Identification of a Two-Step Mechanism Responsible for Antibody-Mediated Transfusion Related Acute Lung Injury (TRALI)

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 846-846
Author(s):  
Christopher G.J. McKenzie ◽  
Michael Kim ◽  
Tarandeep Singh ◽  
John W. Semple

Abstract Abstract 846 Transfusion-related acute lung injury (TRALI) is one of the leading causes of transfusion fatalities, and most TRALI reactions are thought to be caused by donor antibodies. It is currently thought that the donor antibodies activate pulmonary neutrophils to produce reactive oxygen species that damage lung tissue. There have been several animal models of TRALI developed including, for example, ex vivo lung models demonstrating the importance of human anti-neutrophil antibodies in TRALI, and in vivo models showing how biological response modifiers can induce recipient lung damage. An in vivo murine model of antibody-mediated TRALI was developed in 2006, and has also shown several similarities with human TRALI induction (Looney MR et al., J Clin Invest 116: 1615, 2006). Specifically, a monoclonal anti-mouse MHC class I antibody (34-1-2s) causes significant increases in excess lung water, lung vascular permeability and mortality within 2 hours after administration. These adverse reactions were found to be due to the antibody's ability to activate pulmonary neutrophils to produce reactive oxygen species (ROS) in an Fc receptor (FcR)-dependent manner. In contrast, however, it was recently shown that 34-1-2s induces pulmonary damage by activating macrophages to generate ROS in a complement (C5a)-dependent process (Strait RT J et al., Exp Med 208: 2525, 2011). In order to better understand this apparent controversy, we attempted to determine the nature of how 34-1-2s mediates its lung damaging properties. 34-1-2s was digested with pepsin or papain to produce F(ab')2 or Fc fragments respectively, and the fragments were tested for their ability to mediate TRALI reactions. In control mice, when intact 34-1-2s antibody was intravenously injected into either CB.17 mice with severe combined immunodeficiency or C5 deficient DBA/2 mice, increased shock, serum MIP-2 (murine equivalent to human IL-8) levels, pulmonary neutrophil accumulation, pulmonary edema and mortality all occurred within 2 hours. In contrast, however, injection with 34-1-2s F(ab')2 fragments was only able to generate MIP-2 production and pulmonary neutrophil accumulation; no lung damage or mortality occurred. Injection of 34-1-2s Fc fragments either alone or together with equal molar concentrations of F(ab')2 fragments failed to induce any lung damage or mortality. These results suggest that 34-1-2s recognition of it's cognate MHC class I antigen may be a priming reaction that stimulates MIP-2 and chemotaxis of neutrophils to the lungs, whereas the Fc portion of the intact molecule is responsible for the second step of exacerbating TRALI symptoms in a complement independent manner. Disclosures: No relevant conflicts of interest to declare.

2011 ◽  
Vol 208 (12) ◽  
pp. 2525-2544 ◽  
Author(s):  
Richard T. Strait ◽  
Wyenona Hicks ◽  
Nathaniel Barasa ◽  
Ashley Mahler ◽  
Marat Khodoun ◽  
...  

Transfusion-related acute lung injury (TRALI), a form of noncardiogenic pulmonary edema that develops during or within 6 h after a blood transfusion, is the most frequent cause of transfusion-associated death in the United States. Because development of TRALI is associated with donor antibodies (Abs) reactive with recipient major histocompatibility complex (MHC), a mouse model has been studied in which TRALI-like disease is caused by injecting mice with anti–MHC class I monoclonal Ab (mAb). Previous publications with this model have concluded that disease is caused by FcR-dependent activation of neutrophils and platelets, with production of reactive oxygen species that damage pulmonary vascular endothelium. In this study, we confirm the role of reactive oxygen species in the pathogenesis of this mouse model of TRALI and show ultrastructural evidence of pulmonary vascular injury within 5 min of anti–MHC class I mAb injection. However, we demonstrate that disease induction in this model involves macrophages rather than neutrophils or platelets, activation of complement and production of C5a rather than activation of FcγRI, FcγRIII, or FcγRIV, and binding of anti–MHC class I mAb to non-BM–derived cells such as pulmonary vascular endothelium. These observations have important implications for the prevention and treatment of TRALI.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 429 ◽  
Author(s):  
Chuan-Mu Chen ◽  
Yu-Tang Tung ◽  
Chi-Hsuan Wei ◽  
Po-Ying Lee ◽  
Wei Chen

Acute lung injury (ALI), a common cause of morbidity and mortality in intensive care units, results from either direct intra-alveolar injury or indirect injury following systemic inflammation and oxidative stress. Adequate tissue oxygenation often requires additional supplemental oxygen. However, hyperoxia causes lung injury and pathological changes. Notably, preclinical data suggest that aspirin modulates numerous platelet-mediated processes involved in ALI development and resolution. Our previous study suggested that prehospital aspirin use reduced the risk of ALI in critically ill patients. This research uses an in vivo imaging system (IVIS) to investigate the mechanisms of aspirin’s anti-inflammatory and antioxidant effects on hyperoxia-induced ALI in nuclear factor κB (NF-κB)–luciferase transgenic mice. To define mechanisms through which NF-κB causes disease, we developed transgenic mice that express luciferase under the control of NF-κB, enabling real-time in vivo imaging of NF-κB activity in intact animals. An NF-κB-dependent bioluminescent signal was used in transgenic mice carrying the luciferase genes to monitor the anti-inflammatory effects of aspirin. These results demonstrated that pretreatment with aspirin reduced luciferase expression, indicating that aspirin reduces NF-κB activation. In addition, aspirin reduced reactive oxygen species expression, the number of macrophages, neutrophil infiltration and lung edema compared with treatment with only hyperoxia treatment. In addition, we demonstrated that pretreatment with aspirin significantly reduced the protein levels of phosphorylated protein kinase B, NF-κB and tumor necrosis factor α in NF-κB–luciferase+/+ transgenic mice. Thus, the effects of aspirin on the anti-inflammatory response and reactive oxygen species suppressive are hypothesized to occur through the NF-κB signaling pathway. This study demonstrated that aspirin exerts a protective effect for hyperoxia-induced lung injury and thus is currently the drug conventionally used for hyperoxia-induced lung injury.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Meng Xiang ◽  
Janet Fan ◽  
Jie Fan

Acute lung injury (ALI) frequently occurs in traumatic patients and serves as an important component of systemic inflammatory response syndrome (SIRS). Hemorrhagic shock (HS) that results from major trauma promotes the development of SIRS and ALI by priming the innate immune system for an exaggerated inflammatory response. Recent studies have reported that the mechanism underlying the priming of pulmonary inflammation involves the complicated cross-talk between Toll-like receptors (TLRs) and interactions between neutrophils (PMNs) and alveolar macrophages (AMϕ) as well as endothelial cells (ECs), in which reactive oxygen species (ROS) are the key mediator. This paper summarizes some novel mechanisms underlying HS-primed lung inflammation focusing on the role of TLRs and ROS, and therefore suggests a new therapeutic target for posttrauma ALI.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Sashko Georgiev Spassov ◽  
Rosa Donus ◽  
Paul Mikael Ihle ◽  
Helen Engelstaedter ◽  
Alexander Hoetzel ◽  
...  

The development of ventilator-induced lung injury (VILI) is still a major problem in mechanically ventilated patients. Low dose inhalation of hydrogen sulfide (H2S) during mechanical ventilation has been proven to prevent lung damage by limiting inflammatory responses in rodent models. However, the capacity of H2S to affect oxidative processes in VILI and its underlying molecular signaling pathways remains elusive. In the present study we show that ventilation with moderate tidal volumes of 12 ml/kg for 6 h led to an excessive formation of reactive oxygen species (ROS) in mice lungs which was prevented by supplemental inhalation of 80 parts per million of H2S. In addition, phosphorylation of the signaling protein Akt was induced by H2S. In contrast, inhibition of Akt by LY294002 during ventilation reestablished lung damage, neutrophil influx, and proinflammatory cytokine release despite the presence of H2S. Moreover, the ability of H2S to induce the antioxidant glutathione and to prevent ROS production was reversed in the presence of the Akt inhibitor. Here, we provide the first evidence that H2S-mediated Akt activation is a key step in protection against VILI, suggesting that Akt signaling limits not only inflammatory but also detrimental oxidative processes that promote the development of lung injury.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 19-19 ◽  
Author(s):  
Christopher C. Silliman ◽  
Marguerite Kelher ◽  
Tomohiko Masuno ◽  
Ernest E. Moore ◽  
Sagar Damle ◽  
...  

Abstract TRALI is the most common cause of transfusion-related death in the US, and the pathogenesis is related to the infusion of donor anti-leukocyte antibodies or biologic response modifiers (BRMs) including lipids that accumulate during storage of cellular components. We hypothesize that TRALI is the result of two distinct events: the first related to the clinical condition of the patient resulting in pulmonary endothelial activation and sequestration of PMNs and the second is the infusion of antibodies or BRMs along with the transfused product. Methods: PRBCs were obtained from 5 donors and 50% were pre-storage leukoreduced by filtration and the other 50% left as a control, and both stored per AABB criteria. Plasma samples were obtained serially from these units and was heat-treated (56°C for 30 min) to destroy fibrinogen and complement prior to administration. Antibodies to antigens present on leukocytes from Sprague Dawley rats including MHC class I: OX18 & OX27, MHC class II: OX3 & OX6 and anti-granulocyte (PMN) antibodies were obtained commercially. Male rats were given saline (NS) or 2 mg/kg IP of endotoxin (LPS S.enteritidies, non-lethal), incubated for 2 hrs, anesthetized with pentobarbital, the femoral vessels were cannulated, and 10% of the blood volume was withdrawn over 15 min. Plasma from day 1 (10% final) and day 42 (5–10%) PRBCs and 10% LR-PRBCs, and 50 or 100 μg of antibodies (500μl of sera, anti-PMN) were infused over 30 min, followed by IV Evan’s Blue dye (30 mg/kg; 1ml) that binds to albumin. At 6 hours, plasma and bronchoalveolar lavage (BAL) fluid were obtained to determine the % of Evan’s Blue leak into the BAL at 620 nm. Mortality was < 5%. Acute lung injury (ALI) was precipitated in LPS-treated animals by day 42 PRBC plasma (5% & 10%), 10% day 42 LR-PRBC plasma and antibodies to MHC class I antigens (Table). With NS as the first event, rats did not evidence ALI for all groups, including MHC class I antibodies. Moreover, in LPS pre-treated rats, second events consisting of NS, day 0 PRBC, day 0 LR-PRBC plasma, antibodies to MHC class II antigens (OX3 & OX6) and anti-PMN antibodies did not elicit ALI (Table). We conclude that 1) this in vivo model approximates the mortality of the clinical condition, 2) it demonstrates that the pathogenesis requires two events to elicit antibody-induced or BRM-mediated TRALI, and 3) ALI as the result of LPS/MHC class I antibodies evidences a dose-response. ALI as a a Function of Evans Blue Dye Leak 1st Event ⇒ Normal Saline NS LPS 2nd Event ⇓ †=p<.05 vs. 1st event or 2nd event Normal Saline 0.08±0.03 0.24±0.11 MHC Class I OX18 50μg 0.06±0.06 0.18±0.03 MHC Class I OX18 100μg 0.17 1.91±0.7] MHC Class I OX27 50μg 0.19±0.04 1.26±0.1† MHC Class II OX3 50μg 0.07 0.4 MHC Class II OX6 50μg 0.07±0.07 0.2±0.07 Anti-Granulocyte serum 500μl 0.25±0.14 0.22±0.17 Anti-Granulocyte 100μg 0.174 0.09±.02 PRBCs day 1 [10%] 0.10±0.08 0.25±0.09 PRBCs day 42 [5%] 0.13±0.07 2.48±0.46† PRBCs day 42 [10%] 0.16±0.10 1.16±0.34† LR-PRBCs day 1 [10%] 0.16±0.09 0.19±0.05 LR-PRBCs day 42 [10%] 0.20±0.12 2.69±0.58†


2020 ◽  
Author(s):  
Thalita Bachelli Riul ◽  
Helioswilton Sales de Campos ◽  
Djalma de Souza Lima-Junior ◽  
Ana Elisa Caleiro Seixas Azzolini ◽  
Cristina Ribeiro de Barros Cardoso ◽  
...  

SUMMARYTrypanosoma cruzi is an intracellular parasite that causes Chagas disease that affects millions of people worldwide. Many cellular and molecular aspects of this neglected disease are not fully understood. Prior studies have shown that galectin-1 (Gal-1), a β-galactoside-binding protein that regulates leukocyte recruitment to the inflammatory site, and promotes T. cruzi infection, but the mechanism is unclear. Here, we report that C57BL/6 mice lacking Gal-1 (Lgals1−/−) exhibited lower parasitemia and higher survival rates than their wildtype (WT) counterparts when infected with T. cruzi Y strain. Two weeks after infection, Lgals1−/− mice displayed greater neutrophil accumulation in infection site and heart tissue than WT mice. In T. cruzi-infected Lgals1−/− mice, infiltrated neutrophils produced increased levels of reactive oxygen species (ROS), while macrophages and neutrophils produced increased levels of nitric oxide (NO), which reduced replication and viability of parasites in vitro and downregulated IL-1β production. Pharmacological inhibition of NADPH oxidase and NO synthase during early in vivo infection reversed the protective effect of Gal-1 deficiency in Lgals1−/− mice. Together, our findings demonstrate that lacking Gal-1 favors neutrophil migration to the infection site and increases production of ROS and NO, thereby controlling the early steps of T. cruzi infection by reducing parasitemia and prolonging survival of infected mice.


Blood ◽  
2009 ◽  
Vol 113 (9) ◽  
pp. 2079-2087 ◽  
Author(s):  
Marguerite R. Kelher ◽  
Tomhiko Masuno ◽  
Ernest E. Moore ◽  
Sagar Damle ◽  
Xianzhong Meng ◽  
...  

Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion death. We hypothesize that TRALI requires 2 events: (1) the clinical condition of the patient and (2) the infusion of antibodies against MHC class I antigens or the plasma from stored blood. A 2-event rat model was developed with saline (NS) or endotoxin (LPS) as the first event and the infusion of plasma from packed red blood cells (PRBCs) or antibodies (OX18 and OX27) against MHC class I antigens as the second event. ALI was determined by Evans blue dye leak from the plasma to the bronchoalveolar lavage fluid (BALF), protein and CINC-1 concentrations in the BALF, and the lung histology. NS-treated rats did not evidence ALI with any second events, and LPS did not cause ALI. LPS-treated animals demonstrated ALI in response to plasma from stored PRBCs, both prestorage leukoreduced and unmodified, and to OX18 and OX27, all in a concentration-dependent fashion. ALI was neutrophil (PMN) dependent, and OX18/OX27 localized to the PMN surface in vivo and primed the oxidase of rat PMNs. We conclude that TRALI is the result of 2 events with the second events consisting of the plasma from stored blood and antibodies that prime PMNs.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 739-739
Author(s):  
Rick Kapur ◽  
Gopinath Kasetty ◽  
Johan Rebetz ◽  
Arne Egesten ◽  
John W Semple

Abstract Transfusion-related acute lung injury (TRALI) is a syndrome of respiratory distress which develops within 6 hours of blood transfusion. It is the leading cause of transfusion-related deaths and the pathogenesis is complex and incompletely understood. In the majority of the cases, anti-leukocyte antibodies present in the transfused blood product, in combination with recipient predisposing risk-factors such as inflammation, are implicated to be responsible for the onset of TRALI. Unfortunately, no therapies are available for TRALI. Osteopontin (OPN) is an extracellular matrix protein with multiple biological functions. OPN is involved in normal physiological processes, such as cell migration and adhesion, but has also been implicated in a wide range of disease states, including cancer, atherosclerosis, glomerulonephritis, and several chronic inflammatory diseases. Interestingly, OPN is upregulated at sites of inflammation and tissue remodeling. As inflammation is an important risk factor for TRALI development, and as neutrophils (PMNs) are known effector cells in the pathogenesis of TRALI which migrate and accumulate in the lungs during TRALI development, we investigated the potential contribution of OPN in the onset of antibody-mediated TRALI. We utilized a previously established murine TRALI model (Kapur et al, Blood 2017, Blood Advances 2018) in which C57BL/6 mice were first primed with a low dose of lipopolysaccharide (LPS) and depleted of their CD4+ T cells in vivo followed by injection of anti-major histocompatibility complex (MHC) class I antibodies (clones 34-1-2s and AF6-88.5.5.3). The TRALI response was analyzed after 90 minutes by analysis of pulmonary edema (lung wet-to-dry weight ratios, W/Ds) and the levels of pulmonary neutrophils. Wildtype (WT) mice suffered from antibody-mediated TRALI compared to untreated naïve mice, as was shown by their significantly increased lung W/Ds (4.72 vs 4.50, respectively, P<0.0001). This also corresponded to significantly increased levels of pulmonary PMNs compared to untreated naïve mice (34% vs 5%, P<0.0001). In contrast, C57BL/6 OPN knock-out mice were resistant to antibody-mediated TRALI induction as they did not display any significant increase in lung W/Ds levels or pulmonary PMNs compared to untreated naïve OPN knock-out mice (lung W/Ds 4.83 vs 4.75, and pulmonary PMNs 18% vs 16%, respectively). Strikingly, administration of purified recombinant OPN during TRALI induction in C57BL/6 OPN knock-out mice, significantly induced a TRALI reaction (lung W/Ds 5.12 vs 4.75 as compared to untreated naïve OPN knock-out mice, P<0.05). Mechanistically, this TRALI inducing effect of OPN administration to OPN knock-out mice was associated with increased levels of pulmonary PMNs (38% vs 16%, as compared to untreated naïve OPN knock-out mice, P<0.0001). In vivo blocking of OPN in WT mice with an anti-OPN antibody demonstrated decreased lung W/Ds as compared to treatment with an isotype antibody (4.48 vs 4.69, respectively, P<0.05). The OPN blocking response during TRALI was associated with a decreased level of pulmonary PMN accumulation as compared to treatment with an isotype antibody (14% vs 34%, respectively, P<0.0001). As the PMN-chemoattractant macrophage inflammatory protein (MIP)-2 has previously been described to be upregulated in murine antibody-mediated TRALI, we investigated if the OPN-associated pulmonary PMN accumulation and TRALI induction could be related to the levels of MIP-2. We found that plasma MIP-2 levels were increased in mice that were infused with anti-MHC class I antibodies as compared to naïve controls, but that addition or blocking of OPN did not affect these MIP-2 levels. This indicates that the OPN-related PMN responses in TRALI are independent of plasma MIP-2 levels. Collectively, these data indicate OPN as a novel pathogenic factor which enhances antibody-mediated murine TRALI through stimulation of PMN migration towards the lungs, independent of MIP-2. This may suggest that blocking OPN (using an anti-OPN antibody) may prevent TRALI by impairing pulmonary PMN accumulation and could be a therapeutic avenue to explore in combatting this serious adverse complication of blood transfusion. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document