HLA-Class I Alleles Impact Susceptibility To EBV+ Classical Hodgkin Lymphoma By Altering EBV Latent Antigen-Specific CD8+ T-Cell Immune Hierarchies

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 630-630
Author(s):  
Maher K Gandhi ◽  
Rebekah M Brennan ◽  
Leesa Wockner ◽  
Pratip K Chattopadhyay ◽  
Mario Roederer ◽  
...  

Abstract In Epstein-Barr virus (EBV) classical Hodgkin lymphoma (EBV+ cHL), Hodgkin-Reed Sternberg cell antigen presentation is intact, with viral expression restricted to sub-dominant latent-antigens including LMP1/2A. Large epidemiological studies have reported differential HLA-class I (HLA-I) susceptibility to EBV+ cHL. The functional basis for these observations is unknown. HLA-I molecules present viral peptides for recognition by CD8+ T-cells, and it may be that the relative risk of developing EBV+ cHL is due to HLA-I alleles influencing the magnitude of CD8+ T-cell immunity against relevant EBV-specific antigens. However this remains speculative, with immunological evidence lacking. Several non-HLA-I linked genetic susceptibility loci have been identified, and HLA-I associations may simply represent markers for genes of diverse functions that are in linkage disequilibrium to the HLA-I region. We undertook an Australasian Leukaemia and Lymphoma Group study to address this fundamental question, utilizing 4 distinct but complimentary experimental approaches. 1. 9 EBV+ cHL and 11 EBV-ve cHL pre-therapy PBMC samples were tested for ex-vivo IFNγ, TNFα and CD107a CD8+ T-cell immunity, using overlapping LMP1 and LMP2A peptide pools. The non-HRS expressed EBV-lytic protein BZLF1 was a control. Highly stringent FACS gating was used to maximize specificity. Results were interrogated using Profile and SPICE analysis. Interestingly IFNγ, TNFα and CD107 CD8+ T-cell responses in HLA-A*02 EBV+ cHL (but not EBV-ve cHL) patients were greater than non-HLA-A*02 (LMP1 p=0.002; LMP2A p=0.03; combined LMP1/LMP2A p=0.005), whereas BZLF1 was equivalent, indicating that HLA-I provides differential CD8+ T-cell immunity against relevant EBV-latent antigens in EBV+ cHL but not EBV-ve cHL. 2. However, up to 4 different HLA-A/B molecules can potentially present relevant EBV-derived epitopes in each individual, adding a confounding layer of complexity to single allele-based effects. To overcome this and enhance sensitivity, we used the mutant HLA-I 721.221 cell-line (pulsed with LMP2A), transfected with either HLA-A*01, HLA-A*02, HLA-A*03 or HLA-B*08 alleles, as antigen presenting cells to in-vitro expand LMP2A-specific CD8+ T-cells from HLA-A*02 heterozygotes. This found ∼90% of the HLA-I LMP2A response was restricted through HLA-A*02. 3. In contrast to EBV+ cHL, in EBV-post-transplant lymphoproliferative disorders (EBV+ PTLD) the immunogenic EBNA3A/3B/3C latent-antigens are expressed. We compared HLA-I associations in 110 cHL (35% EBV+ cHL) to 153 PTLD (63% EBV+ PTLD) patients. Using Bonferoni corrected statistics, we confirmed that HLA-A*02 and HLA-A*01 homozygotes had lower and higher susceptibility to EBV+ cHL respectively, and that HLA-B*37 was positively associated. Notably, no HLA-I associations with EBV+ PTLD were found. 4. To investigate the impact of HLA-I on the hierarchy of CD8+ T-cell immunity to sub-dominant (LMP1/2A) and immune-dominant (EBNA3A/3B/3C) EBV-latent proteins, we analysed the diversity of HLA-class I restricted T-cells in 30 healthy EBV+ participants. To supplement 30 ‘defined' (i.e. validated) HLA-I EBV-latent antigen epitopes and expand HLA-I coverage, we identified 31 ‘SYFPEITHI' bioinformatically ‘predicted' peptide epitopes for HLA-A*01, HLA-A*03 or HLA-B*37 restricted EBV-latent antigens. All SYFPEITHI scores were ≥21, and thermal stability circular dichroism analysis (HLA-A*01) or MHC stabilization assays on T2 cells (HLA-A*03) confirmed peptide binding to HLA-I. Ex-vivo CD107 CD8+ T-cell assays for the 61 peptides, found that sub-dominant LMP1/2A-specific peptide responses were largely confined to HLA-A*02 (Fig 1A), whilst immuno-dominant CD8+ T-cell responses were stimulated by peptides presented by numerous HLA-I alleles (Fig 1B). These data combined illustrate that differential HLA-I-associated susceptibility to EBV+ cHL reflects altered EBV latent antigen-specific CD8+ T-cell immune hierarchies. For lymphomas expressing a restricted set of poorly immunogenic proteins, even modest CD8+ T-cell responses against relevant tumor-associated proteins confer protection, with broad implications for EBV-vaccine design. Studies are required to determine if similar mechanisms are applicable to non-lymphoid EBV+ malignancies with restricted latency such as undifferentiated nasopharngeal carcinoma. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Author(s):  
Karolin I. Wagner ◽  
Laura M. Mateyka ◽  
Sebastian Jarosch ◽  
Vincent Grass ◽  
Simone Weber ◽  
...  

T cell immunity is crucial for the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and has been widely characterized on a quantitative level. In contrast, the quality of such T cell responses has been poorly investigated, in particular in the case of CD8+ T cells. Here, we explored the quality of SARS-CoV-2-specific CD8+ T cell responses in individuals who recovered from mild symptomatic infections, through which protective immunity should develop, by functional characterization of their T cell receptor (TCR) repertoire. CD8+ T cell responses specific for SARS-CoV-2-derived epitopes were low in frequency but could be detected robustly early as well as late - up to twelve months - after infection. A pool of immunodominant epitopes, which accurately identified previous SARSCoV- 2 infections, was used to isolate TCRs specific for epitopes restricted by common HLA class I molecules. TCR-engineered T cells showed heterogeneous functional avidity and cytotoxicity towards virus-infected target cells. High TCR functionality correlated with gene signatures of T cell function and activation that, remarkably, could be retrieved for each epitope:HLA combination and patient analyzed. Overall, our data demonstrate that highly functional HLA class I TCRs are recruited and maintained upon mild SARS-CoV-2 infection. Such validated epitopes and TCRs could become valuable tools for the development of diagnostic tests determining the quality of SARS-CoV-2-specific CD8+ T cell immunity, and thereby investigating correlates of protection, as well as to restore functional immunity through therapeutic transfer of TCR-engineered T cells.


2016 ◽  
Vol 90 (15) ◽  
pp. 6818-6831 ◽  
Author(s):  
Catherine K. Koofhethile ◽  
Zaza M. Ndhlovu ◽  
Christina Thobakgale-Tshabalala ◽  
Julia G. Prado ◽  
Nasreen Ismail ◽  
...  

ABSTRACTThe mechanisms of viral control and loss of viral control in chronically infected individuals with or without protective HLA class I alleles are not fully understood. We therefore characterized longitudinally the immunological and virological features that may explain divergence in disease outcome in 70 HIV-1 C-clade-infected antiretroviral therapy (ART)-naive South African adults, 35 of whom possessed protective HLA class I alleles. We demonstrate that, over 5 years of longitudinal study, 35% of individuals with protective HLA class I alleles lost viral control compared to none of the individuals without protective HLA class I alleles (P= 0.06). Sustained HIV-1 control in patients with protective HLA class I alleles was characteristically related to the breadth of HIV-1 CD8+T cell responses against Gag and enhanced ability of CD8+T cells to suppress viral replicationex vivo. In some cases, loss of virological control was associated with reduction in the total breadth of CD8+T cell responses in the absence of differences in HIV-1-specific CD8+T cell polyfunctionality or proliferation. In contrast, viremic controllers without protective HLA class I alleles possessed reduced breadth of HIV-1-specific CD8+T cell responses characterized by reduced ability to suppress viral replicationex vivo. These data suggest that the control of HIV-1 in individuals with protective HLA class I alleles may be driven by broad CD8+T cell responses with potent viral inhibitory capacity while control among individuals without protective HLA class I alleles may be more durable and mediated by CD8+T cell-independent mechanisms.IMPORTANCEHost mechanisms of natural HIV-1 control are not fully understood. In a longitudinal study of antiretroviral therapy (ART)-naive individuals, we show that those with protective HLA class I alleles subsequently experienced virologic failure compared to those without protective alleles. Among individuals with protective HLA class I alleles, viremic control was associated with broad CD8+T cells that targeted the Gag protein, and CD8+T cells from these individuals exhibited superior virus inhibition capacity. In individuals without protective HLA class I alleles, HIV-1-specific CD8+T cell responses were narrow and poorly inhibited virus replication. These results suggest that broad, highly functional cytotoxic T cells (cytotoxic T lymphocytes [CTLs]) against the HIV-1 Gag protein are associated with control among those with protective HLA class I alleles and that loss of these responses eventually leads to viremia. A subset of individuals appears to have alternative, non-CTL mechanisms of viral control. These controllers may hold the key to an effective HIV vaccine.


Blood ◽  
2010 ◽  
Vol 116 (10) ◽  
pp. 1685-1697 ◽  
Author(s):  
Eynav Klechevsky ◽  
Anne-Laure Flamar ◽  
Yanying Cao ◽  
Jean-Philippe Blanck ◽  
Maochang Liu ◽  
...  

Abstract We evaluated human CD8+ T-cell responses generated by targeting antigens to dendritic cells (DCs) through various lectin receptors. We found the immunoreceptor tyrosine-based inhibitory motif-containing DC immunoreceptor (DCIR) to mediate potent cross-presentation. A single exposure to a low dose of anti-DCIR–antigen conjugate initiated antigen-specific CD8+ T-cell immunity by all human DC subsets including ex vivo–generated DCs, skin-isolated Langerhans cells, and blood myeloid DCs and plasmacytoid DCs. The delivery of influenza matrix protein (FluMP) through DCIR resulted in expansion of FluMP-specific memory CD8+ T cells. Enhanced specific CD8+ T-cell responses were observed when an antigen was delivered to the DCs via DCIR, compared with those induced by a free antigen, or antigen conjugated to a control monoclonal antibody or delivered via DC-SIGN, another lectin receptor. DCIR targeting also induced primary CD8+ T-cell responses against self (MART-1) and viral (HIV gag) antigens. Addition of Toll-like receptor (TLR) 7/8 agonist enhanced DCIR-mediated cross-presentation as well as cross-priming, particularly when combined with a CD40 signal. TLR7/8 activation was associated with increased expansion of the primed CD8+ T cells, high production of interferon-γ and tumor necrosis factor-α, and reduced levels of type 2–associated cytokines. Thus, antigen targeting via the human DCIR receptor allows activation of specific CD8+ T-cell immunity.


2020 ◽  
Author(s):  
Eszter Somogyi ◽  
Zsolt Csiszovszki ◽  
Levente Molnár ◽  
Orsolya Lőrincz ◽  
József Tóth ◽  
...  

AbstractWe developed a global peptide vaccine against SARS-CoV-2 that addresses the dual challenges of heterogeneity in the immune responses of different individuals and potential heterogeneity of the infecting virus. PolyPEPI-SCoV-2 is a polypeptide vaccine containing nine 30-mer peptides derived from all four major structural proteins of the SARS-CoV-2. Vaccine peptides were selected based on their frequency as HLA class I and class II personal epitopes (PEPIs) restricted to multiple autologous HLA alleles of individuals in an in silico cohort of 433 subjects of different ethnicities. PolyPEPI-SCoV-2 vaccine administered with Montanide ISA 51VG adjuvant generated robust, Th1-biased CD8+ and CD4+ T cell responses against all four structural proteins of the virus, as well as binding antibodies upon subcutaneous injection into BALB/c and CD34+ transgenic mice. In addition, PolyPEPI-SCoV-2-specific, polyfunctional CD8+ and CD4+ T cells were detected ex vivo in each of the 17 asymptomatic/mild COVID-19 convalescents’ blood investigated, 1–5 months after symptom onset. The PolyPEPI-SCoV-2-specific T cell repertoire used for recovery from COVID-19 was extremely diverse: donors had an average of seven different peptide-specific T cells, against the SARS-CoV-2 proteins; 87% of donors had multiple targets against at least three SARS-CoV-2 proteins and 53% against all four. In addition, PEPIs determined based on the complete HLA class I genotype of the convalescent donors were validated, with 84% accuracy, to predict PEPI-specific CD8+ T cell responses measured for the individuals. Extrapolation of the above findings to a US bone marrow donor cohort of 16,000 HLA-genotyped individuals with 16 different ethnicities (n=1,000 each ethnic group) suggest that PolyPEPI-SCoV-2 vaccination in a general population will likely elicit broad, multi-antigenic CD8+ and CD4+ T cell responses in 98% of individuals, independent of ethnicity, including Black, Asian, and Minority Ethnic (BAME) cohorts.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 887-887
Author(s):  
Ann Cai ◽  
Derin Keskin ◽  
Anselmo Alonso ◽  
David DeLuca ◽  
Wandi Zhang ◽  
...  

Abstract Abstract 887 Over 20 BCR-ABL mutations have been identified that result in imatinib resistance and relapse of chronic myelogenous leukemia (CML). CML is highly responsive to immunological manipulations and we therefore hypothesized that mutated BCR-ABL-derived peptides could serve as immunogenic tumor-specific targets. Herein, we present a multi-step strategy for identifying tumor-specific T cell epitopes generated from gene mutation. We first investigated whether peptides derived from 24 frequent BCR-ABL mutations could potentially bind 8 common class I MHC molecules by applying the well-validated prediction servers IEDB and NetMHC to tiled 9- and 10-mers around each mutation. More than 60 peptides were predicted to bind to one or more of the following alleles with IC50<1000: A*0201, A*0301, A*1101, B*0702, B*0801, B*1501, A*0101 or A*2402. From NetMHC, 24 of 84 (29%) were predicted as high (IC50<50), 42 (50%) as intermediate (IC50=50-500), and 18 (21%) as weak binders (1000> IC50>500). From IEDB, 9 of 61 (15%) were predicted as high, 35 (57%) as intermediate and 17 (38%) as weak binders. 24 of 84 mutated peptides (29%) and 24 of 61 mutated peptides (39%) were predicted as binding with at least two-fold higher affinity compared to parental peptides, using NetMHC and IEDB, respectively. These predictions indicated that cells from 7 of 9 imatinib-resistant CML patients had the potential to present at least one mutated BCR-ABL derived peptide by binding autologous HLA alleles (with IC50<1000). CML cells from 3 of the 5 patients had an E255K mutation and expressed HLA-A3, and were predicted to generate two promising candidate peptides: E255K-A247-255 (KLGGGQYGK, IEDB IC50=113; NetMHC IC50=192) and E255K-B255-263 (KVYEGVWKK, IEDB IC50=29; NetMHC IC50=28). Both peptides were predicted to bind HLA-A*0301 at least ten-fold more tightly than parental peptides. Using a competitive MHC binding assay, we confirmed that E255K-A and –B were high binders with IC50 scores of 208nM and 17nM, respectively and that they both had at least ten-fold fold greater affinity than parental peptides. In addition, E255K-B also bound to the other HLA-A3 superfamily members HLA-A*1101, HLA-A*3001, HLA-A*3101, HLA-A*6801 (IC50: 39–603nM). We next successfully generated T cell lines against E255K-B but not E255 K-A from a normal HLA-A3+ donor that demonstrated greater specificity against the mutated peptide (2330±325 SFC/million cells, by IFNγ-ELISPOT) than the parental peptide (1270±42 SFC/million cells). E255K-B is endogenously processed and presented since E255K-B reactive T cells also responded to HLA-A3+ antigen-presenting cells (APCs) that were transfected with a minigene encompassing 227 base pairs surrounding the E255K mutation (1900±85 SFC/million cells). Finally, we assessed the potential for E255K-B to stimulate T cell responses in CML patients. E255K-B elicits T cell immunity in vivo in that we could detect antigen-specific CD8+ T cell reactivity from two HLA-A3+ CML patients bearing the E255K mutation by IFNγ-ELISPOT and by antigen-specific tetramer staining. T cell responses could be abrogated in the presence of class I blocking antibody w6/32. For both patients, reactive T cells were polyfunctional, expressing GM-CSF, IP10 and TNFα in response to APCs pulsed with mutated peptide or expressing the E255K minigene. For Patient 2, E255K reactivity developed only in the setting of donor-derived engraftment following curative allogeneic stem cell transplantation. Further analysis to explore the kinetics of mutated peptide-specific immunity in relationship to burden of mutation-expressing leukemia cells is in progress. Our studies have demonstrated that leukemia-driven genetic alterations can provide immunogenic tumor-specific antigen targets associated with clinical response in vivo. Importantly, even though BCR-ABL mutations generate resistance to imatinib, they also create novel epitopes that can be effectively recognized by cytotoxic CD8+ T cells. Our studies support the development of specific, nontoxic and personalized vaccination strategies for eradication of drug-resistant CML. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A574-A574
Author(s):  
Ellen Duong ◽  
Timothy Fessenden ◽  
Arjun Bhutkar ◽  
Stefani Spranger

BackgroundCytotoxic (CD8+) T-cells are required for tumor eradication and durable anti-tumor immunity.1 The induction of tumor-reactive CD8+ T-cells is predominately attributed to a subset of dendritic cells (DC) called Batf3-driven DC1, given their robust ability to cross-present antigens for T-cell priming and their role in effector T-cell recruitment.2–4 Presence of the DC1 signature in tumors correlates with improved survival and response to immunotherapies.5–7 Yet, most tumors with a DC1 infiltrate still progress, suggesting that while DC1 can initiate tumor-reactive CD8+ T-cell responses, they are unable to sustain them. Therefore, there is a critical need to identify and engage additional stimulatory DC subsets to strengthen anti-tumor immunity and boost immunotherapy responses.MethodsTo identify DC subsets that drive poly-functional CD8+ T-cell responses, we compared the DC infiltrate of a spontaneously regressing tumor with a progressing tumor. Multicolor flow immunophenotyping and single-cell RNA-sequencing were used to profile the DC compartment of both tumors. IFNγ-ELISpot was performed on splenocytes to assess for systemic tumor-reactive T-cell responses. Sorted DC subsets from tumors were co-cultured with TCR-transgenic T-cells ex vivo to evaluate their stimulatory capacity. Cross-dressing (in vivo/ex vivo) was assayed by staining for transfer of tumor-derived H-2b MHC complexes to Balb/c DC, which express the H-2d haplotype. Protective systemic immunity was assayed via contralateral flank tumor outgrowth experiments.ResultsRegressor tumors were infiltrated with more cross-presenting DC1 than progressor tumors. However, tumor-reactive CD8+ T-cell responses and tumor control were preserved in Batf3-/- mice lacking DC1, indicating that anti-tumor immune responses could be induced independent of DC1. Through functional assays, we established that anti-tumor immunity against regressor tumors required CD11c+ DC and cGAS/STING-independent type-I-interferon-sensing. Single-cell RNA-sequencing of the immune infiltrate of regressor tumors revealed a novel CD11b+ DC subset expressing an interferon-stimulated gene signature (ISG+ DC). Flow studies demonstrated that ISG+ DC were more enriched in regressor tumors than progressor tumors. We showed that ISG+ DC could activate CD8+ T-cells by cross-dressing with tumor-derived peptide-MHC complexes, thereby bypassing the requirement for cross-presentation to initiate CD8+ T-cell-driven immunity. ISG+ DC highly expressed cytosolic dsRNA sensors (RIG-I/MDA5) and could be therapeutically harnessed by exogenous addition of a dsRNA analog to drive protective CD8+ T-cell responses in DC1-deficient mice.ConclusionsThe DC infiltrate in tumors can dictate the strength of anti-tumor immunity. Harnessing multiple stimulatory DC subsets, such as cross-presenting DC1 and cross-dressing ISG+ DC, provides a therapeutic opportunity to enhance anti-tumor immunity and increase immunotherapy responses.ReferencesFridman WH, et al. The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer 2012;12(4): p. 298–306.Hildner K, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008;322(5904):p. 1097–100.Spranger S, et al. Tumor-Residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 2017;31(5):p. 711–723.e4.Roberts, EW, et al., Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 2016;30(2): p. 324–336.Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014;26(5): p. 638–52.Salmon H., et al., Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity, 2016. 44(4): p. 924–38.Sánchez-Paulete AR, et al., Cancer immunotherapy with immunomodulatory anti-CD137 and Anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov, 2016;6(1):p. 71–9.


2021 ◽  
Author(s):  
Saskia Meyer ◽  
Isaac Blaas ◽  
Ravi Chand Bollineni ◽  
Marina Delic-Sarac ◽  
Trung T Tran ◽  
...  

T-cell epitopes with broad population coverage may form the basis for a new generation of SARS-CoV-2 vaccines. However, published studies on immunoprevalence are limited by small test cohorts, low frequencies of antigen-specific cells and lack of data correlating eluted HLA ligands with T-cell responsiveness. Here, we investigate CD8 T-cell responses to 48 peptides eluted from prevalent HLA alleles, and an additional 84 predicted binders, in a large cohort of convalescents (n=83) and pre-pandemic control samples (n=19). We identify nine conserved SARS-CoV-2 specific epitopes restricted by four of the most prevalent HLA class I alleles in Caucasians, to which responding CD8 T cells are detected in 70-100% of convalescents expressing the relevant HLA allele, including two novel epitopes. We find a strong correlation between immunoprevalence and immunodominance. Using a new algorithm, we predict that a vaccine including these epitopes would induce a T cell response in 83% of Caucasians. Significance Statement: Vaccines that induce broad T-cell responses may boost immunity as protection from current vaccines against SARS-CoV-2 is waning. From a manufacturing standpoint, and to deliver the highest possible dose of the most immunogenic antigens, it is rational to limit the number of epitopes to those inducing the strongest immune responses in the highest proportion of individuals in a population. Our data show that the CD8 T cell response to SARS-CoV-2 is more focused than previously believed. We identify nine conserved SARS-CoV-2 specific CD8 T cell epitopes restricted by four of the most prevalent HLA class I alleles in Caucasians and demonstrate that seven of these are endogenously presented.


Blood ◽  
2012 ◽  
Vol 119 (4) ◽  
pp. 967-977 ◽  
Author(s):  
Agostinho Carvalho ◽  
Antonella De Luca ◽  
Silvia Bozza ◽  
Cristina Cunha ◽  
Carmen D'Angelo ◽  
...  

Abstract Aspergillus fumigatus is a model fungal pathogen and a common cause of severe infections and diseases. CD8+ T cells are present in the human and murine T-cell repertoire to the fungus. However, CD8+ T-cell function in infection and the molecular mechanisms that control their priming and differentiation into effector and memory cells in vivo remain elusive. In the present study, we report that both CD4+ and CD8+ T cells mediate protective memory responses to the fungus contingent on the nature of the fungal vaccine. Mechanistically, class I MHC-restricted, CD8+ memory T cells were activated through TLR3 sensing of fungal RNA by cross-presenting dendritic cells. Genetic deficiency of TLR3 was associated with susceptibility to aspergillosis and concomitant failure to activate memory-protective CD8+ T cells both in mice and in patients receiving stem-cell transplantations. Therefore, TLR3 essentially promotes antifungal memory CD8+ T-cell responses and its deficiency is a novel susceptibility factor for aspergillosis in high-risk patients.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 706
Author(s):  
Chunmei Fu ◽  
Li Zhou ◽  
Qing-Sheng Mi ◽  
Aimin Jiang

As the sentinels of the immune system, dendritic cells (DCs) play a critical role in initiating and regulating antigen-specific immune responses. Cross-priming, a process that DCs activate CD8 T cells by cross-presenting exogenous antigens onto their MHCI (Major Histocompatibility Complex class I), plays a critical role in mediating CD8 T cell immunity as well as tolerance. Current DC vaccines have remained largely unsuccessful despite their ability to potentiate both effector and memory CD8 T cell responses. There are two major hurdles for the success of DC-based vaccines: tumor-mediated immunosuppression and the functional limitation of the commonly used monocyte-derived dendritic cells (MoDCs). Due to their resistance to tumor-mediated suppression as inert vesicles, DC-derived exosomes (DCexos) have garnered much interest as cell-free therapeutic agents. However, current DCexo clinical trials have shown limited clinical benefits and failed to generate antigen-specific T cell responses. Another exciting development is the use of naturally circulating DCs instead of in vitro cultured DCs, as clinical trials with both human blood cDC2s (type 2 conventional DCs) and plasmacytoid DCs (pDCs) have shown promising results. pDC vaccines were particularly encouraging, especially in light of promising data from a recent clinical trial using a human pDC cell line, despite pDCs being considered tolerogenic and playing a suppressive role in tumors. However, how pDCs generate anti-tumor CD8 T cell immunity remains poorly understood, thus hindering their clinical advance. Using a pDC-targeted vaccine model, we have recently reported that while pDC-targeted vaccines led to strong cross-priming and durable CD8 T cell immunity, cross-presenting pDCs required cDCs to achieve cross-priming in vivo by transferring antigens to cDCs. Antigen transfer from pDCs to bystander cDCs was mediated by pDC-derived exosomes (pDCexos), which similarly required cDCs for cross-priming of antigen-specific CD8 T cells. pDCexos thus represent a new addition in our arsenal of DC-based cancer vaccines that would potentially combine the advantage of pDCs and DCexos.


Blood ◽  
2013 ◽  
Vol 122 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Monique L. Ong ◽  
Matthew E. Wikstrom ◽  
Peter Fleming ◽  
Marie J. Estcourt ◽  
Paul J. Hertzog ◽  
...  

Key Points Fully functional CD8 T-cell responses, control of infection, and protection from organ pathology are attained without cross-presentation. Direct presentation generates responses that limit disease and ensure host survival despite the presence of immunomodulatory viral proteins.


Sign in / Sign up

Export Citation Format

Share Document