Thrombopoietin-Receptor Signalling Induces Proliferation of Dormant HSC.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2343-2343
Author(s):  
Larisa V. Kovtonyuk ◽  
Markus G. Manz ◽  
Hitoshi Takizawa

Abstract Abstract 2343 Lifelong blood production is maintained by a very rare population of self-renewing hematopoietic stem cells (HSCs) in bone marrow (BM). Proliferation, differentiation and survival of HSC toward stepwise hematopoietic cell development needs to be tightly controlled by cell intrinsic and extrinsic factors, as excess or insufficient production of mature blood cells potentially leads to neoplasia or aplasia. HSCs and progenitors (HSPCs) are equipped with cell surface receptors for different cytokines or chemokines (Kaushansky, NEJM 2006), and thus can integrate external signals, leading finally to proliferation and subsequent increase of hematopoietic cells in demand. Some of these regulatory pathways are already exploited in clinical settings: CXCR4 antagonists for HSPC mobilization, human granulocyte colony-stimulating factor (hG-CSF) for HSC mobilization and myeloid regeneration, and thrombopoietin agonists (THPO) for improving thrombocytopenia. However, despite their clinical use, little is known about the influence of these molecules on HSC. We established in vivo HSC divisional tracking with CFSE (5(6)-carboxyfluorescein diacetate N-succinimidyl ester). This allows to track single HSC division with high resolution, and subsequently to test biological activity of HSC-containing fractions (LKS) with different divisional history (Takizawa et al., JEM 2011). Using this system we evaluated the effects of systemic administration of human fms-related tyrosine kinase 3 ligand (hFlt3L), hG-CSF (Filgrastim), CXCR4 antagonist (AMD3100), and the THPO receptor (cMpl) agonist (Romiplostim) on HSC division. CFSE-labeled LKS were transferred into non-irradiated steady-state recipients. The non-dividing cell fraction was defined by the CFSE profile of CD4+CD62L+ T cells. One week after transplantation mice were injected with PBS or respective reagents daily or every other day for over one week. Three weeks after transfer, phenotypic BM analysis demonstrated that most of donor LKS had undergone several divisions while a small fraction of LKS remained undivided in PBS treated control mice (Figure 1a), containing long term self-renewing HSCs with at least 20–30% frequency (Takizawa et al., JEM 2011). Administration of hFlt3L increased the percentage of intermediate (1–5x divided) and fast cycling (>5x divided) LKS, which mainly contains CD150- Flt3+ multipotent progenitor cells (Figure 1b). Upon injections of cMpl agonist all donor LKS divided more than once, leaving no cells in quiescent fraction, with substantial expansion of CD150+ cells in the divided fraction. CXCR4 antagonist and hG-CSF administration had little effect on LKS proliferation. These data suggest that cMpl agonist drives dormant cells into proliferation, whereas hG-CSF has little effect on LKS division. To determine whether cMpl agonist increases the turnover of functionally defined, bona fide HSCs, we performed secondary transplantation of 0–1, 2–4, and ≥5x divided LKS. Twenty fast- (≥5x divided cells at 3 weeks), slow-cycling (2–4x divided) or relatively dormant LKS Flt3- cMpl+ cells (0–1x divided) were sorted from mice treated with PBS or cMpl agonist, and transplanted into lethally irradiated mice. Early results demonstrate increased percentage of secondary recipient engrafted with 2–4x divided cells from primary animals treated with cMpl agonist compared to those cells from PBS treated control Our results thus suggest that cMpl agonists have mitogenic activity not only for megakaryocyte progenitors but also for HSCs. How far this holds true in the human species needs to be determined. However, it should be taken in consideration given clinical data on evolution of pre-existing clonal myeloid diseases under cMpl agonist treatment (Dantoni, ASH abstract 2011), and also when treatment is applied long-term to patients with primary non-clonal hematopoietic diseases as immune thrombocytopenia or aplastic anemia. Disclosures: No relevant conflicts of interest to declare.

2020 ◽  
Author(s):  
Xiao Fang ◽  
Xiong Fang ◽  
Yujia Mao ◽  
Aaron Ciechanover ◽  
Yan Xu ◽  
...  

Abstract Background Hematopoietic stem cell (HSC) transplantation is an effective treatment strategy for many types of diseases. Peripheral blood (PB) is the most commonly used source of bone marrow (BM)-derived stem cells for current HSC transplantation. However, PB usually contains very few HSCs under normal conditions, as these cells are normally retained within the BM. This retention depends on the interaction between the CXC chemokine receptor 4 (CXCR4) expressed on the HSCs and its natural chemokine ligand, stromal cell-derived factor (SDF)-1α (also named CXCL12) present in the BM stromal microenvironment. In clinical practice, blocking this interaction with a CXCR4 antagonist can induce the rapid mobilization of HSCs from the BM into the PB.Methods C3H/HEJ, DBA/2, CD45.1+, CD45.2+ mice and monkeys were employed in colony-forming unit (CFU) assays, flow cytometry assays, and competitive/non-competitive transplantation assays, to assess the short-term mobilization efficacy of HF51116 and the long-term repopulating (LTR) ability of HSCs. Kinetics of different blood cells and the concentration of HF51116 in PB were also explored by blood routine examinations and pharmacokinetic assays. Results In this paper, we report that a novel small molecule CXCR4 antagonist, HF51116, which was designed and synthesized by our laboratory, can rapidly and potently mobilize HSCs from BM to PB in mice and monkeys. HF51116 not only mobilized HSCs when used alone but also synergized with the mobilizing effects of granulocyte-colony stimulating factor (G-CSF) after co-administration. Following mobilization by HF51116 and G-CSF, the long-term repopulating (LTR) and self-renewing HSCs were sufficiently engrafted in primary and secondary lethally irradiated mice and were able to rescue and support long-term mouse survival. In monkeys, HF51116 exhibited strong HSC mobilization activity and quickly reached the highest in vivo blood drug concentration. Conclusions These results demonstrate that HF51116 is a new promising stem cell mobilizer which specifically targets CXCR4 and merits further preclinical and clinical studies.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 446-446
Author(s):  
Alejo E Rodriguez-Fraticelli ◽  
Caleb S Weinreb ◽  
Allon Moshe Klein ◽  
Shou-Wen Wang ◽  
Fernando D Camargo

Blood regeneration upon transplantation relies on the activity of long-term repopulating hematopoietic stem cells (LT-HSCs). One of the major controversies in hematopoiesis relates to the apparently different properties that HSCs have in transplantation versus unperturbed settings. In unperturbed steady state hematopoiesis, the most potent HSCs appear to be mostly dormant, and only producing platelet-lineage cells. In turn, upon transplant, even a single transplanted HSC can actively divide and regenerate hundreds of millions of blood progenitors of all lineages. It would thus appear that HSCs have different fundamental properties in each study system. However, most transplantation studies have only tracked the lineage output of the transplanted HSC clones, and rarely the regeneration of the HSC compartment itself. In addition, clonal assays have not been performed at sufficient resolution to fully capture the diversity and clonal complexity of the regenerated HSC compartment. Here, we have used expressible barcodes, which can be sequenced in conventional single cell RNAseq assays, to simultaneously record the functional outcomes and transcriptional states of thousands of HSCs. Our analysis revealed multiple clonal HSC behaviors following transplantation that drastically differ in their differentiation activity, lineage-bias and self-renewal. Surprisingly, we witnessed a large fraction of clones that efficiently repopulate the HSC compartment but show limited contribution to differentiated progeny. Furthermore, these inactive clones have increased competitive multilineage serial repopulating capacity, implying that shortly after transplant a subset of clones reestablishes the native-like LT-HSC behaviors. Our results also argue that this clonal distribution of labor is controlled by cell autonomous, heritable properties (i.e. the epigenetic cell state). Then, using only our clonal readouts to segregate single HSC transcriptomes, we unveiled the transcriptional signatures that associated with unique HSC outcomes (platelet bias, clonal expansion, dormancy, etc.) and unraveled, for the first time, a gene signature for functional long-term serially repopulating clones. We interrogated the drivers of this cell state using an in vivo inducible CRISPR screening and identified 5 novel regulators that are required to regenerate the HSC compartment in a cell autonomous fashion. In conclusion, we demonstrate that functional LT-HSCs share more similar properties in native and transplantation hematopoiesis than previously expected. Consequently, we unveil a definition of the essential, common functional properties of HSCs and the molecular programs that control them. Figure 1 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3980-3980 ◽  
Author(s):  
Claudia Oancea ◽  
Brigitte Rüster ◽  
Jessica Roos ◽  
Afsar Ali Mian ◽  
Tatjana Micheilis ◽  
...  

Abstract Abstract 3980 Poster Board III-916 Stem cells have been shown to play an important role in the pathogenesis and maintenance of a significant number of malignancies, including leukemias. Similar to normal hematopoiesis the AML cell population is thought to be hierarchically organized. According to this model, only a few stem cells (LSC) are able to initiate and maintain the disease. The inefficient targeting of the leukemic stem cells (LSC) is considered responsible for relapse after the induction of complete hematologic remission (CR) in AML. Acute promyelocytic leukemia (APL) is a subtype of AML characterized by the t(15;17) translocation and expression of the PML/RARα fusion protein. Treatment of APL with all-trans retinoic acid (t-RA) as monotherapy induces CR, but not molecular remission (CMR), followed by relapse within a few months. In contrast arsenic as monotherapy induces high rates of CR and CMR followed by a long relapse-free survival. We recently have shown that in contrast to t-RA, arsenic efficiently targets PML/RAR-positive stem cells, whereas t-RA increases their proliferation. For a better characterization of LSC in APL which has to be targeted for an efficient eradication of the disease we wanted to characterize the leukemia-initiating cell and the cell population able to maintain the disease in vivo. The model was based on a classical transduction/transplantation system of murine Sca1+/lin- HSC combined with a novel approach for the enrichment of transformed cells with long-term stem cell properties. We found that PML/RAR induced leukemia from the Sca1+/lin- HSC with a frequency of 40% and a long latency of 8-12 months independently of its capacity to increase dramatically replating efficiency and CFU-S12 potential as expression of the differentiation block and proliferation potential of derived committed progenitors. Based on the hypothesis that PML/RAR exerts its leukemogenic effects on only a small proportion of the Sca1+1/lin- population, we proceeded to select and to amplify rare PML/RAR-positive cells with the leukemia-initiating potential, by a negative selection of cell populations with proliferation potential without long term stem cell-capacity (LT). Therefore we expressed PML/RAR in Sca1+/lin- cells and enriched this population for LT- (lin-/Sca1+/c-Kit+/Flk2-) and ST-HSC (lin-/Sca1+/c-Kit+/Flk2+). After a passage first in semi-solid medium for 7 days and subsequent transplantation into lethally irradiated mice, cells from the ensuing CFU-S day12 were again transplanted into sublethally recipient mice. After 12 to 36 weeks, 6/6 mice developed acute myeloid leukemia without signs of differentiation in the group transplanted with the lin-/Sca1+/c-Kit+/Flk2- population but not from that transplanted with lin-/Sca1+/c-Kit+/Flk2+ cells. This leukemia was efficiently transplanted into secondary recipients. The primary leukemic cell population gave origin to 6 clearly distinct subpopulations defined by surface marker pattern as an expression of populations with distinct differentiation status, able - after sorting - to give leukemia in sublethally irradiated recipients: Sca1+/c-Kit+/CD34- (LT-HSC), Sca1+/c-Kit+/CD34+ (ST-HSC), Sca1-/c-Kit+, B220lo/GR1+/Mac1+, B220hi/GR1+/Mac1+, B220-/Gr1-/Mac1-. Interestingly, all leukemias from the different population presented an identical phenotype. These findings strongly suggest that there is a difference between a leukemia-initiating (L-IC) and leukemia-maintaining (L-MC) cell population in the murine PML/RAR leukemia model. In contrast to the L-IC, represented by a very rare subpopulation of primitive HSC, recalling a hierarchical stem cell model, the L-MC is represented by a larger cell population with a certain grade of phenotypical heterogeneity, but a high grade of functional homogeneity recalling a stochastic cancer induction model. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 242-242
Author(s):  
Jennifer E Adair ◽  
Lauren E Schefter ◽  
Daniel R Humphrys ◽  
Kevin G Haworth ◽  
Jonah D Hocum ◽  
...  

Abstract Long-term clonal tracking studies utilizing hematopoietic stem and progenitor cells (HSPCs) in nonhuman primates receiving myeloablative transplantation demonstrate a successive pattern of repopulation: short-term repopulating cells are succeeded by long-term clones. However, the duration of short-term repopulation and the numbers of clones contributing to either short or long-term repopulation are unclear. Here, we tracked >11,000 unique clones in 8 pigtail macaques for up to 9 years following myeloablative transplantation with autologous, lentivirus gene-modified CD34+ HSPCs. Seven of these animals received cells expressing the P140K mutant methylguanine methyltransferase transgene, which is resistant to the combination of O6-benzylguanine (O6BG) and bis-chloroethylnitrosourea (BCNU) chemotherapy, thus conferring a selective advantage to gene-modified cells in vivo. After transplantation and before in vivo selection with O6BG/BCNU, we observed a successive pattern of hematopoietic reconstitution, with short-term clones declining within 100 days after transplantation. Within the first year after transplant, the percent of persistent clones varied from animal-to-animal, ranging from 8% to 54% of clones detected at a >1% frequency, and remained stable in the absence of selective pressure. Importantly, when animals engrafted with P140K-expressing cells were administered O6BG/BCNU we observed novel clonal patterns, which directly correlated with transplanted cell dose and time of chemotherapy administration after transplant. In all animals, chemotherapy induced emergence of previously undetected clones. In animals receiving ≤12x106 CD34+ cells/kg at the time of transplant (n = 4), chemotherapy also induced a re-emergence of previously declined short-term repopulating clones or a stabilization (i.e. decreased fluctuation) of repopulating clones identified between 100 days and 1 year after transplant. However, in animals receiving robust cell doses, ≥35x106 CD34+ cells/kg (n = 2), chemotherapy more than 1 year after transplant induced a completely novel clonal repertoire. In one animal receiving 22x106 CD34+ cells/kg at transplant, chemotherapy administration beginning <1 year (253 days) after transplant induced clonal stability, which was maintained through two additional chemotherapy treatments. These data suggest that some short-term repopulating clones may have long-term repopulation ability, but revert to a dormant phase within the first year after transplant. Additionally, these data indicate that transplant of excess repopulating cells results in early dormancy of a large proportion of repopulating clones. Together, these findings suggest that previous estimates of HSPC frequency based on clone tracking are an underestimate of true graft repopulation potential. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Xiao Fang ◽  
Xiong Fang ◽  
Yujia Mao ◽  
Aaron Ciechanover ◽  
Yan Xu ◽  
...  

Abstract Background Hematopoietic stem cell (HSC) transplantation is an effective treatment strategy for many types of diseases. Peripheral blood (PB) is the most commonly used source of bone marrow (BM)-derived stem cells for current HSC transplantation. However, PB usually contains very few HSCs under normal conditions, as these cells are normally retained within the BM. This retention depends on the interaction between the CXC chemokine receptor 4 (CXCR4) expressed on the HSCs and its natural chemokine ligand, stromal cell-derived factor (SDF)-1α (also named CXCL12) present in the BM stromal microenvironment. In clinical practice, blocking this interaction with a CXCR4 antagonist can induce the rapid mobilization of HSCs from the BM into the PB.Methods C3H/HEJ, DBA/2, CD45.1+, CD45.2+ mice and monkeys were employed in colony-forming unit (CFU) assays, flow cytometry assays, and competitive/non-competitive transplantation assays, to assess the short-term mobilization efficacy of HF51116 and the long-term repopulating (LTR) ability of HSCs. Kinetics of different blood cells and the concentration of HF51116 in PB were also explored by blood routine examinations and pharmacokinetic assays. Results In this paper, we report that a novel small molecule CXCR4 antagonist, HF51116, which was designed and synthesized by our laboratory, can rapidly and potently mobilize HSCs from BM to PB in mice and monkeys. HF51116 not only mobilized HSCs when used alone but also synergized with the mobilizing effects of granulocyte-colony stimulating factor (G-CSF) after co-administration. Following mobilization by HF51116 and G-CSF, the long-term repopulating (LTR) and self-renewing HSCs were sufficiently engrafted in primary and secondary lethally irradiated mice and were able to rescue and support long-term mouse survival. In monkeys, HF51116 exhibited strong HSC mobilization activity and quickly reached the highest in vivo blood drug concentration. Conclusions These results demonstrate that HF51116 is a new promising stem cell mobilizer which specifically targets CXCR4 and merits further preclinical and clinical studies.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-32
Author(s):  
Thao Trinh ◽  
James Ropa ◽  
Arafat Aljoufi ◽  
Scott Cooper ◽  
Edward F. Srour ◽  
...  

The hematopoietic system is maintained by the hematopoetic stem and progenitor cells (HSCs/HPCs), a group of rare cells that reside in a hypoxic bone marrow (BM) microenvironment. Leptin (Lep) is well-known for its neuroendocrine and immunological functions, and its receptor (Lepr) has been studied extensively in the BM niche cells. Yet, its biological implications in HSC/HPC biology remained largely unknown. In this study, we hypothesized that Lepr-expressing HSCs/HPCs are functionally and transcriptomically distinct from their negative counterparts. To test our hypothesis, we utilized both in vitro and in vivo approaches. We first employed Fluorescence-activated cell sorting (FACS) analysis to confirm expression of Lepr on HSCs/HPCs in adult mouse BM. We then isolated equal numbers of Lepr+Lineage-Sca1+cKit+ (LSK cells - a heterogenous population of long-term, short-term HSCs and multipotent HPCs) and Lepr-LSK cells from C57BL/6 (CD45.2+) mouse BM to perform colony-forming unit (CFU) assay and competitive transplantation assay, which also included using competitor cells from BoyJ (CD45.1+) unseparated BM and lethally-irradiated F1 (CD45.1+CD45.2+) as hosts. To determine whether Lepr can further hierarchize HSCs into two distinct populations, we repeated the competitive transplants using freshly isolated C57BL/6 Lepr+HSCs or Lepr-HSCs cells instead. At the end of primary transplants, whole BM were analyzed for donor chimerisms in the peripheral blood (PB) and BM as well as transplanted in a non-competitive fashion into lethally-irradiated secondary recipients. To gain mechanistic insights, we assessed homing potential as homing plays a role in increased engraftment. We also performed bulk RNA-seq using freshly sorted BM Lepr+HSCs or Lepr-HSCs to elucidate potential molecular pathways that are responsible for the differences in their functional capacity. By phenotypic studies, our FACS analyses showed that Lepr+ cells represented a smaller population within the hematopoietic compartment in the BM. However, HSCs contained a higher percentage of Lepr+ cells than other HPC populations. By functional assessments, Lepr+LSK cells were more highly enriched for colony-forming progenitor cells in CFU assay as compared to Lepr-LSK cells. Interestingly, Lepr+LSK cells exhibited more robust engraftment capability in primary transplants and substantial self-renewal capacity in secondary transplants throughout different time points in both PB and BM. In addition, Lepr+HSCs showed significantly higher donor chimerisms in PB month 1, 2, 4 and BM month 4 with similar lineage output compared to Lepr-HSCs. Higher engraftment could be due to increased homing of HSCs to the BM; however, Lepr+HSCs and Lepr-HSCs showed similar homing capacity as well as levels of surface CXCR4 expression. Molecularly, Fast Preranked Gene Set Enrichment Analysis (FGSEA) showed that Lepr+HSCs were enriched for Type-I Interferon and Interferon-gamma response pathways with Normalized Enrichment Scores of 2 or higher. Lepr+HSC transcriptomic study also revealed that these cells as compared to Lepr-HSCs expressed significantly higher levels of genes involved in megakaryopoiesis and proinflammatory immune responses including the NF-κB subunits (Rel and Relb). Interestingly, both IFN-γ and NF-κB signalings have been demonstrated to be critical for the emergence of HSCs from the hemogentic endothelium during embryonic development. In summary, although Lepr+LSK cells occupied a minor fraction compared to their negative counterparts in the BM, they possessed higher colony-forming capacity and were more highly enriched for long-term functional HSCs. In line with this, Lepr+HSCs engrafted significantly higher and self-renewed more extensively than Lepr-HSCs, suggesting that Lepr not only can be used as a marker for functional HSCs but also further differentiate HSCs into two functionally distinguishable populations. Intriguingly, Lepr+HSCs were characterized with a proinflammatory transcriptomic profile that was previously suggested to be critical for the development of HSCs in the embryo. All together, our work demonstrated that Lepr+HSCs represent a subset of highly engrafting adult BM HSCs with an embryonic-like transcriptomic signature. This can have potential therapeutic implications in the field of hematopoietic transplantation as Lepr is highly conserved between mice and human. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2343-2343
Author(s):  
Jae-Won Shin ◽  
Amnon Buxboim ◽  
Dennis E Discher

Abstract Abstract 2343 Non-muscle myosin-II (NMM-II) promotes cell division, membrane rigidity and adhesion to a rigid matrix, and so NMM-II activity might be predicted to be low in dormant hematopoietic stem cells (HSCs) and to increase with differentiation. Deletion of NMM-II is known to be embryonic lethal, but its role in adult HSC differentiation is not known. Recently, we showed that sustained pharmacological inhibition of NMM-II together with soft 2D matrices like the perivascular niches in marrow, rather than rigid like bone, maximizes both MK maturation and platelet generation (Shin et al., PNAS, 2011; 108:11458-63). HSCs exhibit some similarities to mature MKs in that long-term HSCs remain undivided in vivo while various progenitors and maturing cells rapidly expand in number. Here, reversible inhibition of NMM-II sustained over several cell cycles enriches long-term HSCs up to 20 fold by selective elimination of proliferating progenitors. CFSE dilution analysis indicates that inhibition of NMM-II eliminates the accumulation phase of hematopoietic progenitors and accelerates natural cell death rate by apoptosis. Interestingly, supplementation of G-CSF significantly enhances HSC survival under NMM-II inhibition and further accelerates progenitor elimination. Molecular profiling and functional analyses indicate that NMM-II isoforms play distinct roles during HSC differentiation. NMM-IIA is a marker for differentiation with significantly lower expression in HSCs than committed progenitors, which is consistent with greater membrane flexibility of HSCs measured by micropipette aspiration. In contrast, NMM-IIB is 5 fold higher in HSCs and progenitors than differentiated CD34− cells. HSC and progenitor numbers are also sensitive to matrix elasticity in a NMM-II dependent manner, with maximal expansion on soft and high-density fibronectin matrices (not collagen). However, upon NMM-II inhibition, the extent of HSC enrichment relative to multipotent progenitors is more sensitive to matrix ligand density than matrix elasticity. To identify physiological mechanisms of regulating NMM-II activity during early HSC differentiation, we investigated post-translational modifications of NMM-IIA, specifically the de-activating and isoform-specific phosphorylation at myosin Ser1943 (pS1943) in HSC and progenitors. In a phospho-specific flow cytometry approach, pS1943 level proves highest in HSCs and decreases during differentiation with Tpo and G-CSF but not SCF alone. TGF-beta inhibits the reduction of pS1943 level, consistent with TGF-beta's known role in HSC hibernation. Therefore, pS1943 level dictates HSC enrichment and parallels the dose-response to pharmacological NMM-II inhibitors. Furthermore, phospho-mimetic mutation of NMM-IIA at Ser1943 decreases cytoskeletal integrity, increases membrane flexibility, and limits matrix elasticity sensing, indicating that biophysical properties of HSCs can also be regulated by HSC-specific signaling via NMM-IIA heavy chain phosphorylation. Myosin-inhibited CD34+-derived bone marrow cells show reduced colony-forming unit progenitors in vitro, but maintain functional long-term HSCs in vivo in the marrows of xenografted mice with an added benefit to increase platelet circulation simultaneously. Therefore, myosin-II inhibition and soft, high ligand fibronectin constitutes an important ‘microenvironment mimetic’ approach to enrichment of long-term HSCs. Myosin-II is clearly a central, matrix-regulated node for HSC proliferation and differentiation. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao Fang ◽  
Xiong Fang ◽  
Yujia Mao ◽  
Aaron Ciechanover ◽  
Yan Xu ◽  
...  

Abstract Background Hematopoietic stem cell (HSC) transplantation is an effective treatment strategy for many types of diseases. Peripheral blood (PB) is the most commonly used source of bone marrow (BM)-derived stem cells for current HSC transplantation. However, PB usually contains very few HSCs under normal conditions, as these cells are normally retained within the BM. This retention depends on the interaction between the CXC chemokine receptor 4 (CXCR4) expressed on the HSCs and its natural chemokine ligand, stromal cell-derived factor (SDF)-1α (also named CXCL12) present in the BM stromal microenvironment. In clinical practice, blocking this interaction with a CXCR4 antagonist can induce the rapid mobilization of HSCs from the BM into the PB. Methods C3H/HEJ, DBA/2, CD45.1+, and CD45.2+ mice and monkeys were employed in colony-forming unit (CFU) assays, flow cytometry assays, and competitive/noncompetitive transplantation assays, to assess the short-term mobilization efficacy of HF51116 and the long-term repopulating (LTR) ability of HSCs. Kinetics of different blood cells and the concentration of HF51116 in PB were also explored by blood routine examinations and pharmacokinetic assays. Results In this paper, we report that a novel small molecule CXCR4 antagonist, HF51116, which was designed and synthesized by our laboratory, can rapidly and potently mobilize HSCs from BM to PB in mice and monkeys. HF51116 not only mobilized HSCs when used alone but also synergized with the mobilizing effects of granulocyte colony-stimulating factor (G-CSF) after co-administration. Following mobilization by HF51116 and G-CSF, the long-term repopulating (LTR) and self-renewing HSCs were sufficiently engrafted in primary and secondary lethally irradiated mice and were able to rescue and support long-term mouse survival. In monkeys, HF51116 exhibited strong HSC mobilization activity and quickly reached the highest in vivo blood drug concentration. Conclusions These results demonstrate that HF51116 is a new promising stem cell mobilizer which specifically targets CXCR4 and merits further preclinical and clinical studies.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2264-2264
Author(s):  
Jorge Domenech ◽  
Julien Goustille ◽  
Maud Pallix ◽  
Zakia Bekhechi ◽  
Elfi Ducrocq ◽  
...  

Abstract Abstract 2264 The alpha4 beta1 integrin (VLA-4) exert a critical role on hematopoiesis by confining hematopoietic stem cells (HSC) and progenitor cells (HPC) within the niche. Previous preclinical studies have pointed out this role showing that HPCs can be mobilized by in vivo administration of a blocking anti-VLA-4 antibody (Ab) (Papayannopoulou et al, 1993). Very recently, two papers (Bonig et al, 2008; Zohren et al, 2008) have shown that such Ab exhibits a similar effect in humans for one month after treatment by natalizumab. In the present study, we have investigated long-term hematopoietic effects (up to 23 months) of repeated infusions of natalizumab in patients treated for multiple sclerosis (n=22). Seven patients have been explored sequentially (every month for one year) and 15 have been studied punctually (6 before and 9 after one year of treatment). We found that peripheral blood leukocytosis was consistently increased for one year in relation to lymphocytes, particularly to B lineage (by 3-fold). In parallel, an increase of circulating HPCs (CD34+ cells and total CFU) was observed and appeared more pronounced with levels above baseline values in all the patients studied (by 6-fold) while no increase of circulating mesenchymal stromal cells (CFU-F) was found. The increase was noted for both lymphoid (T and B lineages) and myeloid (granulo-monocyte, erythroid, and megakaryocyte) committed progenitor cells but also for primitive HPC (CD34+CD38- cells and CAFC). This effect was still found at long-term (up to two years of treatment) for both committed and primitive HPC. In conclusion, the HPC mobilizing effect of chronic administration of anti-VLA-4 Ab in humans involves all types of HPCs (lymphoid and myeloid, committed and primitive ones) and is not exhausted with time. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2953-2953
Author(s):  
Claudia Oancea ◽  
Brigitte Rüster ◽  
Jessica Roos ◽  
Anjali Dubey ◽  
Hannelore Held ◽  
...  

Abstract Abstract 2953 Poster Board II-929 Stem cells have been shown to play an important role in the pathogenesis and maintenance of a significant number of malignancies, including leukemias. Similar to normal hematopoiesis the AML cell population is thought to be hierarchically organized. According to this model, only a few stem cells (LSC) are able to initiate and maintain the disease. The inefficient targeting of the leukemic stem cells (LSC) is considered responsible for relapse after the induction of complete hematologic remission (CR) in AML. t(6;9)-positive AML is classified as a separate entity, because of its young age of onset and poor prognosis. The t(6;9) associated fusion protein is DEK/CAN. Assuming that in AML the genetic aberration, here the t(6;9) and the expression of DEK/CAN, represents the initiation event of the leukemogenic process we wanted i.) to disclose its effects on the biology of primitive hematopoietic stem cells (HSC) and its leukemogenic potential and ii.) to characterize the leukemia-initiating cell and the cell population able to maintain the disease in vivo. The model was based on a classical transduction/transplantation system of murine Sca1+/lin- HSC combined with a novel approach for the enrichment of transformed cells with long-term stem cell properties. We found that i.) DEK/CAN induced leukemia from the Sca1+/lin− HSC with a frequency of 20% and a long latency of 8-12 months. ii.) DEK/CAN did not efficiently block the differentiation of committed progenitors; iii.) DEK/CAN increased number of colony forming cells in Sca1+/lin− HSC which did not exhibit increased replating efficiency as compared to controls; iv.) DEK/CAN augmented ST-HSC potential but not LT-HSC of murine Sca1+/lin− HSCs, most likely due to its incapacity to up-regulate p21Cip1/Waf1 expression. Based on the hypothesis that DEK/CAN exerts its leukemogenic effects on only a small proportion of the Sca1+1/lin- population, we proceeded to select and to amplify rare DEK/CAN-positive cells with the leukemia-initiating potential, by a negative selection of cell populations with proliferation potential without long term stem cell-capacity (LT). Therefore we expressed DEK/CAN in Sca1+/lin− cells and enriched this population for LT- (lin−/Sca1+/c-Kit+/Flk2−) and ST-HSC (lin−/Sca1+/c-Kit+/Flk2+). After a passage first in semi-solid medium for 7 days and subsequent transplantation into lethally irradiated mice, cells from the ensuing CFU-S day12 were again transplanted into sublethally recipient mice. We here report that i.) after 4 to 42 weeks, 6/6 mice developed AML without signs of differentiation in the group transplanted with the lin−/Sca1+/c-Kit+/Flk2− population but not from that transplanted with lin−/Sca1+/c-Kit+/Flk2+ cells; ii.) the DEK/CAN-induced AML was efficiently transplanted into secondary recipients exhibiting a very aggressive clinical picture; iii.) the leukemic cell population gave origin to four different clearly distinct subpopulations defined by surface marker pattern as an expression of populations with distinct differentiation status, all able - after sorting - to give leukemia in sublethally irradiated recipients: lin−/Sca1+/c-Kit+/CD34− (LT) lin−/Sca1+/c-Kit+/CD34+ (ST), Sca1−/c-Kit+/Mac1+/Gr1+, Sca1−/c-Kit+/Mac1−/Gr1−. These findings strongly suggest that there is a difference between a leukemia-initiating (L-IC) and leukemia-maintaining (L-MC) cell population in the murine DEK/CAN leukemia model. In contrast to the L-IC, represented by a very rare subpopulation of primitive HSC, recalling a hierarchical stem cell model, the L-MC is represented by a larger cell population with a certain grade of phenotypical heterogeneity, but a high grade of functional homogeneity recalling a stochastic cancer induction model. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document