Challenging Dogmas - Or How Much Evidence Is Necessary To Claim That There Is a Direct Developmental and Functional Link Between The Primordial Germ Cell (PGC) Lineage and Hematopoiesis?

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1215-1215 ◽  
Author(s):  
Magdalena Kucia ◽  
Magda Maj ◽  
Kasia Mierzejewska ◽  
Dong-Myung Shin ◽  
Janina Ratajczak ◽  
...  

Abstract Background The recent hot debate on the existence in bone marrow (BM) of developmentally early stem cells with broader specification challenged the hierarchy within the stem cell compartment in murine BM. Evidence has accumulated that hematopoietic stem cells (HSCs) can become specified from a population of migrating primordial germ cells (PGCs) during embryogenesis. In support of this intriguing possibility, HSCs and PGCs are highly migratory cells, and specification of the first primitive HSCs in yolk sac blood islands as well as the origin of definitive HSCs in the aorta–gonado–mesonephros (AGM) region are chronologically and anatomically correlated with the developmental migration of PGCs in extra- and intra-embryonic tissues. Furthermore, several papers have described the sharing of chromosomal aberrations between germline tumors and leukemias or lymphomas, which suggests their clonal origin. Moreover, our recent work demonstrated the presence of quiescent, small, Oct-4+Nanog+Sca-1+Lin–CD45– stem cells in adult murine BM that express several markers shared with migratory PGCs (Leukemia 2010;24:1450) and can be specified into the hematopoietic lineage (Exp.Hematology 2011;39:225). These cells were named very small embryonic-like stem cells (VSELs). Hypothesis The aim of our study was to test the hypothesis that VSELs are related to PGCs, which would support a potential developmental link between hematopoiesis and the germ line. Experimental strategies We employed transmission electron microscopy (TEM), immunohistochemical staining, RQ-PCR analysis of mRNA and miRNA expression, gene array studies, and promoter methylation analysis to evaluate the expression of genes characteristic of PGC specification. We evaluated the expression of sex hormone receptors in VSELs and HSCs, and by direct in vitro and in vivo studies, we studied the effect of androgens and pituitary gonadotropins on proliferation and expansion of VSELs and HSCs. Salient Results The TEM studies revealed VSELs to be small cells with a high nuclear/cytoplasmic ratio, euchromatin, and few mitochondria. VSELs isolated under steady-state conditions from BM highly express, at the mRNA and protein levels, genes involved in specification of the epiblast (e.g., Stella, Fragilis, Blimp1) in addition to genes involved in PGC specification, such as Dppa2, Dppa4, and Mvh, which characterize late-migratory PGCs. The expression of some of these genes has been confirmed at the protein level and at the promoter level to confirm chromatin structure characteristic of actively transcribed genes. To explain highly quiescent state of VSELs, we observed that VSELs, like migrating PGCs, modify imprinting of some early-development parentally imprinted gene loci, including Igf2-H19 and KCNQ1/p57Kip2, which results in their resistance to Igf-1/Igf-2 signaling and upregulation of the cyclin-dependent kinase inhibitor p57KIP2. In parallel, VSELs express several miRNAs that attenuate Igf-1/Igf-2 signaling in these cells (mir681, mir470, mir669b) as well as upregulate expression of p57KIP2 (mir25.1, mir19b, mir92). More importantly, we observed that VSELs and HSCs express mRNA for several pituitary and gonadal hormone receptors as well as highly express Sall4, an early-development marker shared by germ and hematopoietic cells. Finally, in direct in vitro and in vivo experiments, we confirmed that the quiescent population of BM-residing VSELs responds to stimulation by androgens (danazol) and pituitary gonadotropins (PSMG, FSH, and LH). In particular, we found that 10-day administration of all the sex hormones evaluated in this study directly stimulated expansion (∼2–3x) of VSELs and HSPCs in BM and enhanced BrdU incorporation (Figure 1). Conclusions Our data support the challenging, alternative concept that HSCs can be specified during development from epiblast/migrating PGCs and that VSELs that express several unique PGCs markers, are the most primitive population of stem cells in BM. Moreover, changes in the epigenetic signature of imprinted genes as well as the miRNA network involved in resistance of these cells to Igf-1/Igf-2 signaling keeps these cells quiescent in adult tissues and prevents teratoma formation. Finally, our in vitro and in vivo data clearly show that both VSELs and HSCs proliferate in response to sex hormones. Thus, we conclude that the PGC origin of HSCs warrants further study. Disclosures: Ratajczak: Neostem Inc.: Membership on an entity’s Board of Directors or advisory committees, Research Funding.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2476-2476
Author(s):  
Kasia Mierzejewska ◽  
Ewa Suszynska ◽  
Sylwia Borkowska ◽  
Malwina Suszynska ◽  
Maja Maj ◽  
...  

Abstract Background Hematopoietic stem/progenitor cells (HSPCs) are exposed in vivo to several growth factors, cytokines, chemokines, and bioactive lipids in bone marrow (BM) in addition to various sex hormones circulating in peripheral blood (PB). It is known that androgen hormones (e.g., danazol) is employed in the clinic to treat aplastic anemia patients. However, the exact mechanism of action of sex hormones secreted by the pituitary gland or gonads is not well understood. Therefore, we performed a complex series of experiments to address the influence of pregnant mare serum gonadotropin (PMSG), luteinizing hormone (LH), follicle-stimulating hormone (FSH), androgen (danazol) and prolactin (PRL) on murine hematopoiesis. In particular, from a mechanistic view we were interested in whether this effect depends on stimulation of BM-residing stem cells or is mediated through the BM microenvironment. Materials and Methods To address this issue, normal 2-month-old C57Bl6 mice were exposed or not to daily injections of PMSG (10 IU/mice/10 days), LH (5 IU/mice/10 days), FSH (5 IU/mice/10 days), danazol (4 mg/kg/10 days) and PRL (1 mg/day/5days). Subsequently, we evaluated changes in the BM number of Sca-1+Lin–CD45– that are precursors of long term repopulating hematopoietic stem cells (LT-HSCs) (Leukemia 2011;25:1278–1285) and bone forming mesenchymal stem cells (Stem Cell & Dev. 2013;22:622-30) and Sca-1+Lin–CD45+ hematopoietic stem/progenitor cells (HSPC) cells by FACS, the number of clonogenic progenitors from all hematopoietic lineages, and changes in peripheral blood (PB) counts. In some of the experiments, mice were exposed to bromodeoxyuridine (BrdU) to evaluate whether sex hormones affect stem cell cycling. By employing RT-PCR, we also evaluated the expression of cell-surface and intracellular receptors for hormones in purified populations of murine BM stem cells. In parallel, we studied whether stimulation by sex hormones activates major signaling pathways (MAPKp42/44 and AKT) in HSPCs and evaluated the effect of sex hormones on the clonogenic potential of murine CFU-Mix, BFU-E, CFU-GM, and CFU-Meg in vitro. We also sublethally irradiated mice and studied whether administration of sex hormones accelerates recovery of peripheral blood parameters. Finally, we determined the influence of sex hormones on the motility of stem cells in direct chemotaxis assays as well as in direct in vivo stem cell mobilization studies. Results We found that 10-day administration of each of the sex hormones evaluated in this study directly stimulated expansion of HSPCs in BM, as measured by an increase in the number of these cells in BM (∼2–3x), and enhanced BrdU incorporation (the percentage of quiescent BrdU+Sca-1+Lin–CD45– cells increased from ∼2% to ∼15–35% and the percentage of BrdU+Sca-1+Lin–CD45+ cells increased from 24% to 43–58%, Figure 1). These increases paralleled an increase in the number of clonogenic progenitors in BM (∼2–3x). We also observed that murine Sca-1+Lin–CD45– and Sca-1+Lin–CD45+ cells express sex hormone receptors and respond by phosphorylation of MAPKp42/44 and AKT in response to exposure to PSMG, LH, FSH, danazol and PRL. We also observed that administration of sex hormones accelerated the recovery of PB cell counts in sublethally irradiated mice and slightly mobilized HSPCs into PB. Finally, in direct in vitro clonogenic experiments on purified murine SKL cells, we observed a stimulatory effect of sex hormones on clonogenic potential in the order: CFU-Mix > BFU-E > CFU-Meg > CFU-GM. Conclusions Our data indicate for the first time that not only danazol but also several pituitary-secreted sex hormones directly stimulate the expansion of stem cells in BM. This effect seems to be direct, as precursors of LT-HSCs and HSPCs express all the receptors for these hormones and respond to stimulation by phosphorylation of intracellular pathways involved in cell proliferation. These hormones also directly stimulated in vitro proliferation of purified HSPCs. In conclusion, our studies support the possibility that not only danazol but also several other upstream pituitary sex hormones could be employed to treat aplastic disorders and irradiation syndromes. Further dose- and time-optimizing mouse studies and studies with human cells are in progress in our laboratories. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3781-3781
Author(s):  
Philipp A Dietrich ◽  
Murray D Norris ◽  
Jenny Yingzi Wang

Abstract Inappropriate activation of Wnt/β-catenin signaling confers hematopoietic progenitors the property of self-renewal that promotes malignant transformation in MLL-rearranged acute myeloid leukemia (AML). However, it has been noted that activation of β-catenin is observed in tumors without clear mutations in the major components of the pathway or increase in Wnt signaling. This suggests that other developmental signaling pathways may be capable of inducing activation or downstream signaling of β-catenin. Recently, a number of G protein-coupled receptors (GPCRs) have been shown to activate β-catenin signaling to recruit the key downstream components of the canonical Wnt pathway in distinct cell types, including stem cells. GPCRs, the largest family of cell-surface molecules involved in signal transmission, have emerged as crucial players in tumor growth and metastasis, and represent one of the most important drug targets in pharmaceutical development. Given the close functional link with activation of β-catenin signaling, a GPCR signaling pathway may act as the upstream regulator of β-catenin signaling in the establishment of leukemic stem cells (LSC). In this study, our microarray analysis comparing genes differentially expressed between LSC and normal hematopoietic stem cells (HSC) identified GPR84, a proinflammatory GPCR, as a potential LSC-specific candidate target. An analysis of the comprehensive patient outcome database (Oncogenomics – maintained by the National Cancer Institute) showed that high levels of GPR84 were significantly associated with poor survival in patients with leukemia (P=0.0048), implying its potential clinical relevance in predicting disease prognosis. Western blot and flow cytometric analyses confirmed the microarray results and revealed a positive correlation between GPR84 and β-catenin expression. We previously demonstrated that β-catenin was highly expressed in HSC transformed by MLL-AF9 (HSC-MLLAF9) and had lower expression in HSC transduced with leukemic oncogenes Hoxa9/Meis1 (HSC-Hoxa9/Meis1), while increased β-catenin expression was correlated with a poor survival rate in vivo. Herein, our results showed that forced expression of GPR84 induced a robust upregulation of β-catenin in HSC-Hoxa9/Meis1. Conversely, shRNA-mediated ablation of GPR84 in HSC-MLLAF9 led to highly significant downregulation of both GPR84 (P=0.0003) and β-catenin (P=0.0008). Further in vitro functional studies showed that GPR84 knockdown significantly reduced HSC-MLL-AF9 colony forming units (P=0.0006), and induced a marked reduction of cells in S-phase (P=0.0017). This deficient phenotype could be rescued by expression of a constitutively active form of β-catenin. Importantly, subsequent in vivo survival studies using leukemia transplantation mouse models showed that GPR84 knockdown significantly reduced LSC frequency and severely impaired maintenance (P<0.0001; 11 mice per cohort) of HSC-MLL-AF9 induced leukemia, a highly aggressive and drug-resistant subtype of AML. The defect in disease phenotype resulted from inhibited expression of both GPR84 and β-catenin. Furthermore, forced overexpression of GPR84 alone was not sufficient for leukemic transformation of HSC but conferred a growth advantage in vivo to HSC-Hoxa9/Meis1 cells and significantly accelerated the onset of Hoxa9/Meis1-induced AML (P=0.0039), establishing a completely malignant phenotype similar to HSC-MLL-AF9 in vivo (P=0.9986). These data support an oncogenic role of GPR84 in MLL-AF9-induced leukemogenesis. In conclusion, our studies have identified a novel β-catenin regulator that contributes to leukemia maintenance by sustaining aberrant activation of a stem cell self-renewal pathway in LSC, and drugs targeting GPR84 may represent a novel and promising strategy for improving the therapy and outcome of AML patients. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1189-1197 ◽  
Author(s):  
Hua Tang ◽  
Zhenhong Guo ◽  
Minghui Zhang ◽  
Jianli Wang ◽  
Guoyou Chen ◽  
...  

Abstract Regulatory dendritic cells (DCs) have been reported recently, but their origin is poorly understood. Our previous study demonstrated that splenic stroma can drive mature DCs to proliferate and differentiate into regulatory DCs, and their natural counterpart with similar regulatory function in normal spleens has been identified. Considering that the spleen microenvironment supports hematopoiesis and that hematopoietic stem cells (HSCs) are found in spleens of adult mice, we wondered whether splenic microenvironment could differentiate HSCs into regulatory DCs. In this report, we demonstrate that endothelial splenic stroma induce HSCs to differentiate into a distinct regulatory DC subset with high expression of CD11b but low expression of Ia. CD11bhiIalo DCs secreting high levels of TGF-β, IL-10, and NO can suppress T-cell proliferation both in vitro and in vivo. Furthermore, CD11bhiIalo DCs have the ability to potently suppress allo-DTH in vivo, indicating their preventive or therapeutic perspectives for some immunologic disorders. The inhibitory function of CD11bhiIalo DCs is mediated through NO but not through induction of regulatory T (Treg) cells or T-cell anergy. IL-10, which is secreted by endothelial splenic stroma, plays a critical role in the differentiation of the regulatory CD11bhiIalo DCs from HSCs. These results suggest that splenic microenvironment may physiologically induce regulatory DC differentiation in situ.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


1994 ◽  
Vol 179 (2) ◽  
pp. 493-502 ◽  
Author(s):  
R Bacchetta ◽  
M Bigler ◽  
J L Touraine ◽  
R Parkman ◽  
P A Tovo ◽  
...  

Transplantation of HLA mismatched hematopoietic stem cells in patients with severe combined immunodeficiency (SCID) can result in a selective engraftment of T cells of donor origin with complete immunologic reconstitution and in vivo tolerance. The latter may occur in the absence of clonal deletion of donor T lymphocytes able to recognize the host HLA antigens. The activity of these host-reactive T cells is suppressed in vivo, since no graft-vs. -host disease is observed in these human chimeras. Here it is shown that the CD4+ host-reactive T cell clones isolated from a SCID patient transplanted with fetal liver stem cells produce unusually high quantities of interleukin 10 (IL-10) and very low amounts of IL-2 after antigen-specific stimulation in vitro. The specific proliferative responses of the host-reactive T cell clones were considerably enhanced in the presence of neutralizing concentrations of an anti-IL-10 monoclonal antibody, suggesting that high levels of endogenous IL-10 suppress the activity of these cells. These in vitro data correlate with observations made in vivo. Semi-quantitative polymerase chain reaction analysis carried out on freshly isolated peripheral blood mononuclear cells (PBMC) of the patient indicated that the levels of IL-10 messenger RNA (mRNA) expression were strongly enhanced, whereas IL-2 mRNA expression was much lower than that in PBMC of healthy donors. In vivo IL-10 mRNA expression was not only high in the T cells, but also in the non-T cell fraction, indicating that host cells also contributed to the high levels of IL-10 in vivo. Patient-derived monocytes were found to be major IL-10 producers. Although no circulating IL-10 could be detected, freshly isolated monocytes of the patient showed a reduced expression of class II HLA antigens. However, their capacity to stimulate T cells of normal donors in primary mixed lymphocyte cultures was within the normal range. Interestingly, similar high in vivo IL-10 mRNA expressions in the T and non-T cell compartment were also observed in three SCID patients transplanted with fetal liver stem cells and in four SCID patients transplanted with T cell-depleted haploidentical bone marrow stem cells. Taken together, these data indicate that high endogenous IL-10 production is a general phenomenon in SCID patients in whom allogenic stem cell transplantation results in immunologic reconstitution and induction of tolerance. Both donor T cells and host accessory cells contribute to these high levels of IL-10, which would suppress the activity of host-reactive T cell in vivo.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Hyun Sook Hong ◽  
Suna Kim ◽  
Youngsook Son

Bone marrow stem cells, especially, endothelial precursor cells (EPC), mesenchymal stem cells (MSC) or hematopoietic stem cell (HSC) are expected as reparative cells for the repair of a variety of tissue damages such as stroke and myocardial infarction, even though their role in the repair is not demonstrated. This report was investigated to find a role of Substance-p (SP) as a reparative agent in the tissue repair requiring EPC and MSC. In order to examine EPC (EPC SP ) and MSC (MSC SP ) mobilized by SP, we injected SP intravenously for consecutive 2 days and saline was injected as a vehicle. At 3 post injection, peripheral blood (PB) was collected.To get mesenchymal stem cells or endothelial progenitor cells, MNCs were incubated in MSCGM or EGM-2 respectively for 10 days. Functional characteristics of the EPC SP were proven by the capacity to form endothelial tubule network in the matrigel in vitro and in the matrigel plug assay in vivo. In contrast, MSC SP did not form a tube-like structure but formed a pellet-structure on matrigel. However, when both cells were premixed before the matrigel assay, much longer and branched tubular network was formed, in which a-SMA expressing MSC SP were decorating outside of the endothelial tube, especially enriched at the bifurcating point. MSC SP may contribute and reinforce elaborate vascular network formation in vivo by working as pericyte-like cells. Thus, the EPC SP and MSC SP were labeled with PKH green and PKH red respectively and their tubular network was examined. Well organized tubular network was formed, which was covered by PKH green labeled cells and was decorated in a punctate pattern by PKH red labeled cells. In order to investigate the role of EPC SP and MSC SP specifically in vivo, rabbit EPC SP and MSC SP were transplanted to full thickness skin wound. The vessel of EPC SP -transplanted groups was UEA-lectin+, which was not covered with a-SMA+ pericytes but EPC SP + MSC SP -transplanted groups showed, in part, a-SMA+ pericyte-encircled UEA-lectin+ vessels. This proved the specific role of MSC SP as pericytes. From these data, we have postulated that the collaboration of MSC and EPC is essential for normal vessel structure and furthermore, accelerated wound healing as ischemia diseases, which can be stimulated through by SP injection.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 951 ◽  
Author(s):  
Yong Dong ◽  
Chengxiang Xia ◽  
Qitong Weng ◽  
Tongjie Wang ◽  
Fangxiao Hu ◽  
...  

Natural hematopoietic stem cells (HSC) are susceptible and tend to lose stemness, differentiate, or die on culture condition in vitro, which adds technical challenge for maintaining bona fide HSC-like cells, if ever generated, in protocol screening from pluripotent stem cells. It remains largely unknown whether gene-editing of endogenous genes can genetically empower HSC to endure the culture stress and preserve stemness. In this study, we revealed that both NUP98-HOXA10HD fusion and endogenous Nras mutation modifications (NrasG12D) promoted the engraftment competitiveness of HSC. Furthermore, the synergy of these two genetic modifications endowed HSC with super competitiveness in vivo. Strikingly, single NAV-HSC successfully maintained its stemness and showed robust multi-lineage engraftments after undergoing the in vitro culture. Mechanistically, NUP98-HOXA10HD fusion and NrasG12D mutation distinctly altered multiple pathways involving the cell cycle, cell division, and DNA replication, and distinctly regulated stemness-related genes including Hoxa9, Prdm16, Hoxb4, Trim27, and Smarcc1 in the context of HSC. Thus, we develop a super-sensitive transgenic model reporting the existence of HSC at the single cell level on culture condition, which could be beneficial for protocol screening of bona fide HSC regeneration from pluripotent stem cells in vitro.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2813-2820 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei M. Wu ◽  
Francis N. Karanu ◽  
Mike Keeney ◽  
...  

Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34−Lin−). A major barrier in the further characterization of human CD34− stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity in vivo. Using cell surface markers AC133 and CD7, subfractions were isolated within CD34−CD38−Lin− and CD34+CD38−Lin− cells derived from human cord blood. Although the majority of CD34−CD38−Lin− cells lack AC133 and express CD7, an extremely rare population of AC133+CD7− cells was identified at a frequency of 0.2%. Surprisingly, these AC133+CD7− cells were highly enriched for progenitor activity at a frequency equivalent to purified fractions of CD34+ stem cells, and they were the only subset among the CD34−CD38−Lin− population capable of giving rise to CD34+ cells in defined liquid cultures. Human cells were detected in the bone marrow of non-obese/severe combined immunodeficiency (NOD/SCID) mice 8 weeks after transplantation of ex vivo–cultured AC133+CD7− cells isolated from the CD34−CD38−Lin− population, whereas 400-fold greater numbers of the AC133−CD7− subset had no engraftment ability. These studies provide novel insights into the hierarchical relationship of the human stem cell compartment by identifying a rare population of primitive human CD34− cells that are detectable after transplantation in vivo, enriched for in vitro clonogenic capacity, and capable of differentiation into CD34+ cells.


Sign in / Sign up

Export Citation Format

Share Document