by affecting the activity of the related PTK Syk.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2343-2343
Author(s):  
Liguang Chen ◽  
Bing Cui ◽  
George Chen ◽  
Michelle Salcedo ◽  
Carlo M. Croce ◽  
...  

Abstract Abstract 2343 Poster Board II-320 B-cell receptor (BCR) signaling arguably plays an important role in the pathogenesis and/or progression of chronic lymphocytic leukemia. Ligation of the BCR by F(ab)2 anti-μ can induce phosphorylation of p72Syk, BLNK, phospholipase C-gamma (PLCγ) and other downstream adapter/signaling molecules, inducing intracellular calcium flux and cellular activation. Prior studies found that CLL cells that expressed unmutated Ig heavy-chain variable region genes (IGHV) and the zeta-associated protein of 70 kD (ZAP-70) generally experienced greater levels of activation following treatment with anti-μ than did CLL cells that lacked expression of ZAP-70. However, we found unusual cases that lacked expression of ZAP-70 that also responded vigorously to treatment with anti-μ, suggesting that other factors contribute to the noted differences in BCR-signaling. Analyses for expression of microRNAs by microarray revealed that CLL cells that used unmutated IGHV and that expressed ZAP-70 expressed higher levels of certain microRNAs than did cases that used mutated IGHV and that lacked expression of ZAP-70. One of such microRNA, miR-155, was found to target mRNA encoding SHIP-1, a phosphatase that plays a critical role in modulating the level of BCR signaling in normal B cells. Using quantitative assays for miR-155 we found high-level expression of this microRNA was associated with proficient BCR signaling in CLL. To examine whether miR-155 could modulate the levels of SHIP-1 and/or BCR signaling in CLL cells we transfected primary leukemia cells from each of multiple patients with control oligo-RNAs, miR-155, or a specific inhibitor of miR-155 (miR-155 inhibitor). Twenty-four hours later the cells were stimulated with anti-μ or control antibody and then examined 10 minutes later for expression of SHIP-1, induced calcium influx, or phosphorylation of kinases and adapter proteins that are involved in BCR signaling. CLL cells that had low expression levels of miR-155 and that were poorly responsive BCR had significantly higher levels of calcium influx and phosphorylated p72Syk, BLNK, and PLCγ in response to anti-μ following transfection with miR-155 than following mock transfection or transfection with control oligo-RNA. Conversely, CLL cells that had high expression levels of miR-155 and highly responsive BCR were made to have significantly higher amounts of SHIP-1 protein and to have significantly lower relative levels of phosphorylated protein and calcium influx in response to anti-μ following transfection with the miR-155 inhibitor than did mock transfected CLL cells. These results identify miR-155 as a factor that can modulate BCR signaling in CLL in part by regulating the relative expression level of SHIP-1. These results demonstrate that differential expression of microRNAs in CLL can influence physiologic features that potentially contribute to disease progression. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3859-3859
Author(s):  
Marek Mraz ◽  
Laura Z. Rassenti ◽  
Emanuela M. Ghia ◽  
Liguang Chen ◽  
Jessie-Farah Fecteau ◽  
...  

Abstract Abstract 3859 Chronic lymphocytic leukemia (CLL) is the first disease in which miRNAs (hsa-miR-15a-16–1) were directly linked to cancer pathogenesis (Calin et al. PNAS, 2002). We and others have also shown that expression of certain miRNAs associates with disease activity in patients with CLL (Calin et al. NEJM, 2005; Mraz et al. Blood, 2012; Mraz et al. Leukemia, 2009). Moreover, patients with more aggressive disease have CLL cells that generally express unmutated IGHV and/or ZAP-70 and have a miRNA expression profile that differs from that of CLL cells from patients with indolent disease (Calin et al. NEJM, 2005). However, we still have very limited understanding of how miRNAs affect CLL cell-biology and expression of genes that play a critical role in either promoting or arresting the disease. We used pooled samples from 10 CLL patients to screen (TaqMan miRNA Cards-ABI, 750 miRNAs) for abundantly expressed miRNAs that could hypothetically influence CLL B cell biology. We identified miR-150 as the most abundant miRNA in CLL cells and also as being strongly expressed when compared to CD19+ blood lymphocytes of normal adults (N=5, P=0.008). This miRNA already has been reported to influence the differentiation and gene expression of normal B cells (Xiao et al. Cell, 2007) suggesting its possible relevance for CLL B cell biology. We examined additional CLL cell samples (N=168) and confirmed high miR-150 levels and also noted heterogeneity in its expression between CLL cells of patients with aggressive versus indolent disease. In our cohort, CLL cells of patients that expressed ZAP-70 (20% cut-off, N=74) or had unmutated IGHV (N=72) expressed significantly lower median-levels of miR-150 (fold change −1.7 and −2.0 respectively, p<0.005). Moreover, the lower levels of miR-150 also directly associated with higher response to stimulation of B-cell receptor (BCR) on CLL cells with anti-IgM (P<0.05, N=36, quantified by flow cytometric measurement of calcium mobilization). To understand the gene network regulated by miR-150 in CLL we performed array-based transcriptome analyses (HG-U133 Plus 2.0, Affymetrix) of 110 patient samples, which identified differential expression of 215 genes between CLL cells expressing low versus high levels of miR-150 (SAM analysis of upper and lower terciles). Thirty-eight of these 215 genes (17%) are predicted targets of miR-150 (determined by TargetScan, www.targetscan.org). Two well annotated genes (GAB1 and FOXP1) have evolutionary conserved binding sides for miR-150 in their 3‘UTRs, suggesting the possible importance of miR-150 in their regulation. GAB1 is an adaptor molecule and plays a key role in variety of cell signaling pathways (PLCγ, Ras/Erk, PI3K/Akt, CrkL). Interestingly, GAB1 modulates PI3K/Akt-pathway through binding domain identical to Bruton’s tyrosine kinase (Rameh et al. JBC, 1997) and is a key molecule involved in regulating BCR-signaling (Ingham et al. JBC, 1998, 2001), a process that factors prominently in the pathogenesis and progression of CLL. FOXP1 is an essential participant in the transcriptional regulatory network of B lymphopoiesis and has been identified as playing a role in disease progression of other B-cell lymphomas (Hu et al. Nat Immunol, 2006). The immunoblot analysis of GAB1 and FOXP1 in CLL cells confirmed their higher protein levels in cases with low miR-150 expression (P<0.005, fold change >10.0). Importantly, cells with higher expression of GAB1 or FOXP1 were more responsive to BCR stimulation in vitro (P<0.01, N=36) and higher expression of each associates with shorter overall survival (OS) (13.9 vs. 22.7 years, 13.9 vs. 21.1 years; N=168; P<0.05). Most notably, a reverse trend was observed for miR-150, where higher levels (>median) were associated with significantly longer OS (not-reached vs. 13.9 years, N=168, P=0.006). Additionally, the expression level of miR-150 was an independent predictor of OS and time to first treatment (TTFT) in multivariate analyses, which included IGHV status, ZAP-70, CD38, Rai stage, gender, and age (OS HR: 3.4 [CI 1.4–8.6], P=0.009; TTFT HR: 2.3 [CI 1.3–4.2], P=0.004). We conclude that there is an inverse association between high-risk disease and expression of miR-150, which may reflect its capacity to regulate the expression of genes encoding proteins that may contribute to BCR-signaling and/or survival of CLL B cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 303-303
Author(s):  
Cody Paiva ◽  
Taylor Rowland ◽  
Olga Danilova ◽  
Bhargava Sreekantham ◽  
Stephen E Spurgeon ◽  
...  

Abstract Although small molecule inhibitors of BCR-associated kinases (BCRi) revolutionized therapy in CLL, they provide incomplete responses. Soluble mediators emanating from the tumor microenvironment perpetrate CLL cell survival and may account for resistance to BCRi. Tumor necrosis factor receptor superfamily ligands BAFF and APRIL induce NFκB, which in turn upregulates pro-survival Bcl-2 family proteins and thereby drives anti-apoptotic responses.The exact roles of the individual NFκB pathways, as well as the implications of targeting BCR in context of BAFF signaling in CLL remain understudied. We explored the mechanistic underpinnings of CLL cell survival in response to BAFF signaling, uncovering the functional significance of the BCR-associated kinases and Bcl-2 family proteins in this setting. Peripheral blood mononuclear cells were isolated from patients with CLL. We established a novel BAFF-expressing stromal co-culture model and referenced it to control, CD40L-expressing stroma and soluble BAFF. We employed inhibitors of Bruton tyrosine kinase (BTK, ibrutinib), phosphoinositide-3 kinase (PI3K, idelalisib) and spleen tyrosine kinase (SYK, entospletinib) and measured CLL cell apoptosis, migration, NFκB activity, protein and mRNA expression by flow cytometry, immunoblotting, ELISA, RT-PCR and immunocytochemistry. CLL cells co-cultured with BAFF-expressing stroma were resistant to spontaneous apoptosis (12.3±3.2% after 24 h, vs 34.8±6.2% off stroma) and chemotherapy agents (bendamustine, fludarabine). Gene expression profiling exposed the NFκB pathway gene targets as the most significantly upregulated upon BAFF stimulation (p<0.0001). We and others have shown that CD40L-expressing stroma induces canonical and non-canonical NFκB in CLL. By contrast, while BAFF led to strong activation of the non-canonical NFκB with processing of p100 (to p52) by 4 h and a 5-fold increase in p52 DNA-binding activity by 24 h, canonical NFκB (RelA) activation was less pronounced. BAFF predominantly induced Mcl-1, compared to CD40L which strongly upregulated Bcl-X. BCR is a major driver of canonical NFκB signaling in CLL. Thus, we studied whether BAFF co-opted BCR signaling in CLL. BAFF induced rapid (15 min) phosphorylation of the proximal BCR kinases SYKand LYN, sustained for up to 4 h, as well as ERK, in CLL cells. AKT activation occurred late (>2 h), suggesting that BAFF induced AKT independent of BCR. BAFF-mediated BCR activation did not correlate with IGHV mutational status. Like IgM, BAFF induced CLL cell chemotaxis. SYK inhibition effectively antagonized survival and chemotaxis of BAFF-stimulated CLL cells. By contrast, targeting BTK or PI3K was less effective. All BCRi's fully blocked canonical NFκB activation in BAFF-stimulated CLL cells (suggesting its dependence on BCR signaling), but none inhibited the non-canonical pathway. We found that entospletinib, but not other BCRi's, decreased Mcl-1 expression in CLL cells co-cultured with BAFF-expressing stroma. Unlike in IgM-stimulated cells, entospletinib did not promote Mcl-1 protein degradation. By contrast,, targeting SYK in BAFF-stimulated cells abrogated BAFF-mediated upregulation of pSTAT3, a transcription factor which regulates Mcl-1. This was accompanied by a decrease in Mcl-1 transcript, an effect mimicked by ruxolitinib, a JAK/STAT inhibitor. BAFF receptor signals via the TRAF3/NIK/IKK1 axis to induce non-canonical NFκB activation in neoplastic B-cells. We supposed that NIK (NFκB-inducing kinase) or IKK1 could be directly responsible for SYK activation by BAFF. Indeed, genetic knockdown of NIK resulted in decreased SYK activation, whereas IP experiments demonstrated that NIK directly complexed with SYK in BAFF-stimulated neoplastic B-cells, confirming NIK role in activation of BCR signaling. Thus, BAFF-mediated induction of BCR-associated kinases and Mcl-1 contributes to CLL cell survival. SYK inhibition is a promising therapeutic strategy uniquely poised to antagonize crosstalk between BAFF and BCR, thereby disrupting the pro-survival microenvironment signaling in CLL. Disclosures Spurgeon: Gilead Sciences: Research Funding; Bristol Myers Squibb: Research Funding; Acerta Pharma: Research Funding; Genentech: Research Funding; Janssen: Research Funding. Danilov:Prime Oncology: Honoraria; Dava Oncology: Honoraria; ImmunoGen: Consultancy; GIlead Sciences: Research Funding; Takeda: Research Funding; Astra Zeneca: Research Funding; Pharmacyclics: Consultancy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2799-2799
Author(s):  
Liguang Chen ◽  
John Apgar ◽  
Li Tang ◽  
Thomas J. Kipps

Abstract CD79b is B-cell surface molecule that non-covalently associates with CD79a and surface immunoglobulin (sIg), which together serve as the B-cell receptor complex (BCR). Both CD79a and CD79b have cytosolic immunoreceptor tyrosine-based activation motifs (ITAMs) that can become phosphorylated following sIg ligation, thereby allowing for recruitment to the BCR complex of cytosolic kinases, such as p72Syk , which then can initiate downstream intracellular signaling events. Compared to normal B cells, chronic lymphocytic leukemia (CLL) B cells typically expresses low levels of CD79b, which is speculated to contribute to the relatively poor capacity of CLL cells to initiate intracellular signaling following BCR ligation despite having apparently adequate levels of p72Syk. BCR signaling in CLL cells can be enhanced by expression of the zeta-associated protein of 70 kD (ZAP-70), a tyrosine kinase that initially was identified in T cells, where it plays a critical role in the phosphorylation of ITAMs of the accessory molecules of the T-cell receptor (TCR) complex for antigen following TCR ligation. We investigated for phosphorylation of CD79b following BCR ligation with F(ab)2 anti- μ antibody in CLL cell samples that did or did not express ZAP-70. All CLL cell samples expressed similar amounts of surface IgM and p72Syk, as assessed via flow cytometry and immunoblot analysis. Within 10 minutes after treatment with anti-μ the CLL cell samples that expressed ZAP-70 (n = 28) experienced a mean increase in phosphorylation of CD79b of 21.5% (± 14.0% S.D.), which was significantly greater than the 7.5% increase (± 7.9% S.D.) experienced by similarly treated CLL cell samples that did not express ZAP-70 (n = 19) (P< 0.01). Immune precipitation studies demonstrated association of CD79b with p72Syk in CLL B cells. CLL cell samples (n = 5) lacking expression of ZAP-70 were transfected with a control vector or an expression vector encoding ZAP-70, allowing us to examine the effect that engineered-expression of ZAP-70 has on CD79 phosphorylation following treatment with anti-μ. Anti-μ treatment induced significantly higher mean levels of CD79b phosphorylation in CLL samples made to express ZAP-70 (33% ± 16%) than in control mock-transfected CLL cells (4% ± 2%). This also was associated with enhanced anti-μ induced phosphorylation of p72Syk. We conclude that expression of ZAP-70 in CLL B cells enhances phosphorylation of the accessory molecules in the BCR complex following sIg ligation, potentially allowing for improved recruitment of cytosolic kinases and adapter proteins to these accessory molecules for enhanced BCR signaling.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5023-5023
Author(s):  
Y. Lynn Wang ◽  
Zibo Song ◽  
Pin Lu ◽  
John P. Leonard ◽  
Morton Coleman ◽  
...  

Abstract B cell receptor (BCR) signaling plays an essential role in the pathogenesis of chronic lymphocytic leukemia. In a subset of patients with a poor clinical outcome, BCR ligation leads to increased cell metabolism and cell survival (Cancer Research66, 7158–66, 2006). Based on these findings, we tested whether targeting BCR signaling with dasatinib, an inhibitor of Src kinase, would interfere with the signaling cascade and cause death of CLL B cells. CLL leukemic cells were isolated from 34 patients and were incubated with or without dasatinib at a low dose of 128 nM. Among 34 cases, viability of leukemic cells was reduced by 2% to 90%, with an average of ~50% reduction on day 4 of ex vivo culture. Further study showed that CLL B cells undergo death by apoptosis via the intrinsic pathway which involves the generation of reactive oxygen species. Analysis of the Src family kinases showed that phosphorylation of Src, Lyn and Hck was inhibited by dasatinib not only in those cases that responded to dasatinib with apoptosis, but also in those that did not respond well (&lt;20% apoptosis). Further analysis revealed that suppressed activity of two downstream molecules, Syk and PLC Statistical analysis showed a significant correlation between CLL dasatinib response and their IgVH mutation and ZAP70 status. Cases with worse prognoses by these criteria have a better response to the kinase inhibitor. Lastly, we have also found that ZAP70 positive cases showed a greater degree of PLC


2016 ◽  
Vol 213 (13) ◽  
pp. 3007-3024 ◽  
Author(s):  
Kyoko Hayakawa ◽  
Anthony M. Formica ◽  
Joni Brill-Dashoff ◽  
Susan A. Shinton ◽  
Daiju Ichikawa ◽  
...  

In mice, generation of autoreactive CD5+ B cells occurs as a consequence of BCR signaling induced by (self)-ligand exposure from fetal/neonatal B-1 B cell development. A fraction of these cells self-renew and persist as a minor B1 B cell subset throughout life. Here, we show that transfer of early generated B1 B cells from Eμ-TCL1 transgenic mice resulted in chronic lymphocytic leukemia (CLL) with a biased repertoire, including stereotyped BCRs. Thus, B1 B cells bearing restricted BCRs can become CLL during aging. Increased anti-thymocyte/Thy-1 autoreactive (ATA) BCR cells in the B1 B cell subset by transgenic expression yielded spontaneous ATA B-CLL/lymphoma incidence, enhanced by TCL1 transgenesis. In contrast, ATA B-CLL did not develop from other B cell subsets, even when the identical ATA BCR was expressed on a Thy-1 low/null background. Thus, both a specific BCR and B1 B cell context were important for CLL progression. Neonatal B1 B cells and their CLL progeny in aged mice continued to express moderately up-regulated c-Myc and down-regulated proapoptotic Bmf, unlike most mature B cells in the adult. Thus, there is a genetic predisposition inherent in B-1 development generating restricted BCRs and self-renewal capacity, with both features contributing to potential for progression to CLL.


Sign in / Sign up

Export Citation Format

Share Document