Mutations In The Zinc Finger Domain Of Human and Mouse KLF1 Cause Congenital Dyserythropoietic Anemia (CDA) Via Promiscuous DNA Binding and Ectopic Target Gene Expression

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 11-11
Author(s):  
Kevin R Gillinder ◽  
Mathieu Lajoie ◽  
Melissa Ilsley ◽  
Michael R Tallack ◽  
Graham Magor ◽  
...  

Abstract Krûppel-like factor-1 (KLF1) is an essential erythroid-specific transcription factor1, 2. A number of studies have shown up to ∼700 genes are poorly expressed when KLF1 is absent3-6. This global loss of expression is responsible for failure of effective red blood cell production in KLF1 knockout mice, and partly responsible for congenital dyserythropoietic anemia type IV (CDA-IV) observed in humans with dominant mutations in the DNA-binding domain of KLF17. Recently an ENU-generated mouse model of neonatal anemia, ‘nan’, was also reported to harbour a mutation in the second zinc-finger of KLF18. Remarkably, the ‘nan’ mutation (E339D) resides at exactly the same amino acid which results in human CDA IV (i.e. E325 in humans). Unlike loss of function point mutations in KLF1, this mutation leads to a more severe phenotype than the KLF1 null allele, suggesting it is an unusual dominant mutation9. To investigate how this mutation might cause disease, we introduced tamoxifen-inducible versions of KLF1 and KLF1nan into an erythroid cell line derived from Klf1-/- fetal liver cells10. We performed ChIP-seq to determine genome occupancy site preferences for KLF1 and KLF1nan. We identified about 4-fold the number of binding sites within the genome for KLF1nan versus KLF1; many of these are ectopic or promiscuous. Using de novo motif discovery11, we find KLF1nan binds a slightly degenerate CACC box element (CCMNGCCC) in comparison with wild type KLF1 (CCMCRCCC). This specificity is novel with respect to known TFs, so we think it represents specificity not normally present in mammals. The degenerate motif is consistent with models of how the second zinc finger of KLF1 specifically interacts with the 9bp consensus binding site12,13. We also isolated nascent RNA from wild type and mutant cells, to identify primary transcriptional targets of KLF1 and aberrant targets of the KLF1nanmutation. We performed primary transcript RNA-seq and validation using RT-PCR of pre-processed nuclear transcripts. Together the RNA-seq and ChIP-seq studies have provided a novel explanation for how mutations in KLF1 result in dominant anemia in mice and man. This mechanism, whereby a transcription factor DNA-binding domain mutation leads to promiscuous binding, activation of an aberrant transcriptional program and subsequent derailing of co-ordinated differentiation, is novel. References: 1. Perkins, A.C., A.H. Sharpe, and S.H. Orkin. Nature, 1995. 375(6529): p. 318-22. 2. Nuez, B., et al., Nature, 1995. 375(6529): p. 316-8. 3. Pilon, A.M., et al., Mol Cell Biol, 2006. 26(11): p. 4368-77. 4. Drissen, R., et al., Mol Cell Biol, 2005. 25(12): p. 5205-14. 5. Hodge, D., et al., Blood, 2006. 107(8): p. 3359-70. 6. Tallack, M.R., et al., Genome Res, 2012. 22(12):2385-98 7. Arnaud, L., et al., Am J Hum Genet. 87(5): p. 721-7. 8. Siatecka, M., et al., Proc Natl Acad Sci U S A. 2010. 107(34):15151-6 9. Heruth, D.P., et al., Genomics, 2010. 96(5): p. 303-7. 10. Coghill, E., et al., Blood, 2001. 97(6): p. 1861-1868. 11. Bailey, T.L., et al., Nucleic Acids Res, 2009. 37(Web Server issue): p. W202-8. 12. Schuetz, A., et al., Cell Mol Life Sci, 2011. 68(18): p. 3121-31. 13. Oka, S., et al., Biochemistry, 2004. 43(51): p. 16027-35. Disclosures: Perkins: Novartis Oncology: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 740-740
Author(s):  
Andrew C Perkins ◽  
Kevin R Gillinder ◽  
Graham Magor ◽  
Mathieu Lajoie ◽  
Timothy L Bailey ◽  
...  

Abstract Krûppel-like factor-1 (KLF1) is an essential erythroid-specific transcription factor [1, 2]. A number of studies have shown up to ~700 genes are poorly expressed when KLF1 is absent [3-6]. This global loss of expression is responsible for failure of effective red blood cell production in KLF1 knockout mice, and partly responsible for congenital dyserythropoietic anemia type IV (CDA-IV) observed in humans with dominant mutations in the DNA-binding domain of KLF1 [7]. Recently an ENU-generated mouse model of neonatal anemia, ‘nan’, was also reported to harbour a mutation in the second zinc-finger of KLF1 [8]. Remarkably, the ‘nan’ mutation (E339D) resides at exactly the same amino acid which results in human CDA IV (= E325 in humans). Unlike loss of function point mutations in KLF1, this mutation leads to a more severe phenotype than the KLF1 null allele, suggesting it is an unusual dominant mutation [9]. To investigate how this mutation might cause disease, we introduced tamoxifen-inducible versions of KLF1 and KLF1nan into an erythroid cell line derived from Klf1-/- fetal liver cells [10]. We performed ChIP-seq to determine differences in genome occupancy in vivo, and identified novel sites occupied by EKLF-E339D but not by wild type KLF1. Using de novo motif discovery [11], we find KLF1nan binds a slightly degenerate CACC box element (CCMNGCCC) in comparison with wild type KLF1 (CCMCRCCC). This specificity is novel with respect to any known TFs, so we think it represents a sequence specificity not normally encoded in mammals. Ectopic binding to non-erythroid gene promoters is accompanied by aberrant gene expression as determined by 4sU labelling and deep sequencing of tamoxifen-induced primary nuclear RNAs. We find a 4-fold greater number of genes induced by KLF1-nan compared with wild type KLF1 which is consistent with degenerate genome occupancy. We compared the KLF1-nan dependent genes with RNA-seq performed in primary fetal liver for KLF1+/nan versus KLF1+/- mice. We confirmed aberrant binding using EMSA and surface plasmon resonance (SPR) using recombinant GST-Klf1 zinc finger domains expressed in E.coli. The degenerate motif is consistent with structural models of how the second zinc finger of KLF1 specifically interacts with its binding site [12, 13]. We are undertaking structural studies to confirm this modelling. Together RNA-seq, ChIP-seq and SPR studies have provided a novel explanation for how mutations in KLF1 result in dominant anemia in mice and man. To our knowledge this mechanism, whereby a transcription factor DNA-binding domain mutation leads to promiscuous binding, activation of an aberrant transcriptional program and subsequent derailing of co-ordinated differentiation, is novel. References: 1.Perkins, A.C., A.H. Sharpe, and S.H. Orkin. Nature, 1995. 375(6529): p. 318-22. 2.Nuez, B., et al., Nature, 1995. 375(6529): p. 316-8. 3.Pilon, A.M., et al., Mol Cell Biol, 2006. 26(11): p. 4368-77. 4.Drissen, R., et al., Mol Cell Biol, 2005. 25(12): p. 5205-14. 5.Hodge, D., et al., Blood, 2006. 107(8): p. 3359-70. 6.Tallack, M.R., et al., Genome Res, 2012. 22(12):2385-98 7.Arnaud, L., et al., Am J Hum Genet. 87(5): p. 721-7. 8.Siatecka, M., et al., Proc Natl Acad Sci U S A. 2010. 107(34):15151-6 9.Heruth, D.P., et al., Genomics, 2010. 96(5): p. 303-7. 10.Coghill, E., et al., Blood, 2001. 97(6): p. 1861-1868. 11.Bailey, T.L., et al., Nucleic Acids Res, 2009. 37(Web Server issue): p. W202-8. 12.Schuetz, A., et al., Cell Mol Life Sci, 2011. 68(18): p. 3121-31. 13.Oka, S., et al., Biochemistry, 2004. 43(51): p. 16027-35. Disclosures No relevant conflicts of interest to declare.


1990 ◽  
Vol 10 (10) ◽  
pp. 5128-5137 ◽  
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a DNA-binding protein that regulates transcription of the lactose-galactose regulon in Kluyveromyces lactis. The DNA-binding domain is composed of a zinc finger and nearby amino acids (M. M. Witte and R. C. Dickson, Mol. Cell. Biol. 8:3726-3733, 1988). The single zinc finger appears to be structurally related to the zinc finger of many other fungal transcription activator proteins that contain positively charged residues and six conserved cysteines with the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-9-Cys-Xaa2-Cys-Xaa 6-Cys, where Xaan indicates a stretch of the indicated number of any amino acids (R. M. Evans and S. M. Hollenberg, Cell 52:1-3, 1988). The function(s) of the zinc finger and other amino acids in DNA-binding remains unclear. To determine which portion of the LAC9 DNA-binding domain mediates sequence recognition, we replaced the C6 zinc finger, amino acids adjacent to the carboxyl side of the zinc finger, or both with the analogous region from the Saccharomyces cerevisiae PPR1 or LEU3 protein. A chimeric LAC9 protein, LAC9(PPR1 34-61), carrying only the PPR1 zinc finger, retained the DNA-binding specificity of LAC9. However, LAC9(PPR1 34-75), carrying the PPR1 zinc finger and 14 amino acids on the carboxyl side of the zinc finger, gained the DNA-binding specificity of PPR1, indicating that these 14 amino acids are necessary for specific DNA binding. Our data show that C6 fingers can substitute for each other and allow DNA binding, but binding affinity is reduced. Thus, in a qualitative sense C6 fingers perform a similar function(s). However, the high-affinity binding required by natural C6 finger proteins demands a unique C6 finger with a specific amino acid sequence. This requirement may reflect conformational constraints, including interactions between the C6 finger and the carboxyl-adjacent amino acids; alternatively or in addition, it may indicate that unique, nonconserved amino acid residues in zinc fingers make sequence-specifying or stabilizing contacts with DNA.


1992 ◽  
Vol 12 (3) ◽  
pp. 1209-1217
Author(s):  
C F Hardy ◽  
D Balderes ◽  
D Shore

RAP1 is an essential sequence-specific DNA-binding protein in Saccharomyces cerevisiae whose binding sites are found in a large number of promoters, where they function as upstream activation sites, and at the silencer elements of the HMR and HML mating-type loci, where they are important for repression. We have examined the involvement of specific regions of the RAP1 protein in both repression and activation of transcription by studying the properties of a series of hybrid proteins containing RAP1 sequences fused to the DNA-binding domain of the yeast protein GAL4 (amino acids 1 to 147). GAL4 DNA-binding domain/RAP1 hybrids containing only the carboxy-terminal third of the RAP1 protein (which lacks the RAP1 DNA-binding domain) function as transcriptional activators of a reporter gene containing upstream GAL4 binding sites. Expression of some hybrids from the strong ADH1 promoter on multicopy plasmids has a dominant negative effect on silencers, leading to either partial or complete derepression of normally silenced genes. The GAL4/RAP1 hybrids have different effects on wild-type and several mutated but functional silencers. Silencers lacking either an autonomously replicating sequence consensus element or the RAP1 binding site are strongly derepressed, whereas the wild-type silencer or a silencer containing a deletion of the binding site for another silencer-binding protein, ABF1, are only weakly affected by hybrid expression. By examining a series of GAL4 DNA-binding domain/RAP1 hybrids, we have mapped the transcriptional activation and derepression functions to specific parts of the RAP1 carboxy terminus.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 13 (12) ◽  
pp. 7496-7506
Author(s):  
X Mao ◽  
M K Darby

Transcription of the Xenopus 5S RNA gene by RNA polymerase III requires the gene-specific factor TFIIIA. To identify domains within TFIIIA that are essential for transcriptional activation, we have expressed C-terminal deletion, substitution, and insertion mutants of TFIIIA in bacteria as fusions with maltose-binding protein (MBP). The MBP-TFIIIA fusion protein specifically binds to the 5S RNA gene internal control region and complements transcription in a TFIIIA-depleted oocyte nuclear extract. Random, cassette-mediated mutagenesis of the carboxyl region of TFIIIA, which is not required for promoter binding, has defined a 14-amino-acid region that is critical for transcriptional activation. In contrast to activators of RNA polymerase II, the activity of the TFIIIA activation domain is strikingly sensitive to its position relative to the DNA-binding domain. When the eight amino acids that separate the transcription-activating domain from the last zinc finger are deleted, transcriptional activity is lost. Surprisingly, diverse amino acids can replace these eight amino acids with restoration of full transcriptional activity, suggesting that the length and not the sequence of this region is important. Insertion of amino acids between the zinc finger region and the transcription-activating domain causes a reduction in transcription proportional to the number of amino acids introduced. We propose that to function, the transcription-activating domain of TFIIIA must be correctly positioned at a minimum distance from the DNA-binding domain.


1993 ◽  
Vol 13 (12) ◽  
pp. 7850-7858
Author(s):  
F Kaspar ◽  
H Klocker ◽  
A Denninger ◽  
A C Cato

Reifenstein syndrome is an eponymic term that describes partial androgen-insensitive disorders. Androgen receptor isolated from five patients with this syndrome contains a specific mutation in the DNA binding domain of the receptor. This mutation converts an alanine to a threonine at position 596 next to the zinc catenation site at the second finger. The threonine 596 mutant receptor mediated normal androgen response at promoters with closely positioned multiple regulatory elements for the androgen receptor and other transcription factors. Promoters with single isolated androgen response elements were not transactivated by the mutant receptor. In in vitro receptor-DNA binding studies, interaction with DNA by the mutant receptor was achieved only in the presence of an anti-androgen receptor antibody. Exchanging alanine 596 in the wild-type androgen receptor with serine or valine produced mutants with properties indistinguishable from those of the naturally occurring threonine 596 mutant receptor. These results indicate that an alanine residue at position 596 contributes important structural and functional activities to the androgen receptor. In the androgen receptor from the patients with Reifenstein syndrome, in which this alanine is converted to a threonine, wild-type receptor properties can be restored by exchanging an additional threonine at position 602 to an alanine. An alanine residue at position 596 or 602 in the DNA binding domain of the androgen receptor is therefore important for the full function of this receptor. In all steroid receptors that bind the core sequence AGAACANNNTGTTCT, an alanine residue is also present at a position equivalent to alanine 596 in the androgen receptor.


2020 ◽  
Vol 1864 (1) ◽  
pp. 129440 ◽  
Author(s):  
Ana Sara Gomes ◽  
Helena Ramos ◽  
Sara Gomes ◽  
Joana B. Loureiro ◽  
Joana Soares ◽  
...  

1990 ◽  
Vol 10 (9) ◽  
pp. 4778-4787 ◽  
Author(s):  
C Buchman ◽  
P Skroch ◽  
W Dixon ◽  
T D Tullius ◽  
M Karin

CUP2 is a copper-dependent transcriptional activator of the yeast CUP1 metallothionein gene. In the presence of Cu+ and Ag+) ions its DNA-binding domain is thought to fold as a cysteine-coordinated Cu cluster which recognizes the palindromic CUP1 upstream activation sequence (UASc). Using mobility shift, methylation interference, and DNase I and hydroxyl radical footprinting assays, we examined the interaction of wild-type and variant CUP2 proteins produced in Escherichia coli with the UASc. Our results suggest that CUP2 has a complex Cu-coordinated DNA-binding domain containing different parts that function as DNA-binding elements recognizing distinct sequence motifs embedded within the UASc. A single-amino-acid substitution of cysteine 11 with a tyrosine results in decreased Cu binding, apparent inactivation of one of the DNA-binding elements and a dramatic change in the recognition properties of CUP2. This variant protein interacts with only one part of the wild-type site and prefers to bind to a different half-site from the wild-type protein. Although the variant has about 10% of wild-type DNA-binding activity, it appears to be completely incapable of activating transcription.


Biochemistry ◽  
1997 ◽  
Vol 36 (37) ◽  
pp. 11188-11197 ◽  
Author(s):  
Helena Berglund ◽  
Magnus Wolf-Watz ◽  
Thomas Lundbäck ◽  
Susanne van den Berg ◽  
Torleif Härd

2004 ◽  
Vol 37 (5) ◽  
pp. 741-749 ◽  
Author(s):  
Yoshimi Umemura ◽  
Tomoko Ishiduka ◽  
Rie Yamamoto ◽  
Muneharu Esaka

2008 ◽  
Vol 28 (19) ◽  
pp. 6078-6093 ◽  
Author(s):  
Anke Hoffmann ◽  
Dietmar Spengler

ABSTRACT The generally accepted paradigm of transcription by regulated recruitment defines sequence-specific transcription factors and coactivators as separate categories that are distinguished by their abilities to bind DNA autonomously. The C2H2 zinc finger protein Zac1, with an established role in canonical DNA binding, also acts as a coactivator. Commensurate with this function, p73, which is related to p53, is here shown to recruit Zac1, together with the coactivators p300 and PCAF, to the p21Cip1 promoter during the differentiation of embryonic stem cells into neurons. In the absence of autonomous DNA binding, Zac1's zinc fingers stabilize the association of PCAF with p300, suggesting its scaffolding function. Furthermore, Zac1 regulates the affinities of PCAF substrates as well as the catalytic activities of PCAF to induce a selective switch in favor of histone H4 acetylation and thereby the efficient transcription of p21Cip1. These results are consistent with an authentic coactivator function of Zac1's C2H2 zinc finger DNA-binding domain and suggest coactivation by sequence-specific transcription factors as a new facet of transcriptional control.


Sign in / Sign up

Export Citation Format

Share Document