Cathecholamines Differently Regulate Human AML and Normal Hematopoietic Progenitor Cell Motility Via miR126 and RGS16

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1413-1413
Author(s):  
Abraham Avigdor ◽  
Chiara Medaglia ◽  
Alexander Kalinkovich ◽  
Tomer Itkin ◽  
Menachem Bitan ◽  
...  

Abstract Introduction Motility, proliferation, bone marrow (BM) retention and egress to the circulation of hematopoietic stem and progenitor cell (HSPCs) are key elements in normal hematopoiesis and also in the pathogenesis of acute myeloid leukemia (AML). HSPCs are tightly regulated in the BM niche by various molecules. Among them, CXCL12 and its major receptor CXCR4, expressed by both HSPCs and BM niche components, govern HSPC retention in the BM. Administration of CXCR4 antagonists lead to mobilization of both normal HSPCs and leukemia-inducing stem cells (LICs) from the BM to the circulation. We have previously found that normal human HSPCs functionally express b2-adrenergic receptors (b2-AR) that are up-regulated by myeloid cytokines such as G-CSF. The catecholaminergic neurotransmitters epinephrine and norepinephrine (NE) activate both Wnt and GSK3β signaling pathways via b2-AR, leading to enhanced HSPC proliferation, motility and BM repopulation (Spiegel et al, Nat Immunol 2007; Lapid et al, JCI 2013). These findings indicate HSPC regulation by dynamic interactions of the sympathetic nervous and hematopoietic systems. However, the role of catecholamines in regulation of AML remains elusive. Results We found that several human AML cell lines from different FAB subtypes express b2-AR. NE, a b2-AR activating ligand, increased b2-AR expression and the CXCL12-induced migration of AML primary patients’ cells and cell lines. In addition, NE treatment significantly enhanced CXCL12induced actin polymerization, which drives most of the cellular movements. Looking for a downstream effector of b2-AR, we focused on RGS16, a G-protein signaling regulator, which negatively regulates CXCL12/CXCR4 axis (Berthebaud et al., Blood 2005). Concurrently with the increase in cell migration, NE decreased RGS16 expression (both in protein and mRNA level) in monocytic AML cells. However, no effect on either cell migration or RGS16 expression was observed in non-monocytic AML cells. These data provided evidence for the involvement of catecholamines in the regulation of AML cell migration and showed a correlation between AML FAB subtypes, cell motility and RGS16 expression. One of the regulators of RGS16 levels is miR126, which is highly expressed in AML and normal HSPCs and plays an important role in mobilization and proliferation of normal HSPCs. Indeed, in search for the mechanisms underlying the above observed differences, we found that the enhancing effect of NE on CXCL12-induced migration of monocytic AML cells was accompanied by up-regulation of miR126 expression concurrently with down-regulation of RGS16 expression, whereas in non-monocytic AML cells we observed the opposite effects, suggesting that NE differently regulates AML cells belonging to different FAB subtypes. Upon studying human normal HSPCs, we found that in steady state, normal cells express low levels of β2-AR and NE did not affect either RGS16 expression or CXCL12-induced migration of both mononuclear and CD34+ cells derived from human cord blood and BM. Conclusions Our results demonstrate that while normal and AML cells share common mechanisms that govern their motility, there are unrevealed yet mechanisms, apparently cell-type dependent, which uniquely lead to opposite effects in normal HSPCs, monocytic and non-monocytic AML cells. Altogether, these findings suggest that targeting of miR126 and RGS16 pathways by specific agonists and antagonists may serve as a new approach for selective eradication of LICs. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
1996 ◽  
Vol 87 (2) ◽  
pp. 472-478 ◽  
Author(s):  
P Schwarzenberger ◽  
SE Spence ◽  
JM Gooya ◽  
D Michiel ◽  
DT Curiel ◽  
...  

In this report, we describe a novel gene therapy approach for hematopoietic stem/progenitor cells using a specific receptor-mediated gene transfection procedure to target c-kit+ cell lines. The vector consists of plasmid DNA containing a luciferase reporter gene that is condensed by electrostatic forces with polylysine (PL) covalently linked to streptavidin (binds biotinylated ligand) and PL covalently linked to adenovirus (AD; to achieve endosomal lysis) with the final addition of biotinylated steel factor (SLF-biotin). Targeted transfection of growth factor-dependent hematopoietic progenitor cell lines that express c-kit showed specific luciferase gene expression over cell lines that did not express c-kit. This effect was dependent on the dose of SLF-biotin and was competed by excess SLF or with monoclonal antibodies that recognize c-kit and block the binding of SLF to its receptor. Maximum transfection efficiency (> 90%) requires a 2- hour incubation period of the vector with the cells, and maximum gene expression occurred 30 hours later. Removal of the endosomalytic agent, AD, from the vector resulted in the loss of gene expression. Vector targeting was versatile and could be changed by the addition of other biotinylated ligands. In principle, this vector should be broadly applicable to deliver genes to hematopoietic stem/progenitor cells in vitro and in vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1346-1346
Author(s):  
Isabelle Petit ◽  
Prashant Kaul ◽  
Daniel J. Lerner ◽  
Shahin Rafii

Abstract Lsc is a Rho GTPase guanine nucleotide exchange factor (RhoGEF) that physically and functionally links G-protein coupled receptors (GPCR) to the monomeric GTPase RhoA in mature hematopoietic and other cells. Lsc−/− (LscKO) mice have a peripheral leukocytosis, abnormal neutrophil and B cell motility, and immune response deficiencies. Although Lsc is required for neutrophil homeostasis, its role in hematopoietic stem and progenitor cells is unknown. In this study, we have used LscKO mice to determine if Lsc is required for normal stem cell motility and mobilization. Initially, we used immunofluorescence labeling to demonstrate that hematopoietic stem and progenitor cells express Lsc. This suggested that Lsc may be required for normal hematopoietic stem and progenitor cell migration. Stromal-cell derived factor-1 (SDF-1) is a potent chemokine for hematopoietic stem cells and activates the CXCR4 GPCR. It has been reported that Lsc is not required for SDF-1-stimulated migration of mature murine T and B cells. However, using a bare-filter transwell assay, we found that while LscKO Sca-1+ cells and Sca-1+Lin- cells have normal spontaneous migration, they have significantly increased SDF-1-stimulated migration compared to their wild-type (WT) counterparts, 1.4 and 2.3 fold, respectively. We then demonstrated that adhesion of LscKO Sca-1+ cells to bone marrow (BM) stromal MS-5 cells was normal, indicating that impaired adhesion was not responsible for the abnormal SDF-1-stimulated migration. Using colony assay, we demonstrated that LscKO mice have a normal number of circulating peripheral stem and progenitor cells. Strikingly, after 5 days of G-CSF administration, LscKO mice have 1.6 fold and 2.3 fold the number of peripheral mature WBC and stem and progenitor cells (colony forming units), respectively, compared to WT mice. Recruitment of BM CXCR4+ pro-angiogenic stem and progenitor cells has been linked to enhanced tumor angiogenesis. Because LscKO BM cells had abnormal SDF-1-stimulated migration and mobilization, we hypothesized that Lsc might regulate tumor angiogenesis as well. To this end, we assessed tumor growth in LscKO mice by injecting congenic Lewis lung carcinoma cells subcutaneously into LscKO mice and WT controls. Preliminary experiments revealed that tumors were 3.3 times larger in the LscKO mice as compared to WT mice. Quantification of the tumor vessels with anti-CD31 staining demonstrated that the tumors in LscKO mice were 1.4 fold more vascularized than controls. In summary, our results demonstrate that the Rho GEF Lsc is essential for normal hematopoietic stem cell migration and mobilization. In addition, we propose that absence of Lsc facilitates tumor growth by promoting BM stem and progenitor cell recruitment to the neo-angiogenic vessels, possibly augmenting tumor vascularization.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2884-2897 ◽  
Author(s):  
Zofia Drzeniek ◽  
Georg Stöcker ◽  
Barbara Siebertz ◽  
Ursula Just ◽  
Timm Schroeder ◽  
...  

Heparan sulfate (HS) proteoglycans of bone marrow (BM) stromal cells and their extracellular matrix are important components of the microenvironment of hematopoietic tissues and are involved in the interaction of hematopoietic stem and stromal cells. Although previous studies have emphasized the role of HS proteoglycan synthesis by BM stromal cells, we have recently shown that the human hematopoietic progenitor cell line TF-1 also expressed an HS proteoglycan. Immunochemical, reverse transcriptase-polymerase chain reaction (RT-PCR), and Northern blot analysis of this HS proteoglycan showed that it was not related to the syndecan family of HS proteoglycans or to glypican. To answer the question of whether the expression of HS proteoglycans is associated with the differentiation state of hematopoietic progenitor cells, we have analyzed the proteoglycan synthesis of several murine and human hematopoietic progenitor cell lines. Proteoglycans were isolated from metabolically labeled cells and purified by several chromatographic steps. Isolation and characterization of proteoglycans from the cell lines HEL and ELM-D, which like TF-1 cells have an immature erythroid phenotype, showed that these cells synthesize the same HS proteoglycan, previously detected in TF-1 cells, as a major proteoglycan. In contrast, cell lines of the myeloid lineage, like the myeloblastic/promyelocytic cell lines B1 and B2, do not express HS proteoglycans. Taken together, our data strongly suggest that expression of this HS proteoglycan in hematopoietic progenitor cell lines is associated with the erythroid lineage. To prove this association we have analyzed the proteoglycan expression in the nonleukemic multipotent stem cell line FDCP-Mix-A4 after induction of erythroid or granulocytic differentiation. Our data show that HS proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells. In contrast, during granulocytic differentiation, no expression of HS proteoglycans was observed.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2884-2897 ◽  
Author(s):  
Zofia Drzeniek ◽  
Georg Stöcker ◽  
Barbara Siebertz ◽  
Ursula Just ◽  
Timm Schroeder ◽  
...  

Abstract Heparan sulfate (HS) proteoglycans of bone marrow (BM) stromal cells and their extracellular matrix are important components of the microenvironment of hematopoietic tissues and are involved in the interaction of hematopoietic stem and stromal cells. Although previous studies have emphasized the role of HS proteoglycan synthesis by BM stromal cells, we have recently shown that the human hematopoietic progenitor cell line TF-1 also expressed an HS proteoglycan. Immunochemical, reverse transcriptase-polymerase chain reaction (RT-PCR), and Northern blot analysis of this HS proteoglycan showed that it was not related to the syndecan family of HS proteoglycans or to glypican. To answer the question of whether the expression of HS proteoglycans is associated with the differentiation state of hematopoietic progenitor cells, we have analyzed the proteoglycan synthesis of several murine and human hematopoietic progenitor cell lines. Proteoglycans were isolated from metabolically labeled cells and purified by several chromatographic steps. Isolation and characterization of proteoglycans from the cell lines HEL and ELM-D, which like TF-1 cells have an immature erythroid phenotype, showed that these cells synthesize the same HS proteoglycan, previously detected in TF-1 cells, as a major proteoglycan. In contrast, cell lines of the myeloid lineage, like the myeloblastic/promyelocytic cell lines B1 and B2, do not express HS proteoglycans. Taken together, our data strongly suggest that expression of this HS proteoglycan in hematopoietic progenitor cell lines is associated with the erythroid lineage. To prove this association we have analyzed the proteoglycan expression in the nonleukemic multipotent stem cell line FDCP-Mix-A4 after induction of erythroid or granulocytic differentiation. Our data show that HS proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells. In contrast, during granulocytic differentiation, no expression of HS proteoglycans was observed.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4287-4287
Author(s):  
Hyunjun Kim ◽  
Danuta Jadwiga Jarocha ◽  
Ian Johnston ◽  
Hyunsook Ahn ◽  
Deborah L French ◽  
...  

Abstract The questions of whether thrombopoiesis - the release of platelets from megakaryocytes - occurs both as megakaryocytes emerge from the intramedullar space or occurs as well in the pulmonary vascular bed remains unanswered. Studies by Lefrançais E, et al, (Nature, 2017) demonstrated by in situ microcopy that perhaps 50% of all platelet release in mice occurs from megakaryocytes released from the marrow and traveled to the lungs where they undergo thrombopoiesis over a 20- to 60-minute time-period. We examined whether CD34+-derived human megakaryocytes infused into immunocompromized NSG mice would also shed platelets in the lungs in a similar fashion. We differentiated CD34+-derived hematopoietic stem-progenitors for 12 days in culture using conditions previously described (Wang Y, et al., Blood 2015). We found that unlike platelet-like-particle (PLP) formation in in vitro cultures of CD34+ hematopoietic progenitor cell (HPC)-derived (CD34+) megakaryocytes, which undergo asynchronous shedding of the PLPs, that over 95% of infused CD34+ megakaryocytes shed their platelets within the first 40 minutes much as has been observed for endogenous murine megakaryocytes. The average number of cytoplasmic extensions per megakaryocytes was ~2.7, again very similar to what was seen with endogenous murine megakaryocytes. In contrast, CD34+ cells grown in culture into megakaryocytes for a shorter period of time of only 7 days, poorly shed any cytoplasmic fragments. We also studied human megakaryocytes grown from immortalized megakaryocyte progenitor cell lines (imMKCLs) from induced pluripotent stem cells (iPSCs) generated by the Eto laboratory and kindly provided by Dr. Koji Eto, Kyoto University). These cells were grown and differentiated into terminal megakaryocytes as described (Nakamura S, Cell Stem Cell, 2014) for 4 days in culture. These cells have been proposed to be useful for large-scale preparation of PLPs in vitro for clinical use in place of donor-derived platelets. The resultant infused human imMKCL-derived megakaryocytes also synchronously shed platelets, but only 50% of the infused cells shed their cytoplasm in contrast to >95% of CD34+ megakaryocytes. Moreover, cytoplasmic extensions were decreased to an average of ~1.1 per megakaryocyte. We had proposed that in vitro-generated megakaryocytes might be directly infused into patients in place of further manipulating the megakaryocytes to release functional platelets in vitro using a bioreactor. However, such megakaryocytes will likely be contaminated with a higher level of HPCs than anticipated from in vitro-prepared platelets, and concern exists that they may lead to unacceptable graft versus host complications. We, therefore, examined whether irradiating megakaryocytes as one strategy to eliminate this concern results in megakaryocytes that are still functional and found that megakaryocytes irradiated with up to 25 Gy retain platelet yield per infused megakaryocytes with the platelets having the same half-life. If irradiated and kept in culture, these megakaryocytes begin to shed platelets and undergo apoptosis notably by 24 hours. We also examined whether the pulmonary bed differs from other vascular beds, and infused CD34+ megakaryocytes both intravenously and intra-arterially in parallel studies and found that following intra-arterial infusion, megakaryocytes were mostly entrapped in various organs, but shed few platelets. Thus, our studies suggest that the pulmonary bed is unique for platelet shedding from entrapped megakaryocytes. Whether this is due to the structural organization of the pulmonary beds, its endothelial lining, its reverse exchange in oxygen, carbon dioxide and pH from other capillary beds or the mechanical forces of inhalation and exhalation that expand and contract the capillary cross-sectional area needs to be examined. Our studies show that infused human megakaryocytes synchronously release platelets over a 40-minute window and can do so even after being irradiated and that this occurs specifically in the lungs not only has potential clinical application, but also raises biological questions about what determines thrombopoiesis-readiness and what are the features of the pulmonary bed that allows this synchronous release. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3674-3674
Author(s):  
Michihiro Kobayashi ◽  
Yuanshu Dong ◽  
Hao Yu ◽  
Yunpeng Bai ◽  
Sisi Chen ◽  
...  

Abstract The phosphatase of regenerating liver family of phosphatases, consisting of PRL1, PRL2 and PRL3, represents an intriguing group of proteins implicated in cell proliferation and tumorigenesis. However, the role of PRLs in normal and malignant hematopoiesis is largely unknown. While SCF/KIT signaling plays an important role in hematopoietic stem and progenitor cell (HSPC) maintenance, how SCF/KIT signaling is regulated in HSPCs remains poorly understood. We here report that PRL2 regulates HSPC maintenance through regulating SCF/KIT signaling. To define the role of PRL2 in hematopoiesis, we analyzed the hematopoietic stem cell (HSC) behavior in Prl2 deficient mice generated by our group. Prl2 deficiency results in ineffective hematopoiesis and impairs the long-term repopulating ability of HSCs. In addition, Prl2 null HSPCs are less proliferative and show decreased colony formation in response to SCF stimulation. Furthermore, Prl2 null HSPCs show reduced activation of the PI3K/AKT and ERK signaling in steady state and following SCF stimulation. Importantly, we found that PRL2 associates with KIT and the ability of PRL2 to enhance SCF signaling depends on its enzymatic activity, demonstrating that PRL2 mediates SCF/KIT signaling in HSPCs. Thus, PRL2 plays a critical role in hematopoietic stem and progenitor cell maintenance through regulating SCF/KIT signaling. Furthermore, loss of Prl2 decreased the ability of oncogenic KITD814V mutant in promoting hematopoietic progenitor cell proliferation and in activation of signaling pathways. We also checked the expression of PRL2 proteins in human AML cell lines and found increased level of PRL2 proteins in some acute myeloid leukemia (AML) cells compared with normal human bone marrow cells, indicating that PRL2 may play a pathological role in AML. Our results suggest that the PRL2 phosphatase may be a druggable target in myeloproliferative disease (MPD) and acute myeloid leukemia (AML) with oncogenic KIT mutations. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4010-4010
Author(s):  
H. Angharad Watson ◽  
Rebecca J Holley ◽  
Kia J Langford-Smith ◽  
Fiona L Wilkinson ◽  
Toin H van Kuppevelt ◽  
...  

Abstract Abstract 4010 The primary axis of migration for transplanted hematopoietic stem and progenitor cells (HSPC) is CXCL12/CXCR4. Heparan sulphate (HS) is required for CXCL12 presentation and receptor binding, but the functional role of HS is poorly defined. The alpha-L-iduronidase knockout mouse (Idua−/−) accumulates HS and dermatan sulphate, recapitulating the neurodegenerative lysosomal storage disease Mucopolysaccharidosis I Hurler (MPSIH). MPSIH is primarily treated with HSPC transplant, but clinical experience suggests a historical engraftment defect in patients. We show significantly reduced HSPC migration in Idua−/− recipients and under limiting engraftment conditions we show a significant haematopoietic engraftment defect in Idua−/− recipients. No significant donor cell effect was observed. Bone marrow but not peripheral blood CXCL12 levels are slightly elevated in Idua−/− mice. CFU frequency in BM is unchanged between genotypes but reduced significantly in peripheral blood of Idua−/− mice. In whole bone marrow, and on mesenchymal stem cells from Idua−/− mice, HS is present in significant excess, particularly in extracellular matrix, and cell surface locations, with significant increases in all sulphation modifications, especially 2-O-sulphation. Finally we show that excess HS, and particularly HS with increased 2-O -sulphation, functionally inhibit haematopoietic progenitor cell migration in vitro. These data provide novel insight into the influence of highly sulphated HS in CXCL12 mediated haematopoietic progenitor cell migration and help to explain why HSCT engraftment has been historically low in MPSIH. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document