Gene Therapy With a High-Affinity Single-Chain p53-Specific TCR Mediates Potent Anti-Tumor Response Without Inducing Gvhd In Vivo

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1657-1657
Author(s):  
Hakim Echchannaoui ◽  
Jutta Petschenka ◽  
Edite Antunes ◽  
Matthias Theobald

Abstract The adoptive transfer of tumor-reactive cells is a promising approach in the treatment of human malignancies, but the challenge of isolating T cells with high-avidity for tumor antigens in each patient has limited its widespread application. Using HLA-A2.1 transgenic mice, we have demonstrated the feasibility of T-cell receptor (TCR) gene transfer into T cells to circumvent self-tolerance to the widely expressed human p53(264-272) tumor-associated antigen and developed approaches to generate high-affinity CD8-independent TCR. However, a safety concern of TCR gene transfer is the risk of pairing between introduced and the naturally expressed endogenous TCR chains, resulting in the generation of self-reactive T cells (off-target autoimmunity). We first genetically modified p53TCR constructs to minimize mispairing and improve correct pairing of the introduced TCR. We and others have shown that, cysteine modifications are able to increase the expression of the introduced TCR but fail to prevent mispairing formation in mouse and human T cells. To further enhance preferential TCR pairing, cell surface expression and TCR function, we introduced additional cysteine residues into the TCR α and β chain constant domains along with codon-optimization of the TCR sequences and cloning of the TCR constructs into one single 2A-based retroviral vector. To overcome TCR mispairing formation, we designed a single chain (sc) TCR by connecting the variable TCRa domain to the TCRb chain via a short peptide linker co-expressed with a truncated constant TCR a domain. Beside off-target toxicity, adoptive transfer of high-avidity T cells may potentially cause severe on-target toxicity for normal cells expressing low level of antigens. In this respect, pre-clinical in vivo studies are still missing. Here, we evaluated the safety issues raised by the risk of p53TCR gene transfer-associated on/off-target toxicities in relevant mouse models of adoptive transfer. In vitro studies showed that, scTCR-modified CD4+ and CD8+ T cells displayed similar high-avidity compared to the full-length TCR, as determined by peptide titration in cytotoxicity assays and were able to mediate specific lysis of p53 mutant A2.1+ tumor cells. Though, genetic modifications preserved the antigen specificity of these TCRs, the full-length version of the TCR could not prevent mispairing-mediated lethal off-target autoimmunity in vivo. In sharp contrast, T cells engrafted with the modified scTCR did not induce graft-versus-host disease (GVHD) following adoptive transfer. We next assessed the potential of scTCR-modified T cells to cause on-target autoimmunity in vivo, using mice which express the human wild type p53 and A2.1Kb (Hupki-A2.1Kb). We found that lymphodepleting preconditioning regimens plus vaccination-induced expansion of transferred TCR-specific T cells did not result in a depletion of hematopoietic cells, as mice recovered normal white blood cell counts, including lymphocytes and monocytes and survived without any sign of toxicity. Importantly, our study demonstrated that high-avidity scTCR-engineered human T cells were able to eradicate established tumors and persist for more than 6 months after infusion without inducing xeno-GVHD in NodScid IL-2R gamma chain-null mice. Taken together, our study provided evidence that an optimized high-affinity scTCR-specific for the broadly expressed tumor-associated antigen p53(264-272) can eradicate p53+A2.1+ tumor cells in vivo without inducing off-target or self-directed toxicities in humanized mouse models of adoptive T-cell transfer. These data strongly support the improved safety and therapeutic efficacy of high-affinity scp53TCR for TCR-based immunotherapy of p53-associated malignancies. Disclosures: No relevant conflicts of interest to declare.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Emma Nicholson ◽  
Sara Ghorashian ◽  
Hans Stauss

Adoptive immunotherapy using TCR gene modified T cells may allow separation of beneficial Graft versus tumour responses from harmful GvHD. Improvements to this include methods to generate high avidity or high affinity TCR, improvements in vector design and reduction in mispairing. Following adoptive transfer, TCR transduced T cells must be able to survive and persist in vivo to give most effective antitumour responses. Central memory or naive T cells have both been shown to be more effective than effector cells at expanding and persisting in vivo. Lymphodepletion may enhance persistence of transferred T cell populations. TCR gene transfer can be used to redirect CD4 helper T cells, and these could be used in combination with CD8+ tumour specific T cells to provide help for the antitumour response. Antigen specific T regulatory T cells can also be generated by TCR gene transfer and could be used to suppress unwanted alloresponses.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A124-A124
Author(s):  
Letizia Giardino ◽  
Ryan Gilbreth ◽  
Cui Chen ◽  
Erin Sult ◽  
Noel Monks ◽  
...  

BackgroundChimeric antigen receptor (CAR)-T therapy has yielded impressive clinical results in hematological malignancies and it is a promising approach for solid tumor treatment. However, toxicity, including on-target off-tumor antigen binding, is a concern hampering its broader use.MethodsIn selecting a lead CAR-T candidate against the oncofetal antigen glypican 3 (GPC3), we compared CAR bearing a low and high affinity single-chain variable fragment (scFv,) binding to the same epitope and cross-reactive with murine GPC3. We characterized low and high affinity CAR-T cells immunophenotype and effector function in vitro, followed by in vivo efficacy and safety studies in hepatocellular carcinoma (HCC) xenograft models.ResultsCompared to the high-affinity construct, the low-affinity CAR maintained cytotoxic function but did not show in vivo toxicity. High-affinity CAR-induced toxicity was caused by on-target off-tumor binding, based on the evidence that high-affinity but not low-affinity CAR, were toxic in non-tumor bearing mice and accumulated in organs with low expression of GPC3. To add another layer of safety, we developed a mean to target and eliminate CAR-T cells using anti-TNFα antibody therapy post-CAR-T infusion. This antibody functioned by eliminating early antigen-activated CAR-T cells, but not all CAR-T cells, allowing a margin where the toxic response could be effectively decoupled from anti-tumor efficacy.ConclusionsSelecting a domain with higher off-rate improved the quality of the CAR-T cells by maintaining cytotoxic function while reducing cytokine production and activation upon antigen engagement. By exploring additional traits of the CAR-T cells post-activation, we further identified a mechanism whereby we could use approved therapeutics and apply them as an exogenous kill switch that would eliminate early activated CAR-T following antigen engagement in vivo. By combining the reduced affinity CAR with this exogenous control mechanism, we provide evidence that we can modulate and control CAR-mediated toxicity.Ethics ApprovalAll animal experiments were conducted in a facility accredited by the Association for Assessment of Laboratory Animal Care (AALAC) under Institutional Animal Care and Use Committee (IACUC) guidelines and appropriate animal research approval.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3925-3925
Author(s):  
Anilkumar Gopalakrishnapillai ◽  
Colin Correnti ◽  
Anne Kisielewski ◽  
Allison Kaeding ◽  
Soheil Meshinchi ◽  
...  

Acute myeloid leukemia (AML) remains the type of pediatric leukemia with poorest outcome. Despite maximally intensive therapy, approximately 20% of patients experience recurrent disease. Novel targeted therapies are needed to improve survival. We recently identified that mesothelin, a well-validated target in some cancers, is also highly expressed in a subset of pediatric AML samples (Tarlock et al., Blood, 128:2873, 2016). Considering that it is not expressed in normal tissues in children (Fan et al., Blood, 130:3792, 2017), MSLN is a viable target for immunotherapies such as Bispecific T-cell Engaging antibodies (BiTEs) that combine antibody single chain variable (scFv) regions targeting a cancer antigen and the T-cell co-receptor CD3. We designed and tested the efficacy and specificity of BiTEs targeting MSLN in disseminated xenograft models of pediatric AML. Using scFv sequences derived from Amatuximab, which recognizes the N-terminal domain of the GPI-linked ectodomain of MSLN, targeting region 1 of MSLN, and from Blinatumomab/AMG-330 targeting CD3, we engineered and expressed two kinds of BiTE molecules - a canonical BiTE and an IgG BiTE, a larger molecule with improved serum half life in vivo. To evaluate the specificity and efficacy of canonical BiTEs, MV4;11-MSLN cell line was generated by lentiviral transduction of parental MV4;11 cells which do not constitutively express MSLN (Fig. 1A, B). These two cell lines were injected i.v. into NSG-SGM3 mice. Once engraftment was confirmed, purified human T cells (3 x 106) were injected to act as effector cells. Mice were then treated with the canonical αMSLN-αCD3 BiTE at a dose of 3 mg/kg/day daily for 6 days. A cohort of mice that were untreated or received BiTE or T-cell infusion only served as controls. Mice from both treated and untreated groups had to be euthanized when they presented with distended abdomens due to myeloid sarcomas and no significant differences in survival were observed. Post euthanasia, bone marrows were flushed and evaluated for the percentage of AML cells (human CD45+CD33+) and T cells (human CD45+CD3+). We observed that the αMSLN-αCD3 BiTE was effective in promoting T-cell activation (based on high T-cell counts compared to mice injected with T-cells alone) and greatly reducing leukemic burden in mice injected with MV4;11 cells engineered to express MSLN (Fig. 1C, D). Similar results were obtained using BiTEs targeting a different MSLN epitope. No T-cell expansion and anti-leukemic effect was observed in mice engrafted with parental MV4;11 cells. Although, there were no significant differences between the median survival of untreated and treated miceThese data highlight the specificity and efficacy of the aMSLN-CD3 BiTEs. Among a panel of 8 AML patient-derived xenograft (PDX) lines generated in the laboratory, NTPL-146 bearing MLL-ENL fusion was found to have endogenous MSLN expression (Fig. 1E). We evaluated the efficacy of αMSLN-αCD3 canonical BiTE (3 mg/Kg Qdx6) against NTPL-146 PDX line in NSG-B2m mice by transfusing human CD3+ T-cells to act as effector cells. A Kaplan-Meier survival plot based on the time when each mouse reached experimental end-point (reduced body weight greater than 20%, impaired mobility, hind limb paralysis) showed that the survival benefit for mice receiving BiTE in the presence of human T-cells (4/6 mice survived at the end of experiment) greatly exceeded the efficacy of T-cells alone (22-day improvement in median survival with no surviving mice), or BiTE treatment alone (no improvement in survival) compared to untreated mice (Fig. 1F, P<0.001). These data validate the efficacy of MSLN targeting BiTEs in a PDX model with endogenous MSLN expression. The efficacy of canonical vs IgG BiTEs was evaluated in MV4;11-MSLN xenografted mice. Mice were dosed Qd5x3 for canonical BiTE and Q7dx3 for IgG BiTE as shown (Fig. 1G). IgG BiTE treatment along with T-cell infusion significantly prolonged survival in mice transplanted with MV4;11-MSLN (Fig. 1H), suggesting that IgG BiTE was far more efficacious than canonical BiTEs (P<0.01). Taken together, these data indicate that MSLN-targeting BiTEs could be used as novel immunotherapy for pediatric AML with MSLN expression. Figure 1 Disclosures Kaeding: Celgene: Employment.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5488-5488
Author(s):  
Tom van Meerten ◽  
Henk Rozemuller ◽  
Wendy J.M. Mackus ◽  
Paul W.H.I. Parren ◽  
Jan G.J. van de Winkel ◽  
...  

Abstract Adoptive transfer of T cells is frequently associated with unwanted side effects. In order to tackle these effects one could introduce a safety switch into the cells that permits their selective in vivo elimination. The human CD20 gene in combination with CD20 antibodies was recently proposed as a novel safety switch. In such a system, T cells may be genetically modified with a CD20-encoding vector prior to adoptive transfer. If necessary, CD20-transgenic cells can be eliminated in vivo through administration of CD20 antibodies, such as the chimeric antibody rituximab (RTX) that is currently used to treat CD20+ lymphoma. RTX activates the complement system and recruits immune effector cells, resulting in rapid death of CD20+ cells. Recently, a novel human CD20 antibody, Humab 7D8, was shown to have superior activity over RTX. In this study a set of CD20-encoding retroviral vectors was generated, which either lacked or contained one or both of two regulatory elements: the woodchuck posttranscriptional regulatory element (WPRE) to increase CD20 expression, and the chicken hypersensitivity site 4 insulator element (INS) to achieve a position independent expression of CD20 and to increase the safety profile of the vector by preventing activation of cellular (onco)genes by the retroviral enhancer. We found that the level of CD20 expression obtained with vectors containing INS was 2-fold lower than with vectors lacking INS. Additional inclusion of WPRE restored the level to that of the vector without INS. In addition, INS greatly enhanced the homogeneity of CD20 expression in T cells. Moreover, after 3 months in culture, all cells generated with CD20-INS had retained CD20 expression, while 60% of cells transduced with the control CD20 vector had lost CD20 expression. Complement dependent cell kill (CDC) of both RTX and HuMab 7D8 was dependent on the level of CD20 expression (p<0.01). However, while very low CD20-expressing cells were completely resistant against RTX they could be effectively killed by HuMab 7D8. For maximal kill of CD20-high cells, a 100-fold lower dose of HuMab 7D8 was required, compared to RTX. In vivo efficacy was studied through bioluminescent imaging of luciferase+ CD20-transgenic T cells. After transfer of CD20+ cells in immune deficient RAG2−/−gamma c−/− mice, both CD20 antibodies were capable of eliminating >99% of CD20+ cells, prolonging survival of mice from 20 till 42 days. In conclusion, we developed a safe vector that leads to homogeneous and stable expression of CD20 on human T cells. These cells can be killed effectively in vivo with HuMab 7D8, a recently developed CD20 antibody. This system will be applicable to other approaches that require inclusion of a safety switch in ex vivo modified cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4226-4226
Author(s):  
Hakim Echchannaoui ◽  
Jutta Petschenka ◽  
Edite Antunes ◽  
Matthias Theobald

Abstract Abstract 4226 Several studies have demonstrated the clinical efficacy of adoptive T cell therapy for targeting cancer. Using HLA-A2.1 transgenic mice, we have demonstrated the feasibility of T-cell receptor (TCR) gene transfer into T cells to circumvent self-tolerance to the widely expressed human p53(264–272) tumor-associated antigen and developed approaches to generate high-affinity CD8-independent TCR. A safety concern of TCR gene transfer is the pairing of endogenous and introduced TCR chains resulting in the potential generation of self-reactive T cells (off-target autoimmunity). Several strategies to favor matched TCR chains pairing and thus enhancing TCR cell surface expression, including optimization of TCR encoding nucleotide sequences, introduction of an additional inter-chain disulfide bond between the TCR α and β chain constant domains, coexpression of both TCR α and β encoding-genes using self-cleaving 2A virus peptide-based retroviral vectors have been applied. However, adoptive transfer of mouse T cells transduced with modified p53-specific TCRs into p53-deficient humanized (A2Kb) mice was inducing lethal autoimmunity due to the formation of self-reactive TCRs infiltrating vital organs, such as spleen, liver and bone marrow. Therefore, an optimized single chain (sc) p53-specific TCR was engineered to avoid the formation of mismatched TCR heterodimers. The safety and therapeutic efficiency of this approach were evaluated in humanized mouse models of adoptive T cell transfer and successfully demonstrated that optimized p53-specific scTCR-redirected T cells (i) do not induce OFF-target autoimmunity and (ii) mediate antitumor reactivity. Importantly, because the expression of p53 antigen on normal tissues raises the concern of potential on-target toxicity, we performed adoptive T cell transfer experiments in humanized mice expressing the Human p53 protein (Hupki mice) and did not observe any sign of TCR gene transfer-mediated GvHD in this model. In conclusion, these mouse studies suggest that the optimized p53(264–272)-specific scTCR could represent a safe and efficient approach for TCR-based gene therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3580-3580
Author(s):  
Shoba Amarnath ◽  
James CM Wang ◽  
Paul R. Massey ◽  
James L. Riley ◽  
Bruce Levine ◽  
...  

Abstract Abstract 3580 Poster Board III-517 Immune cell expression of programmed death ligand-1 (PD-L1) represents a particularly important molecular mechanism responsible for control of auto- and allo-immunity mediated by effector memory T cells expressing PD1 receptor. As such, we have reasoned that an immuno-gene therapy approach that enables T cell expression of PD-L1 will represent a novel method of immune regulation. Advantageous features of this proposed therapy include a capacity to: (1) enforce long-term, stable expression of PD-L1; (2) build-in an independent surface marker to allow specific transduced cell enrichment; (3) utilize cellular delivery vehicles comprised of highly functional T cells that persist in vivo after adoptive transfer; and (4) incorporate an enhanced cell fate control or ‘suicide’ gene to permit in vivo control of the immuno-gene therapy. Given these considerations, we developed a recombinant lentiviral vector (LV) incorporating an EF1-α promoter that first encodes the cDNA for a fusion protein consisting of human CD19 (truncated, non-signaling) combined with mutated human TMPK that efficiently activates AZT as a pro-drug (Sato et al; Mol Therapy, 2007); then, after an IRES element, the vector encodes full-length human PD-L1. LV was made after transfection of 293T cells and then concentrated and titered. Initial experiments used Jurkat cells to optimize virus infection and to confirm co-expression of CD19 and PD-L1 by flow cytometry. In previous work, we have demonstrated that ex vivo T cell expansion in rapamycin induces an anti-apoptotic phenotype that permits enhanced in vivo T cell persistence in murine models and human-into-mouse xenogeneic transplant models. As such, we established the goal of infecting primary human CD4+ T cells manufactured using ex vivo co-stimulation (anti-CD3, anti-CD28), Th1-type polarization (inclusion of IFN-α), and exposure to high-dose rapamycin (1 μM); using a 6-day culture system and subsequent anti-CD19 column purification, >90% of resultant transduced T cells expressed PD-L1. Next, we utilized a xenogeneic transplantation model (Rag2−/−γc−/− hosts) to assess in vivo persistence of the gene-modified T cells and transgene expression (10,000 T cells transferred i.v. into each host). In vivo experiment #1 demonstrated that recipients of gene-modified T cells had increased numbers of human T cells in the spleen that co-expressed CD19 and PD-L1 relative to recipients of non-transduced but identically expanded human T cells (harvested at day 5 after adoptive transfer; 38,000 cells/spleen vs. 1000 cells/spleen, p=0.02). Such in vivo harvested T cells were secondarily co-stimulated ex vivo and propagated for an additional 5 days: co-expression of CD19 and PD-L1 persisted in ∼ 50% of T cells harvested from the gene-modified T cell cohort, and T cell numbers were maintained ex vivo (yield of CD19+PD-L1+ cells, 28,600 vs. 1500; p=0.0001). In vivo experiment #2 confirmed and extended these results. At day 21 after adoptive transfer, recipients of gene-modified T cells had increased numbers of human T cells that co-expressed CD19 and PD-L1 relative to recipients of non-transduced but identically expanded human T cells in both the spleen (2800 cells/spleen vs. 390 cells/spleen, p=0.01; n=10 per cohort) and bone marrow (71,600 cells/marrow vs. 6500 cells/marrow, p=0.0001; n=10 per cohort). Such in vivo harvested T cells at day 21 after adoptive transfer were secondarily co-stimulated ex vivo and propagated for an additional 6 days: co-expression of CD19 and PD-L1 persisted in ∼ 50% of T cells harvested from the gene-modified T cell cohort, and T cell numbers were maintained ex vivo (yield of CD19+PD-L1+ cells harvested from spleen, 71,200 vs. 1800, p=0.0008; yield of CD19+PD-L1+ cells harvested from marrow, 226,000 vs. 1400, p=0.0001). Because the rapamycin-resistant T cell vehicle utilized in these experiments manifests an anti-apoptotic phenotype that confers long-term engraftment potential, it is likely that the demonstrated durability in transgene expression relates both to the efficiency of the LV method utilized and to a T cell pro-survival function. In conclusion, the LV-mediated transfer of this novel combination of CD19/TMPK fusion protein and PD-L1 results in stable transgene expression in primary human T cells in vitro and in vivo, thereby opening an avenue to assess PD-L1 mediated immuno-gene therapy under cell fate control. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 13 ◽  
pp. S164-S165
Author(s):  
Tom van Meerten ◽  
Henk Rozemuller ◽  
Wendy Mackus ◽  
Paul Parren ◽  
Jan van de Winkel ◽  
...  

2020 ◽  
Author(s):  
Ozgun Kilic ◽  
Marcos R. Matos de Souza ◽  
Abdulaziz A. Almotlak ◽  
Jill M. Siegfried ◽  
Carston R. Wagner

ABSTRACTNumerous approaches have targeted the Epidermal Growth Factor Receptor (EGFR) for the development of anti-cancer therapeutics, since it is over-expressed on a variety of cancers. Recently, αEGFR chimeric antigen receptor (CAR)-T cells have shown potential promise for the immunological control of tumors. Our laboratory has recently demonstrated that bispecific chemically self-assembled nanorings (CSANs) can modify T cell surfaces and function as prosthetic antigen receptors (PARs). This technology allows selective targeting of tumor antigens due to high avidity of the multimeric rings, while incorporating a mechanism to dissociate the rings to prevent further T cell stimulation. Previously, PARs with single-chain variable fragments (scFvs) have been successful in vitro and in vivo, activating T cells selectively at the tumor site. Alternatively, here we report fibronectin (FN3)-based PARs with improved properties such as increased protein yield, rapid protein production, increased protein stability and predicted low immunogenicity due to the human origin of fibronectins. We examined the cytotoxicity of EGFR-targeting PARs in vitro in which the affinities of the αEGFR fibronectins, the αEGFR/ αCD3 valency of the CSANs and the antigen expression levels were varied. Based on these selective in vitro cytotoxicity results, we conducted an in vivo study of FN3-PARs using an orthotopic breast cancer model. The FN3-PARs demonstrated potent tumor growth suppression with no adverse effects. Furthermore, these results demonstrated that FN3-PARs modulated the tumor microenvironment by downregulating EGFR signaling resulting in decreased PD-L1 expression. In addition, the expression of PD-1 was also found to be reduced. Collectively, these results demonstrate that FN3-PARs have the potential to direct selective T cell targeted tumor killing and that αEGFR FN3-PARs may enhance anti-tumor T cell efficacy by modulating the tumor microenvironment.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A603-A603
Author(s):  
Angus Sinclair ◽  
Thierry Giffon ◽  
Dean Ng ◽  
Poonam Yakkundi ◽  
Hope Lancero ◽  
...  

BackgroundTherapeutic antibodies inhibiting PD-1/PD-L1 have demonstrated clinical efficacy though only a fraction of patients respond. Combinations are being explored to enhance responses including anti-PD-1/PD-L1 IgG antibodies with IL-15-pathway stimulating agents to remove PD-1 immunosuppressive signaling and enhance anti-tumor NK and memory CD8 T cell expansion and survival. We have engineered an anti-PD-L1 pentameric high affinity, high avidity IgM, to target low PD-L1 expressing tumors, with an IL-15 superagonist fused to the joining (J) chain.MethodsAn anti-PD-L1 IgM was generated by grafting heavy chain variable regions of a high affinity IgG onto the IgM heavy chain framework and co-expressed with the light chains. The IL-15 superagonist fused to the J chain generated PDL1-ISA. Anti-PD-L1 binding was performed using recombinant antigen ELISAs and on cells by FACS. Reporter assays and PBMCs were used for potency testing. Cytokines were evaluated by CBA assays. In vitro cytotoxicity assays used luciferase tagged MDA-MB-231 cells with PBMCs, NK or CD8 T cells. Pharmacodynamic and efficacy studies were conducted in syngeneic and humanized mouse models.ResultsThe parental anti-PD-L1 IgM antibody bound recombinant and cellular PD-L1 more potently than an IgG antibody with the same binding domain. In functional PD-L1 and PD-1 blocking studies the anti-PD-L1 IgM was as efficacious as the IgG. PDL1-ISA provided a potent proliferation signal to primary human NK and CD8 T cells in vitro with little/no impact on regulatory or CD4 T cells. Limited cytokines were detected following 3–4 days culture with human PBMCs. PDL1-ISA had similar potencies for both human and cynomolgus CD8 T cells, and a 2–3-fold lower potency for mouse cells. Pharmacodynamic studies in humanized and BALB/c mice showed transient and dose-dependent increases in circulating NK and CD8 T cells. PDL1-ISA enhanced in vitro killing of PD-L1 positive MDA-MB-231-Luc cells by human PBMCs, CD8 T and NK cells compared to the anti-PD-L1 IgM (no IL-15). PDL1-ISA also demonstrated efficacy in a hPD-L1-CT26 HuCELL mouse model, with most treated animals having complete tumor regressions. Durable anti-tumor immune memory responses were observed upon tumor re-challenge.ConclusionsWe have engineered an IL-15 immunostimulatory anti-PD-L1 IgM antibody that binds PD-L1 more potently than an IgG, stimulates NK and CD8 expansion in vitro and in vivo and induces complete tumor regressions in mouse models. This approach may enhance tumor localization of immunostimulatory cytokine IL-15 though the high affinity and high avidity binding to PD-L1 to improve anti-tumor responses and minimize toxicity.


Sign in / Sign up

Export Citation Format

Share Document