Investigating Synthetic Lethality Between mTOR Hyperactivation and Cap-Dependent mRNA Translation In a Receptor Tyrosine Kinase Driven Model Of Acute T-Cell Leukemia

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3913-3913
Author(s):  
Adrian Schwarzer ◽  
Helmut Holtmann ◽  
Celina Schauerte ◽  
Nomme Benn ◽  
Jan Völkel ◽  
...  

Abstract T-cell acute lymphoblastic leukemia (T-ALL) remains a therapeutic challenge. In particular, relapsed disease is refractory to further therapy and has a dismal outcome. High activation of the PI3K-AKT-mTOR pathway is a hallmark of T-ALL that has been linked to the resistance of T-ALL to glucocorticoids and chemotherapy. The master regulator of PI3K-AKT signaling is PTEN. PTEN loss (1) is accompanied by an adverse outcome, (2) occurs as secondary event in T-ALL relapses and (3) is selected for after xenotransplantation of human T-ALLs into NSG mice. Interestingly, even in the absence of PTEN, the PI3-Kinases γ and δ, which link receptor tyrosine kinases (RTK) and PIP3 signaling, are critical for T-ALL formation. In lung cancer, both PTEN loss and activation of RTK signaling are required for full activation of AKT and aggressive disease. However, whereas the role of PTEN in T-ALL is well appreciated, little is known about the contribution of RTK signaling. We previously demonstrated the aberrant expression of members of the Neurotrophin receptor tyrosine kinase family (tropomyosin-related kinases - TRKA/B/C) in primary human leukemias of myeloid and lymphoid origin. We detected high expression of TRKB in several T-ALL samples. Some samples also co-expressed intracellular BDNF (brain derived neurotrophic factor), the ligand for TRKB, suggesting the existence of autocrine loops between the receptor and its ligands. Expression of the TRKB/BDNF autocrine loop or of a constitutively active form of the human TRKA receptor (ΔTrkA) in murine hematopoietic stem cells elicited T-ALL with a mean latency of 100 days in our murine transplantation model. Here we dissect the downstream signaling cascades in BDNF/TRKB or ΔTrkA induced T-ALL clones and show acquisition of activating Notch1 mutations and loss of PTEN during clonal evolution of T-ALLs induced by deregulated TRK-signaling. All three events contribute independently to activation of mTORC1 and mTORC2, demonstrating a strong selective pressure for enhanced mTOR signaling in T-ALL. To investigate the role of both mTOR complexes and downstream effectors, we used an improved Tet-regulated miR30-shRNA system in conjunction with a FACS-based reporter assay, allowing the rapid identification of shRNAs that give powerful knockdown at the single copy level. We identified several potent RNAi triggers against Rictor (mTORC2), Raptor (mTORC1) and members of the cap-initiation complex. Knockdown of Rictor or Raptor alone caused a transient decrease of proliferation and viability. In contrast, complete inhibition of mTOR with Torin1 or knockdown of eIF4E, the rate limiting subunit of the cap initiation complex, resulted in strong induction of apoptosis. This demonstrates that increased cap-dependent translation is a key effector of oncogenic mTOR in TRK+Notch+PTEN- T-ALL. Next, we investigated the efficacy of 4EGI-1E, a novel isoform of the previously described inhibitor of cap-dependent translation 4EGI-1, in this T-ALL model. 4EGI-1E induced apoptosis of T-ALL blasts in vitro with an EC50 of 3.5 mM, whereas the EC50 for global inhibition of cap-dependent translation was 50 mM, suggesting that 4EGI-1E targets a subset of mRNAs that are regulated by cap-dependent translation and are crucial for T-ALL survival. Microarray analysis of polysome fractions from DMSO and 4EGI-1E-treated cells in vitro revealed that 4EGI-1E treatment decreased the active translation of mRNAs for genes observed to be upregulated in T-ALL. These genes included members of the translational apparatus, mitochondrial matrix proteins, cyclins, c-Myc and Bcl-2. Polysome profiling in vivo recapitulated the in vitro results, showing that 4EGI-1E caused a global decrease in the ribosomal occupancy of cellular mRNAs. Network analysis suggested c-Myc as a central node within the depleted mRNAs. Abrogation of c-myc expression and induction of apoptosis were observed as soon as 4 hours after injection of 4EGI-1E (1.5 mg) into leukemia bearing animals. Depletion of T-ALL blasts from the bone marrow was achieved after 5 days of daily 4EGI-1E treatment, T-ALL (DMSO: 39% (SD 18%) vs. 4EGI-1E 0.54% (SD 0.62%) p=0.003). Finally, we investigated the effects of 4EGI-1E on healthy hematopoiesis, demonstrating the existence of a therapeutic window for inhibition of cap-dependent translation in vivo. Hence, inhibiting eIF4E is a promising approach to target c-myc in a genetically complex T-ALL model. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 285-285
Author(s):  
Daniel Herranz ◽  
Valeria Tosello ◽  
Alberto Ambesi-Impiombato ◽  
Mireia Castillo ◽  
Carlos Cordon-Cardo ◽  
...  

Abstract Abstract 285 Activating mutations in NOTCH1 are common in T-cell lymphoblastic leukemias (T-ALL), making this receptor a promising target for drugs such as γ-secretase inhibitors (GSIs), which block a proteolytic cleavage required for NOTCH1 activation. Aberrant activation of the PI3K-AKT pathway due to mutational loss of PTEN is found in 20% of human T-ALLs and has been linked with in vitro resistance to GSIs therapy in T-ALL cell lines, suggesting that in the absence of PTEN, constitutive activation of the PI3K pathway may render T-cell lymphoblasts insensitive to NOTCH1 inhibition with GSIs. Still, cell lines frequently fail to recapitulate the biology of primary tumor cells, and in vitro studies fall short of addressing the role of the NOTCH-PI3K interaction in clinical resistance to GSI therapy, which is best defined as disease progression under treatment in vivo. Moreover, the specific role and mechanisms of GSI resistance downstream of PTEN loss in T-ALL remain to be elucidated. To address this question, and to analyze the actual significance of the interaction between NOTCH1 signaling and PTEN loss in T-cell transformation and therapy response we analyzed the response of NOTCH1 induced PTEN-positive and PTEN-deleted isogenic tumors to GSI therapy in vivo. Towards this goal we first generated NOTCH1 induced T-ALLs via bone marrow transplantation of tamoxifen-inducible conditional PTEN knockout (Rosa26TMCre PTEN flox/flox) hematopoietic progenitors infected with retroviruses expressing a mutant constitutively active form of the NOTCH1 receptor (NOTCH1 L1601P Δ-PEST). NOTCH1 L1601P Δ-PEST Rosa26TMCre PTEN flox/flox tumor cells injected into secondary recipients were treated with vehicle only or tamoxifen in order to generate PTEN-non-deleted and PTEN-deleted isogenic tumors, respectively. Treatment of PTEN-positive tumor bearing mice with DBZ, a highly active GSI, demonstrated marked responses to therapy by in vivo bioimaging compared with vehicle only treated controls, which translated into a significant improvement in survival (P < 0.005). In contrast, all mice harboring PTEN-deleted tumors failed to respond to DBZ treatment, showed overt progression under treatment and died of their disease demonstrating a direct role of PTEN loss in the development of resistance to inhibition of NOTCH1 signaling with GSIs in vivo. Moreover, limiting dilution analyses demonstrated that secondary loss of PTEN increased the leukemia initiating cell potential of NOTCH1 L1601P Δ-PEST induced tumors. Analysis of NOTCH1 signaling showed complete clearance of activated NOTCH1 protein and marked downregulation of Hes1 in both in PTEN-positive and PTEN-deleted NOTCH1 L1601P Δ-PEST induced tumors treated with DBZ compared with controls. However, global analysis of gene expression profiling with oligonucleotide microarrays showed that while NOTCH1 direct target genes are downregulated in both PTEN-positive and PTEN deleted tumors, there is a global reversal of much of the transcriptional effects of NOTCH inhibition, consisting of downregulation of genes involved in anabolic pathways and upregulation of genes involved in catabolic pathways and autophagy, upon PTEN loss. Consistently, electron microscopy analysis demonstrated increased autophagy in NOTCH1 induced tumors upon NOTCH1 inhibition, which was reversed upon PTEN deletion. Moreover, global metabolomic analyses of PTEN-non-deleted and PTEN-deleted NOTCH1 L1601P Δ-PEST induced tumors treated with DBZ compared with controls demonstrated that NOTCH inactivation induces a global anabolic shutdown in T-ALL with a marked block of glycolysis and glutaminolysis which renders NOTCH induced tumors dependent on branched amino acid catabolism to sustain their carbon metabolism. Notably these effects are globally rescued in PTEN deleted tumor cells, which show high basal levels of glycolysis and sustained glycolysis and glutaminolysis despite effective NOTCH1 inhibition with DBZ. Overall, these results formally demonstrate that loss of PTEN induces in vivo drug resistance to NOTCH inhibition in T-ALL; highlight the fundamental importance of NOTCH1 in the control of tumor cell metabolism; strongly suggest that increased glycolysis and sustained carbon metabolism can induce resistance to GSI therapy and provide the basis for the design of new therapeutic strategies targeting these metabolic pathways in T-ALL. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 225 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Tazio Storni ◽  
Martin F. Bachmann
Keyword(s):  
T Cell ◽  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 616-616 ◽  
Author(s):  
Deepa B. Shankar ◽  
Jenny C. Chang ◽  
Bertrand Parcells ◽  
Salemiz Sandoval ◽  
Junling Li ◽  
...  

Abstract Children with acute myeloid leukemia (AML) have less than 60% overall survival despite aggressive chemotherapy and bone marrow transplantation. Only one third of the adult patients diagnosed with AML will be cured. AML blast cells from up to 30% of patients express a constitutively active receptor tyrosine kinase, FLT3-ITD, which contains an internal tandem duplication in the juxtamembrane domain. Patients with FLT3-ITD have a worse prognosis. ABT-869 is a novel multi-targeted small molecule inhibitor of receptor tyrosine kinases and is a potent inhibitor of FLT3, c-Kit, and all members of the VEGF and PDGF receptor families. To determine the effects of ABT-896 on AML cells, we treated AML cell lines, primary cells, and tumors in xenograft models with varying concentrations of the drug. In vitro viability assays showed that ABT-869 inhibited the growth of two different cell lines, MV-4-11 (human AML cell line that expresses FLT3-ITD) and BAF3-ITD (murine B-cell line stably transfected with the FLT3-ITD) at an IC50 of 10nM. ABT-869 was also effective against another mutation of FLT3, D835V, but at higher concentrations (IC50 of 100nM). Phosphorylation of FLT3 and activation of downstream signaling molecules, STAT5 and ERK, were inhibited by ABT-869 in a concentration-dependent manner. Cells were also stained with Annexin V-FITC and Propidium Iodide, and analyzed using FACS. ABT-869 induced apoptosis, caspase-3 activation, and PARP cleavage after 48 hours. To examine the in vitro effects of ABT-869 on normal hematopoietic progenitor cells, we performed methylcellulose-based colony assays with human bone marrow. No significant difference was observed in the number and type of colonies formed using BM cells treated with ABT-869 or control, up to a concentration of 1 micromolar. These results suggest that ABT-869 is not toxic to normal bone marrow progenitor cells at concentrations that are effective against AML cells. To examine the effects of ABT-869 in vivo, we treated SCID mice injected with MV-4-11, Baf3-ITD, Baf3-D835V, or Baf3-WT cells, with oral preparations of ABT-869. Complete regression of MV-4-11 tumors was observed in mice treated with ABT-869 at 20 and 40 mg/kg/day. No adverse effects were detected in the peripheral blood counts, bone marrow, spleen or liver. Histology of the tumors from the control-treated group showed a high degree of proliferation by Ki-67 staining, increased mitotic figures, and a well-defined tumor mass. In contrast, the tumors from mice treated with ABT-869 showed a number of apoptotic bodies by TUNEL staining and the presence of reactive, inflammatory cells. Interestingly, we also observed that mice that received ABT-869 the day after injection of AML cells remained tumor-free for over 2 months in contrast to the mice receiving the vehicle alone. Inhibition of FLT3 phosphorylation was demonstrated in the tumors from mice treated with ABT-869. We are evaluating the activity of ABT-869 treatment of SCID mice injected with Baf3-ITD, Baf3-D835V, or Baf3-WT cells. NOD-SCID mouse models are currently being used to analyze the effects of ABT-869 on primary AML cells in vivo. Our preclinical studies demonstrate that ABT-869 is effective and nontoxic, and provide rationale for the treatment and prevention of relapse in AML patients.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1381-1381
Author(s):  
Adrian Schwarzer ◽  
Johann Meyer ◽  
Martijn Brugman ◽  
Axel Schambach ◽  
Martin Stanulla ◽  
...  

Abstract Abstract 1381 T-cell acute lymphoblastic leukemia (T-ALL) remains a therapeutic challenge. T-ALLs are characterized by recurring chromosomal rearrangements causing aberrant expression of transcription factors (Myb; TAL/SCL; HOX) dividing patients into different subgroups. Activating mutations in NOTCH, the master regulator of T-cell development, are found in more than 60% of T-ALLs independently of subtype. Most T-ALLs display a hyperactivation of the PI3K-AKT-mTOR pathway, a potential target for therapeutic intervention. The master regulator of PI3K-AKT signalling is PTEN, which is frequently inactivated in cancer. Recent data suggests that complete PTEN loss due to mutation is rare in primary human T-ALL, whereas PTEN-inhibiting posttranslational modifications are more common (Barata et al., J. Clin. Invest. 2008, 118). As these modifications decrease, but do not abolish the phosphatase activity of PTEN, we hypothesized that further input from tyrosine kinases, particularly receptor tyrosine kinases (RTK), may be needed to sustain PI3K-AKT-mTOR activation. In order to investigate how RTK-signaling may contribute to the pathogenesis of T-ALL we used an established murine bone marrow transplantation model (Li et al. Blood 2009, 113). To mimic tyrosine-kinase signaling we expressed δTrkA, a constitutively active TRKA receptor tyrosine kinase (TRK =tropomyosin-related kinase) from gammaretroviral or lentiviral vectors in c-kit+ Sca-1+ Lin− (KSL) cells. Intravenous injection of δTrkA-transduced hematopoietic cells in C57BL6 mice (n=10) induced transplantable T-ALL with a latency of about 120 days. The resulting T-ALLs could be propagated in culture as clonal cell lines. Signaling studies showed that δTRKA activates predominantly ERK upon expression in murine hematopoietic cell lines. However, the obtained δTRKA+ T-ALL lines (n=7) showed a profound shift in the use of downstream signaling cascades, displaying a very high activation of AKT-mTOR and absent ERK phosphorylation, resembling human T-ALL. High AKT activation was uniformly detected regardless of PTEN protein expression in all but one T-ALL (#003). To understand the rewired signaling network we looked for a potential contribution of insertional mutagenesis and chromosomal aberrations. Array-CGH showed homozygous deletions on chr14c2 involving the T-cell receptor alpha and delta genes in 3/3 cell lines and heterozygous deletions in Ikzf1 in 2/3 cell lines. Viral integration sites showed no common insertion pattern and no insertion in genes implicated in RTK-signaling. The expression of genes in proximity to viral integrations (±500 kb) appeared unaltered as determined by cDNA-microarray analysis of the T-ALL cell line #483 against wild type CD4+CD8+ thymocytes. Microarray analysis revealed enrichment of Notch1 target genes in the T-ALL cell line #483. Sequencing of Notch1 revealed both, PEST domain mutations and the recently described (Aster et al, Blood 2010, 116) RAG mediated 5'-deletions in cis, in all but one investigated T-ALL. Northern and Western Blots confirmed the expression of truncated Notch1 transcripts and protein, respectively. The one cell line (#003) which retained the original δTrkA signaling pattern had no Notch mutation and could only be cultured on OP9-Delta-like-1 stroma cells, highlighting the importance of Notch signaling. As this cell line was established from a mouse displaying an enlarged thymus, but no full manifestation of T-ALL, our data suggests that acquisition of Notch mutations is a late, but necessary step required for overt leukemia, whereas the initiating events may arise in kinase signaling pathways of prethymic progenitors. All T-ALL cell lines were sensitive to mTOR or Notch inhibition with Rapamycin or Compound E, respectively. Finally, we used phosphoprotein-arrays to monitor the phosphorylation of 42 RTK in childhood T-ALL samples with different activating NOTCH mutations (n=5) and detected several activated RTK (e.g. MSPR, FGFR, ErbB4, VEGFR) in the patient samples. Taken together, our findings suggest a cooperation of RTK and activating NOTCH mutations in mTOR activation seen in T-ALL and encourage further investigation of 1) aberrant RTK-signaling in T-ALL 2) the role of RTK activation in creating a preleukemic cell clone, 3) evaluation of combined therapy targeting RTKs and NOTCH, and 4) the role of activated NOTCH on mTORC2-AKT activation independently of PTEN. Disclosures: Baum: Patent office: Patents & Royalties.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1799-1799
Author(s):  
Maria Göbel ◽  
Michael Möllmann ◽  
Andre Görgens ◽  
Ulrich Dührsen ◽  
Andreas Hüttmann ◽  
...  

Abstract Abstract 1799 The receptor tyrosine kinase Axl belongs to the TAM (Tyro-3, Axl and Mer) family and is involved in the progression of several human malignancies including chronic lymphocytic leukemia (CLL), where it is has been found to be overexpressed in comparison to normal B-cells. An increasing body of evidence suggests that Axl acts as an oncogene which increases the survival, proliferation, metastatic potential and chemotherapy resistance of tumor cells. Hence, it has been recently identified as a potential therapeutic target in a wide range of tumor entities with deregulated Axl expression including prostate cancer, glioma, lung cancer and CLL. Here, we investigated two different Axl inhibitors for their potential to inhibit the migratory capacity and survival of leukemic cells in preclinical CLL models. In vitro studies: Freshly isolated PBMC (>90% CD5+CD19+) from CLL patients were incubated in serum free medium for 48h containing concentrations series of 2 different Axl inhibitors: BMS777607, a previously published inhibitor of the MET kinase family, and LDC2636, a novel inhibitor of the TAM receptor tyrosine kinase (RTK) family with high affinity to Axl. Viability of CLL cells was assessed by trypan blue staining and flow cytometry employing annexin V staining. Since a polarized phenotype is required for migration, cell polarization was analyzed by time-lapse video-microscopy. We detected cytotoxic effects in a patient dependent manner that were more prevalent in LDC2636 as compared to BMS777607 treated cells (LD50= 1.4 μM vs. 5.2 μM, p<0.004, n=5). Cell polarization of the remaining viable cells was significantly reduced in a dose dependent fashion in comparison to vehicle only controls (LDC2636 IC50 = 7.2 μM, p<0.00001; BMS777607: IC50=6.2μM; p=0.0004). Of note, both Axl inhibitors exhibited significantly weaker effects on both, the viability and cell polarization of normal PBMC over the whole concentration range tested (p<0.05, n=5). In vivo studies: To verify our hypothesis that reduced cell polarization results in decreased homing of leukemic cells in vivo we employed a recently developed adoptive transfer model of CLL. In this model NOD/SCID/gcnull(NSG) mice were pre-treated with a single intraperitoneal bolus of LDC2636 or BMS777607 (20 mg/kg) and subsequently transplanted with primary CLL cells. Both Axl inhibitors significantly reduced the homing capacity of CLL cells to the bone marrow of NSG mice by 43% and 59%, respectively, compared to vehicle treated controls (LDC2636: p=0.046, BMS777607 p=0.0077; n=3). These data demonstrate that Axl inhibitors exert potent in vitro and in vivo activity against human CLL cells, which is caused at least in part by the suppression of CLL homing to their supportive stromal niches. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 18 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Thomas M. Bauer ◽  
Lucian P. Jiga ◽  
Jing-Jing Chuang ◽  
Marco Randazzo ◽  
Gerhard Opelz ◽  
...  

2010 ◽  
Vol 208 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Jennifer H. Cox ◽  
Noelyn M. Kljavin ◽  
Nandhini Ramamoorthi ◽  
Lauri Diehl ◽  
Marcel Batten ◽  
...  

Interleukin-27 (IL-27) is a cytokine known to have both proinflammatory and immunoregulatory functions. The latter appear to dominate in vivo, where IL-27 suppresses TH17 responses and promotes the differentiation of Tr1 cells expressing interferon-γ and IL-10 and lacking forkhead box P3 (Foxp3). Accordingly, IL-27 receptor α (Il27ra)–deficient mice suffer from exacerbated immune pathology when infected with various parasites or challenged with autoantigens. Because the role of IL-27 in human and experimental mouse colitis is controversial, we studied the consequences of Il27ra deletion in the mouse T cell transfer model of colitis and unexpectedly discovered a proinflammatory role of IL-27. Absence of Il27ra on transferred T cells resulted in diminished weight loss and reduced colonic inflammation. A greater fraction of transferred T cells assumed a Foxp3+ phenotype in the absence of Il27ra, suggesting that IL-27 functions to restrain regulatory T cell (Treg) development. Indeed, IL-27 suppressed Foxp3 induction in vitro and in an ovalbumin-dependent tolerization model in vivo. Furthermore, effector cell proliferation and IFN-γ production were reduced in the absence of Il27ra. Collectively, we describe a proinflammatory role of IL-27 in T cell–dependent intestinal inflammation and provide a rationale for targeting this cytokine in pathological situations that result from a breakdown in peripheral immune tolerance.


2000 ◽  
Vol 68 (12) ◽  
pp. 6650-6655 ◽  
Author(s):  
Arthur O. Tzianabos ◽  
Anil Chandraker ◽  
Wiltrud Kalka-Moll ◽  
Francesca Stingele ◽  
Victor M. Dong ◽  
...  

ABSTRACT Abscesses are a classic host response to infection by many pathogenic bacteria. The immunopathogenesis of this tissue response to infection has not been fully elucidated. Previous studies have suggested that T cells are involved in the pathologic process, but the role of these cells remains unclear. To delineate the mechanism by which T cells mediate abscess formation associated with intra-abdominal sepsis, the role of T-cell activation and the contribution of antigen-presenting cells via CD28-B7 costimulation were investigated. T cells activated in vitro by zwitterionic bacterial polysaccharides (Zps) known to induce abscess formation required CD28-B7 costimulation and, when adoptively transferred to the peritoneal cavity of naı̈ve rats, promoted abscess formation. Blockade of T-cell activation via the CD28-B7 pathway in animals with CTLA4Ig prevented abscess formation following challenge with different bacterial pathogens, including Staphylococcus aureus,Bacteroides fragilis, and a combination ofEnterococcus faecium and Bacteroides distasonis. In contrast, these animals had an increased abscess rate following in vivo T-cell activation via CD28 signaling. Abscess formation in vivo and T-cell activation in vitro required costimulation by B7-2 but not B7-1. These results demonstrate that abscess formation by pathogenic bacteria is under the control of a common effector mechanism that requires T-cell activation via the CD28–B7-2 pathway.


Sign in / Sign up

Export Citation Format

Share Document