Ikaros Mutation Confers Integrin-Dependent Survival Of Pre-B Cells and Progression To Acute Lymphoblastic Leukemia

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1259-1259
Author(s):  
Nilamani Jena ◽  
Ila Joshi ◽  
Toshimi Yoshida ◽  
Xiaoqing Qi ◽  
Jiangwen Zhang ◽  
...  

Abstract Deletion of the IKAROS DNA-binding domain generates dominant-negative isoforms that interfere with the transcriptional activity of the IKAROS family and correlate with poor prognosis in human precursor B cell acute lymphoblastic leukemias (B-ALL). In this study, we defined the role of the Ikaros family during pre-B cell differentiation, the stage from which human B-ALLs arise, by conditionally inactivating IKAROS DNA binding in the immediate precursors of pre-B cells in mice. We demonstrate a novel niche-dependent phase in early pre-B cell differentiation that supports self-renewal and proliferative expansion. Expression of dominant-negative IKAROS arrests cells in this state by augmenting integrin and MAPK signaling and attenuating pre-B cell receptor signaling and differentiation. Up-regulated genes in Ikaros mutant pre-B cells were highly enriched in pathways involved in focal adhesion and remodeling of the actin cytoskeleton. The mutant pre-B cells had increased β1 integrin-mediated adhesion and elevated levels of activated focal adhesion kinase (FAK), whereas treatment with a small molecule FAK inhibitor greatly reduced pre-B cell stromal adhesion and selectively induced apoptosis in Ikaros mutant but not WT pre-B cells. Transplantation of polyclonal Ikaros mutant pre-B cells into recipient mice resulted in long-latency oligoclonal pre-B-ALL, demonstrating that loss of IKAROS contributes to multistep B-leukemogenesis. The highly proliferative and aberrantly self-renewing phenotype of Ikaros-deficient pre-B cells illuminates mechanisms underlying human IKAROS mutant B-ALL and suggests new therapeutic strategies for treatment of this aggressive leukemia. Disclosures: Van Etten: Bristol Myers Squibb: Consultancy; Deciphera Pharmaceuticals: Consultancy; TEVA Pharmaceuticals: Consultancy, Research Funding.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 147-147
Author(s):  
Cihangir Duy ◽  
Daniel Nowak ◽  
Lars Klemm ◽  
Rahul Nahar ◽  
Carina Ng ◽  
...  

Abstract Abstract 147 Background: We recently established that the pre-B cell receptor functions as a tumor suppressor in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). The pre-B cell receptor promotes differentiation of normal pre-B cells and couples the immunoglobulin μ -chain to activating tyrosine kinases (e.g. SYK) via linker molecules (e.g. BLNK). In virtually all cases of Ph+ ALL, pre-B cell receptor function is compromised and its reconstitution induces rapid cell cycle arrest. However, genomic deletions in pre-B cell receptor pathway are rare and the mechanisms of inactivation are not known. Here we report that pre-B cell receptor inactivation occurs at multiple levels and involves at least four different mechanisms, namely (1) deleterious immunoglobulin gene rearrangement, (2) defective splicing of pre-B cell receptor signaling molecules, (3) expression of dominant-negative PAX5 fusion genes and (4) overexpression of inhibitory signaling molecules. Result: (1) Studying progressive transformation of pre-B cells in BCR-ABL1-transgenic mice, we observed that surface expression of the immunoglobulin μ -chain was downregulated after 60 days of age, which was a prerequisite for the onset of full-blown leukemia. While the repertoire of immunoglobulin gene rearrangements was polyclonal in wildtype pre-B cells, BCR-ABL1-transgenic pre-B cells show clonal expansions, which are derived from one ancestral productive immunoglobulin gene rearrangement in the transformed pre-B cell. However, the ancestral immunoglobulin gene rearrangements were rendered non-functional through deleterious secondary rearrangements. Likewise, in 47 of 57 cases of primary human Ph+ ALL, we detected traces of pre-B cell receptor-inactivation through secondary deleterious recombination events at the immunoglobulin μ -chain locus. (2) We studied pre-B cell receptor signaling molecules in primary human pre-B cells and 10 patient-derived Ph+ ALL samples by Western blotting and RT-PCR. As opposed to normal bone marrow pre-B cells, in all 10 cases of Ph+ ALL defective splice variants of the SYK tyrosine kinase and its linker molecule BLNK were found. Sequence analysis revealed a frequent 4 bp slippage during SYK pre-mRNA splicing which resulted in a truncated protein lacking the kinase domain, as confirmed by Western blot. To study the functional significance of defective Syk expression in Ph+ ALL cells, we transformed pre-B cells from Syk-fl/fl mice with BCR-ABL1 and deleted the Syk kinase using tamoxifen-inducible Cre. As opposed to Syk-fl/fl leukemia cells, inducible ablation of Syk rendered the leukemia cells insensitive to forced expression of the pre-B cell receptor. Multiple defective transcript variants of BLNK were found that all lacked exon 16 encoding the central part of the BLNK SH2 domain. In the absence of exon 16, BLNK splice variants were detached from the pre-B cell receptor and function in a dominant-negative way as they reduce Ca2+-mobilization in response to pre-B cell receptor stimulation. In a titration experiment, BLNK−/− leukemia cells were reconstituted with full-length and exon 16-deficient BLNK. Dominant-negative BLNK interfered with pre-B cell receptor-mediated tumor suppression at a ratio of 0.1 relative to full-length BLNK. Of note, we found somatic mutations within the splice site of exon 16 in 2 of 6 primary Ph+ ALL cases. (3) Ph+ ALL cells often carry chromosomal translocations leading to the expression of dominant-negative PAX5-fusion molecules. In a systematic gene expression analysis, we observed that ectopic expression of the dominant-negative PAX5-C20orf112 fusion led to downregulation of immunoglobulin μ -chain and the signaling molecules including SYK and BLNK. As a consequence, Ca2+-mobilization in response to pre-B cell receptor stimulation was significantly diminished. (4) Correction of defective immunoglobulin-μ chain and BLNK expression results in compensatory overexpression of a broad array of inhibitory signaling molecules. These molecules share an ITIM signaling motif, which attenuates pre-B cell receptor signal transduction through recruitment of inhibitory phosphatases. Conclusion: Even though loss of pre-B cell receptor function represents the uniform outcome of a diverse spectrum of lesions, individual Ph+ ALL subclones exhibit a complex pattern of shared and distinct defects involving one or more of these 4 mechanisms. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3777-3777 ◽  
Author(s):  
Jae-Woong Lee ◽  
Maike Buchner ◽  
Huimin Geng ◽  
Srividya Swaminathan ◽  
Eugene Park ◽  
...  

Abstract Background: Growth arrest-specific gene 7 (Gas7) functions as an adaptor for SH2- and SH3-containing proteins, in particular in cells that undergo growth arrest. Gas7 is abundantly expressed in the brain and is involved in neuronal differentiation. Interestingly, MLL-GAS7 fusion molecules resulting from the t(11;17)(q23;p13) chromosomal translocation have been reported in treatment-related acute myeloid leukemia (AML; Megonigal et al., 2000) and in a pediatric acute lymphoblastic leukemia (ALL). While the function of MLL has been extensively studied, the role of its fusion partner GAS7 in normal hematopoiesis and leukemia has not been elucidated. Results: Studying gene expression changes during normal B cell development, we identified Gas7 as the gene with the strongest relative increase at the pre-B cell receptor checkpoint. At the transition from IL7-dependent Fraction C’ to IL7-independent small resting pre-B cells (Fraction D), GAS7 mRNA levels were upregulated by >13-fold in both human and mouse B cell progenitors. Withdrawal of IL7 cytokine signaling and Cre-mediated conditional deletion of Stat5ab recapitulated the strong increase of GAS7 expression under cell culture conditions. These finding suggest that GAS7 is part of an adaptive response of differentiating pre-B cells to attenuation of cytokine/Stat5 signaling. Consistent with this scenario, we found that Gas7-/-pre-B cells undergo accelerated differentiation, including spontaneous Ig κ light chain gene recombination and loss of Stat5-signaling. Conversely, overexpression of GAS7, reduced responsiveness of pre-B cells to normal differentiation stimuli. These findings suggest that the linker molecule GAS7 is a negative regulator of pre-B cell differentiation. Likewise, we found that tyrosine kinase inhibitor treatment of human Ph+ ALL cells resulted in a strong increased of GAS7 expression, in parallel with loss of Stat5 function. To elucidate the function of Gas7 in B cell lineage leukemia, we transformed bone marrow pre-B cells from Gas7-/- mice with BCR-ABL1. Gas7 deficient Ph+ ALL cells showed decreased proliferation with reduced S phase and increased apoptosis. In agreement with effects of Stat5 on the sensitivity of Ph+ ALL cells against tyrosine kinase inhibitors (TKIs), Gas7 deficient Ph+ ALL cells showed massively increased susceptibility to Imatinib-induced apoptosis. In addition, absence of Gas7 caused loss of self-renewal capacity and failure to form colonies in methylcellulose assay. Co-immunoprecipitation experiments with flag tagged GAS7 in patient-derived Ph+ALL cells revealed that GAS7 physically interacts with STAT5 and retains STAT5-Y694 in an active conformation.Thereby, GAS7 can propagate even weak Stat5 activity and maintain residual cytokine or BCR-ABL1 oncogenic signaling in normal and malignant pre-B cells. Conclusions: Here show that GAS7 functions as an important positive regulator of Stat5 downstream of cytokine receptors in normal pre-B cells and downstream of BCR-ABL1 and other oncogenes in leukemia. Owing to the GAS7-dependent reinforcement of Stat5-dependent survival and proliferation signaling, normal and leukemic pre-B cells can survive periods of reduced cytokine/oncogene signaling. These findings suggest that the interaction interface between GAS7 and Stat5 represents a potential target for small molecule scaffolds and peptides. Disclosures No relevant conflicts of interest to declare.


2002 ◽  
Vol 9 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Zhe-Xiong Lian ◽  
Hiroto Kita ◽  
Tomoyuki Okada ◽  
Tom Hsu ◽  
Leonard D. Shultz ◽  
...  

Reductions in populations of both Pre-B cell (Hardy fractions D) and Pro-B cells (Hardy fractions B–C) have been described in association with murine lupus. Recent studies of B cell populations, based on evaluation of B cell differentiation markers, now allow the enumeration and enrichment of other stage specific precursor cells. In this study we report detailed analysis of the ontogeny of B cell lineage subsets in New Zealand black (NZB) and control strains of mice. Our data suggest that B cell development in NZB mice is partially arrested at the fraction A Pre–Pro B cell stage. This arrest at the Pre-Pro B cell stage is secondary to prolonged lifespan and greater resistance to spontaneous apoptosis. In addition, expression of the gene encoding the critical B cell development transcription factor BSAP is reduced in the Pre–Pro B cell stage in NZB mice. This impairment may influence subsequent B cell development to later stages, and thereby accounts for the down-regulation of the B cell receptor componentIgα(mb-1). Furthermore, levels of expression of theRug2, λ5andIgβ(B29) genes are also reduced in Pre–Pro B cells of NZB mice. The decreased frequency of precursor B cells in the Pre–Pro B cell population occurs at the most primitive stage of B cell differentiation.


2013 ◽  
Vol 210 (13) ◽  
pp. 2823-2832 ◽  
Author(s):  
Beate Heizmann ◽  
Philippe Kastner ◽  
Susan Chan

Pre-B cell receptor (pre-BCR) signaling and migration from IL-7–rich environments cooperate to drive pre-B cell differentiation via transcriptional programs that remain unclear. We show that the Ikaros transcription factor is required for the differentiation of large pre-B to small pre-B cells. Mice deleted for Ikaros in pro/pre-B cells show a complete block of differentiation at the fraction C′ stage, and Ikaros-null pre-B cells cannot differentiate upon withdrawal of IL-7 in vitro. Restoration of Ikaros function rescues pre-B cell differentiation in vitro and in vivo and depends on DNA binding. Ikaros is required for the down-regulation of the pre-BCR, Igκ germline transcription, and Ig L chain recombination. Furthermore, Ikaros antagonizes the IL-7–dependent regulation of >3,000 genes, many of which are up- or down-regulated between fractions C′ and D. Affected genes include those important for survival, metabolism, B cell signaling, and function, as well as transcriptional regulators like Ebf1, Pax5, and the Foxo1 family. Our data thus identify Ikaros as a central regulator of IL-7 signaling and pre-B cell development.


Blood ◽  
2011 ◽  
Vol 118 (10) ◽  
pp. 2801-2808 ◽  
Author(s):  
Kristen M. Sokalski ◽  
Stephen K. H. Li ◽  
Ian Welch ◽  
Heather-Anne T. Cadieux-Pitre ◽  
Marek R. Gruca ◽  
...  

Abstract The E26 transformation-specific (Ets) transcription factor PU.1 is required to generate lymphoid progenitor cells from hematopoietic stem cells, but it is not required to generate B cells from committed B-cell lineage progenitors. We hypothesized that PU.1 function in B-cell differentiation is complemented by the related Ets transcription factor Spi-B. To test this hypothesis, mice were generated lacking both PU.1 and Spi-B in the B-cell lineage. Unlike mice lacking PU.1 or Spi-B, mice deficient in both PU.1 and Spi-B in the B-cell lineage had reduced frequencies of B cells as well as impaired B-cell differentiation. Strikingly, all PU.1 and Spi-B–deficient mice developed pre-B cell acute lymphoblastic leukemia before 30 weeks of age. Pre-B cells accumulated in the thymus resulting in massive thymic enlargement and dyspnea. These findings demonstrate that PU.1 and Spi-B are essential transcriptional regulators of B-cell differentiation as well as novel tumor suppressors in the B-cell lineage.


1998 ◽  
Vol 187 (8) ◽  
pp. 1325-1334 ◽  
Author(s):  
Stephen H. Clarke ◽  
Larry W. Arnold

Murine phosphatidyl choline (PtC)–specific B cells in normal mice belong exclusively to the B-1 subset. Analysis of anti-PtC (VH12 and VH12/Vκ4) transgenic (Tg) mice indicates that exclusion from B-0 (also known as B-2) occurs after immunoglobulin gene rearrangement. This predicts that PtC-specific B-0 cells are generated, but subsequently eliminated by either apoptosis or differentiation to B-1. To investigate the mechanism of exclusion, PtC-specific B cell differentiation was examined in mice expressing the X-linked immunodeficiency (xid) mutation. xid mice lack functional Bruton's tyrosine kinase (Btk), a component of the B cell receptor signal transduction pathway, and are deficient in B-1 cell development. We find in C57BL/ 6.xid mice that VH12 pre-BII cell selection is normal and that PtC-specific B cells undergo modest clonal expansion. However, the majority of splenic PtC-specific B cells in anti-PtC Tg/xid mice are B-0, rather than B-1 as in their non-xid counterparts. These data indicate that PtC-specific B-0 cell generation precedes segregation as predicted, and that Btk function is required for efficient segregation to B-1. Since xid mice exhibit defective B cell differentiation, not programmed cell death, these data are most consistent with an inability of PtC-specific B-0 cells to convert to B-1 and a single B cell lineage.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 797-797 ◽  
Author(s):  
Cihangir Duy ◽  
Ignacio Moreno de Alboran ◽  
Hassan Jumaa ◽  
Markus Muschen

Abstract Myc and Bcl6 represent classical proto-oncogenes in B-cell malignancies, mainly through translocation into the immunoglobulin (Ig) heavy chain locus in Burkitt’s (MYC) and diffuse large B cell lymphoma (BCL6). While BCL6 was previously established as a factor regulating differentiation of germinal center B cells, the function of MYC and BCL6 in early B-cell development was not previously studied. Investigating requirements for the differentiation of pre-B cells into immature B-cells, we found that both withdrawal of IL7 from murine pre-B-cell cultures and inhibition of BCR-ABL1 in BCR-ABL1-transformed pre-B-cells terminates self-renewal and initiates differentiation into Ig light chain-expressing immature B-cells. Interestingly, IL7 and BCR-ABL1 are exchangeable at this checkpoint: Both IL7 and BCR-ABL1 promote self-renewal and prevent differentiation of pre-B-cells. While inhibition of BCR-ABL1 usually induces apoptosis and partial differentiation, both effects were entirely suppressed by IL7. These findings indicate that IL7 may confer resistance to BCR-ABL1 inhibitors in patients with BCR-ABL1-transformed acute lymphoblastic leukemia. Likewise, inhibition of either IL7 or BCR-ABL1 signaling resulted in complete silencing of Myc expression and strong de novo expression of Bcl6. Because expression of Myc and Bcl6 are mutually exclusive at the pre-B to immature B-cell checkpoint, we tested whether the two proto-oncogenes have distinct functions at this transition. Interestingly, forced expression of Myc rendered BCR-ABL1-transformed pre-B-cells resistant to induction of differentiation upon inhibition of BCR-ABL1. Besides downregulation of Myc, also de novo expression of Bcl6 is critical for the pre-B to immature B-cell differentiation: shmiR-mediated silencing of Bcl6 suppressed B-cell differentiation even if Myc was downregulated. However, forced expression of Bcl6 alone only modestly induced differentiation of pre-B cells if Myc was not downregulated. To test the interplay between Myc and Bcl6 at the pre-B to immature B cell transition more systematically, we analyzed bone marrow pre-B cells from Mycfl/fl mice. Mycfl/fl pre-B cells that also carry MxCre deleted the Myc locus on both alleles upon stimulation with IFNß. As controls, Mycfl/fl pre-B cells without MxCre were used. Pre-B cells were also transduced with a retroviral vector encoding Bcl6/GFP or GFP alone. Upon Myc deletion, more than 80 precent of the Bcl6/GFP transduced pre-B cells underwent differention as compared to 25 percent GFP-transduced pre-B cells. In the absence of Myc deletion, about 15 percent of Bcl6/GFP-transduced pre-B cells initiated differentiation as compared to 5 percent of GFP-transduced pre-B cells. These findings establish that Myc and Bcl6 have critical and antagonistic functions in early B cell development and that both downregulation of Myc together with upregulation Bcl6 are required to initiate differentiation of pre-B cells. The MYC/BCL6 balance may also be a target of leukemic transformation of human pre-B cells: The ratio of MYC/BCL6 mRNA levels in normal human pro- and pre-B cells at 0.52 is dramatically increased in various subtypes of acute lymphoblastic leukemia (6.4 for BCR-ABL1-, 2.6 for E2A-PBX1-, 14.4 for MLL-AF4- and 3.3 for TEL-AML1-transformed acute lymphoblastic leukemia).


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1900-1911 ◽  
Author(s):  
J Golay ◽  
M Luppi ◽  
S Songia ◽  
C Palvarini ◽  
L Lombardi ◽  
...  

Abstract The A-myb gene encodes a transcription factor that is related both functionally and structurally to the v-myb oncogene. Following our observations that A-myb is expressed in a restricted subset of normal mature human B lymphocytes, with the phenotype CD38+, CD39-, slgM-, we have now investigated the pattern of A-myb expression in neoplastic B cells representating the whole spectrum of B-cell differentiation and compared it to that of c-myb and B-myb. In a panel of 32 B-cell lines, A-myb was very strongly expressed in most Burkitt's lymphoma (BL) cell lines, but weak or negative in 2 pre-B acute lymphoblastic leukemia (ALL), 4 non-Hodgkin's lymphoma (NHL), 6 Epstein-Barr virus- immortalized lymphoblastoid cell lines, and 6 myeloma lines. Protein expression paralleled that of the RNA. We have also investigated A-myb expression in 49 fresh cases of B leukemias. Among 24 ALL, 6 were of the null and 11 of the common type and all these were negative for A- myb expression; on the other hand, all 7 B-ALL cases (slg+), as well as one fresh BL case with bone marrow infiltration, expressed A-myb. A-myb was undetectable in 4 prolymphocytic leukemias (PLL) but was strongly expressed in 5/20 (25%) of chronic lymphocytic leukemia (CLL) samples. In the latter A-myb did not correlate with phenotype or clinical stage. Finally, we have studied the progression of one case of CLL into Richter's syndrome and have found that the Richter's cells expressed about 25-fold less A-myb RNA than the CLL cells from the same patient. The pattern of c-myb and B-myb was clearly distinct from that of A-myb. C-myb and B-myb were expressed in all neoplastic groups, except in CLL cells. Thus, A-myb expression, unlike that of c-myb and B-myb, is restricted to a subset of B-cell neoplasias (in particular BL and slg+B- ALL) representative of a specific stage of B-cell differentiation. This expression may in part reflect expression of A-myb by the normal germinal center B cells that are the normal counterpart of these transformed B cells. The data presented strongly support a role for this transcription factor in B-cell differentiation and perhaps in B- cell transformation in some neoplasias.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1900-1911 ◽  
Author(s):  
J Golay ◽  
M Luppi ◽  
S Songia ◽  
C Palvarini ◽  
L Lombardi ◽  
...  

The A-myb gene encodes a transcription factor that is related both functionally and structurally to the v-myb oncogene. Following our observations that A-myb is expressed in a restricted subset of normal mature human B lymphocytes, with the phenotype CD38+, CD39-, slgM-, we have now investigated the pattern of A-myb expression in neoplastic B cells representating the whole spectrum of B-cell differentiation and compared it to that of c-myb and B-myb. In a panel of 32 B-cell lines, A-myb was very strongly expressed in most Burkitt's lymphoma (BL) cell lines, but weak or negative in 2 pre-B acute lymphoblastic leukemia (ALL), 4 non-Hodgkin's lymphoma (NHL), 6 Epstein-Barr virus- immortalized lymphoblastoid cell lines, and 6 myeloma lines. Protein expression paralleled that of the RNA. We have also investigated A-myb expression in 49 fresh cases of B leukemias. Among 24 ALL, 6 were of the null and 11 of the common type and all these were negative for A- myb expression; on the other hand, all 7 B-ALL cases (slg+), as well as one fresh BL case with bone marrow infiltration, expressed A-myb. A-myb was undetectable in 4 prolymphocytic leukemias (PLL) but was strongly expressed in 5/20 (25%) of chronic lymphocytic leukemia (CLL) samples. In the latter A-myb did not correlate with phenotype or clinical stage. Finally, we have studied the progression of one case of CLL into Richter's syndrome and have found that the Richter's cells expressed about 25-fold less A-myb RNA than the CLL cells from the same patient. The pattern of c-myb and B-myb was clearly distinct from that of A-myb. C-myb and B-myb were expressed in all neoplastic groups, except in CLL cells. Thus, A-myb expression, unlike that of c-myb and B-myb, is restricted to a subset of B-cell neoplasias (in particular BL and slg+B- ALL) representative of a specific stage of B-cell differentiation. This expression may in part reflect expression of A-myb by the normal germinal center B cells that are the normal counterpart of these transformed B cells. The data presented strongly support a role for this transcription factor in B-cell differentiation and perhaps in B- cell transformation in some neoplasias.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1372-1373
Author(s):  
G. M. Verstappen ◽  
J. C. Tempany ◽  
H. Cheon ◽  
A. Farchione ◽  
S. Downie-Doyle ◽  
...  

Background:Primary Sjögren’s syndrome (pSS) is a heterogeneous immune disorder with broad clinical phenotypes that can arise from a large number of genetic, hormonal, and environmental causes. B-cell hyperactivity is considered to be a pathogenic hallmark of pSS. However, whether B-cell hyperactivity in pSS patients is a result of polygenic, B cell-intrinsic factors, extrinsic factors, or both, is unclear. Despite controversies about the efficacy of rituximab, new B-cell targeting therapies are under investigation with promising early results. However, for such therapies to be successful, the etiology of B-cell hyperactivity in pSS needs to be clarified at the individual patient level.Objectives:To measure naïve B-cell function in pSS patients and healthy donors using quantitative immunology.Methods:We have developed standardised, quantitative functional assays of B-cell responses that measure division, death, differentiation and isotype switching, to reveal the innate programming of B cells in response to T-independent and dependent stimuli. This novel pipeline to measure B-cell health was developed to reveal the sum total of polygenic defects and underlying B-cell dysfunction at an individual level. For the current study, 25 pSS patients, fulfilling 2016 ACR-EULAR criteria, and 15 age-and gender-matched healthy donors were recruited. Standardized quantitative assays were used to directly measure B cell division, death and differentiation in response to T cell-independent (anti-Ig + CpG) and T-cell dependent (CD40L + IL-21) stimuli. Naïve B cells (IgD+CD27-) were sorted from peripheral blood mononuclear cells and were labeled with Cell Trace Violet at day 0 to track cell division until day 6. B cell differentiation was measured at day 5.Results:Application of our standardized assays, and accompanying parametric models, allowed us to study B cell-intrinsic defects in pSS patients to a range of stimuli. Strikingly, we demonstrated a hyperresponse of naïve B cells to combined B cell receptor (BCR) and Toll-like receptor (TLR)-9 stimulation in pSS patients. This hyperresponse was revealed by an increased mean division number (MDN) at day 5 in pSS patients compared with healthy donors (p=0.021). A higher MDN in pSS patients was observed at the cohort level and was likely attributed to an increased division burst (division destiny) time. The MDN upon BCR/TLR-9 stimulation correlated with serum IgG levels (rs=0.52; p=0.011). No difference in MDN of naïve B cells after T cell-dependent stimulation was observed between pSS patients and healthy donors. B cell differentiation capacity (e.g., plasmablast formation and isotype switching) after T cell-dependent stimulation was also assessed. At the cohort level, no difference in differentiation capacity between groups was observed, although some pSS patients showed higher plasmablast frequencies than healthy donors.Conclusion:Here, we demonstrate defects in B-cell responses both at the cohort level, as well as individual signatures of defective responses. Personalized profiles of B cell health in pSS patients reveal a group of hyperresponsive patients, specifically to combined BCR/TLR stimulation. These patients may benefit most from B-cell targeted therapies. Future studies will address whether profiles of B cell health might serve additional roles, such as prediction of disease trajectories, and thus accelerate early intervention and access to precision therapies.Disclosure of Interests:Gwenny M. Verstappen: None declared, Jessica Catherine Tempany: None declared, HoChan Cheon: None declared, Anthony Farchione: None declared, Sarah Downie-Doyle: None declared, Maureen Rischmueller Consultant of: Abbvie, Bristol-Meyer-Squibb, Celgene, Glaxo Smith Kline, Hospira, Janssen Cilag, MSD, Novartis, Pfizer, Roche, Sanofi, UCB, Ken R. Duffy: None declared, Frans G.M. Kroese Grant/research support from: Unrestricted grant from Bristol-Myers Squibb, Consultant of: Consultant for Bristol-Myers Squibb, Speakers bureau: Speaker for Bristol-Myers Squibb, Roche and Janssen-Cilag, Hendrika Bootsma Grant/research support from: Unrestricted grants from Bristol-Myers Squibb and Roche, Consultant of: Consultant for Bristol-Myers Squibb, Roche, Novartis, Medimmune, Union Chimique Belge, Speakers bureau: Speaker for Bristol-Myers Squibb and Novartis., Philip D. Hodgkin Grant/research support from: Medimmune, Vanessa L. Bryant Grant/research support from: CSL


Sign in / Sign up

Export Citation Format

Share Document