Cited2 Is Required For The Maintenance Of Glycolytic Metabolism In Adult Hematopoietic Stem Cells

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 794-794
Author(s):  
Jinwei Du ◽  
Qiang Li ◽  
Fangqiang Tang ◽  
Michelle Puchowitz ◽  
Hasashi Fujioka ◽  
...  

Abstract Adult hematopoietic stem cells (HSCs) primarily reside in the hypoxic bone marrow microenvironment, and preferentially utilize anaerobic glycolysis to obtain energy. Cited2 is a cytokine-inducible gene, which plays various roles during mouse development. Our previous studies showed that deletion of Cited2 in adult mouse results in loss of HSC quiescence, increased apoptosis, and impaired HSC reconstitution capacity (Blood 2012, 119:2789-2798). In this study, we conditionally deleted Cited2 in Cited2fl/fl;Mx1-Cre mice and investigated the role of Cited2 in the metabolic regulation of HSCs. First, we examined mitochondrial alterations in Cited2 knockout (KO) long-term (LT-) and short-term (ST-) HSCs defined as “Flt3-CD34- LSK” and “Flt3-CD34+ LSK”, respectively. Staining with MitoTracker Green revealed that deletion of Cited2 resulted in a significant increase in mitochondrial mass in both LT- and ST-HSCs but not in the whole bone marrow cells. To explore the morphological changes of mitochondria in Cited2 KO HSCs, we sorted Flt3-LSK cells (containing LT- and ST- HSCs) and performed electron microscopy ultrastructural analysis. The mitochondria in wild type (WT) HSCs were mostly small, round or oval, and dark (Figure 1). However, Cited2 KO HSCs displayed markedly elongated and brighter mitochondria, similar to those observed in aged WT HSCs (20–24 months old mice) by others. The frequency of Cited2 KO LT-HSCs with high mitochondrial membrane potential was significantly increased (8.5% in WT versus 15.1% in KO). Furthermore, the reactive oxygen species (ROS) levels in Cited2 KO HSCs were significantly higher than those in WT controls. To further understand the metabolic changes in Cited2 KO HSCs, we measured glucose uptake using fluorescent indicator 2-NBDG. Glucose uptake was unchanged in the Cited2 KO LT- and ST- HSCs. Also, intracellular ATP content was maintained at the normal levels in Cited2 KO LT-HSCs, although slightly increased in ST-HSCs compared with WT controls. To assess the utilization of glycolysis in Cited2 KO HSCs, glycolytic flux was determined by glucose-derived 13C-lactate production using Gas Chromatography–Mass Spectrometry (GC-MS). We found that the rate of 13C-lactate production was significantly lower in both LT- and ST-HSCs lacking Cited2 than in WT controls. To further confirm this finding, we treated HSCs with antimycin A (AMA), a specific inhibitor of mitochondrial electron transport chain. We found that Cited2 KO HSCs displayed increased NADH after AMA treatment, compared with the WT control, indicating that mitochondrial respiration was increased in KO HSCs and produced more NADH. At the molecular level, deletion of Cited2 significantly reduced the expression of metabolism related genes in HSCs, such as lactate dehydrogenase (LDH) B and LDHD, pyruvate dehydrogenase kinase (Pdk) 2 and Pdk4, PYGL (phosphorylase, glycogen, liver), and GPX1 (glutathione peroxidase 1). Notably, Pdk2 and Pdk4 were recently shown to be critical controllers of glycolysis and checkpoint for cell cycle in HSCs. Consistent with reduced expression of Pdk, the phosphorylation of PDH-E1α was significantly decreased in Cited2 KO HSCs. Akt, mTOR, and FoxOs are known regulators of mitochondrial functions in HSCs. We found that Akt-mTOR signaling activity was increased in Cited2 KO HSCs, as indicated by increased phosphorylation of Akt and S6 ribosomal protein. However, in vitro treatment of LT-HSCs with mTORC1 inhibitor rapamycin did not resume decreased expression of LDHB, LDHD, Pdk2, and Pdk4, suggesting that elevated mTORC1 activity may not be the major contributor to the downregulation of glycolysis related genes. Meanwhile, we also found that in Cited2 KO LT-HSCs, phosphorylation of FoxO1 and FoxO3 was increased, both of which are known regulators of Pdk4 expression. Interestingly, in vitro treatment of LT-HSCs with PI3/Akt inhibitor LY294002, partially rescued the expression of Pdk4. Together, these findings suggest that the downregulation of Pdk4 in Cited2 KO HSCs is likely mediated by the inactivation of FoxOs caused by the elevated Akt activity. In summary, these results show that loss of Cited2 attenuates HSCs' glycolytic metabolism while simultaneously enhancing their overall mitochondrial oxidative phosphorylation, thus suggesting a critical role of Cited2 in the maintenance of adult HSC glycolytic metabolism likely through regulating LDH, Pdk, and Akt activity. Disclosures: No relevant conflicts of interest to declare.

2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou

Author(s):  
Laura Mosteo ◽  
Joanna Storer ◽  
Kiran Batta ◽  
Emma J. Searle ◽  
Delfim Duarte ◽  
...  

Hematopoietic stem cells interact with bone marrow niches, including highly specialized blood vessels. Recent studies have revealed the phenotypic and functional heterogeneity of bone marrow endothelial cells. This has facilitated the analysis of the vascular microenvironment in steady state and malignant hematopoiesis. In this review, we provide an overview of the bone marrow microenvironment, focusing on refined analyses of the marrow vascular compartment performed in mouse studies. We also discuss the emerging role of the vascular niche in “inflamm-aging” and clonal hematopoiesis, and how the endothelial microenvironment influences, supports and interacts with hematopoietic cells in acute myeloid leukemia and myelodysplastic syndromes, as exemplar states of malignant myelopoiesis. Finally, we provide an overview of strategies for modulating these bidirectional interactions to therapeutic effect in myeloid malignancies.


2016 ◽  
Vol 364 (3) ◽  
pp. 573-584 ◽  
Author(s):  
Patrick Wuchter ◽  
Rainer Saffrich ◽  
Stefan Giselbrecht ◽  
Cordula Nies ◽  
Hanna Lorig ◽  
...  

Blood ◽  
1984 ◽  
Vol 64 (6) ◽  
pp. 1288-1291 ◽  
Author(s):  
L Glasser ◽  
LB Somberg ◽  
WR Vogler

Abstract Autologous bone marrow transplantation is potentially curative in the treatment of acute leukemia if residual leukemic cells in the marrow can be eliminated prior to transplantation. We studied the purging effects of a synthetic alkyl-lysophospholipid (ALP) on marrow containing leukemic cells from a transplantable myelomonocytic leukemia (WEHI-3B) in BALB/c mice. Simulated remission bone marrow containing 2% leukemic cells treated in vitro with 20 and 100 micrograms/mL of ET-18- OCH3 (1-octadecyl-2-methyl-sn-glycerol-3-phosphocholine) significantly prolonged survival of lethally irradiated transplanted recipients. At a dose of 100 micrograms/mL, 88% of the mice survived for the duration of the experiment (approximately five months). Autopsies showed that 25% of these survivors had microscopic evidence of leukemia. Thus, in vitro treatment of marrow eliminated leukemic blasts and spared sufficient normal stem cells to allow hematologic reconstitution. The effect of ET- 18-OCH3 is not entirely selective for leukemic cells. A spleen colony assay showed that ALP has some cytotoxic effect on normal hematopoietic stem cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Huihong Zeng ◽  
Jiaoqi Cheng ◽  
Ying Fan ◽  
Yingying Luan ◽  
Juan Yang ◽  
...  

Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2190-2190 ◽  
Author(s):  
Pieter K. Wierenga ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Gerald de Haan ◽  
Ronald P. van Os

Abstract Adhesion molecules have been implicated in the interactions of hematopoietic stem and progenitor cells with the bone marrow extracellular matrix and stromal cells. In this study we examined the role of very late antigen-5 (VLA-5) in the process of stem cell mobilization and homing after stem cell transplantation. In normal bone marrow (BM) from CBA/H mice 79±3 % of the cells in the lineage negative fraction express VLA-5. After mobilization with cyclophosphamide/G-CSF, the number of VLA-5 expressing cells in mobilized peripheral blood cells (MPB) decreases to 36±4%. The lineage negative fraction of MPB cells migrating in vitro towards SDF-1α (M-MPB) demonstrated a further decrease to 3±1% of VLA-5 expressing cells. These data are suggestive for a downregulation of VLA-5 on hematopoietic cells during mobilization. Next, MPB cells were labelled with PKH67-GL and transplanted in lethally irradiated recipients. Three hours after transplantation an increase in VLA-5 expressing cells was observed which remained stable until 24 hours post-transplant. When MPB cells were used the percentage PKH-67GL+ Lin− VLA-5+ cells increased from 36% to 88±4%. In the case of M-MPB cells the number increased from 3% to 33±5%. Although the increase might implicate an upregulation of VLA-5, we could not exclude selective homing of VLA-5+ cells as a possible explanation. Moreover, we determined the percentage of VLA-5 expressing cells immediately after transplantation in the peripheral blood of the recipients and were not able to observe any increase in VLA-5+ cells in the first three hours post-tranpslant. Finally, we separated the MPB cells in VLA-5+ and VLA-5− cells and plated these cells out in clonogenic assays for progenitor (CFU-GM) and stem cells (CAFC-day35). It could be demonstared that 98.8±0.5% of the progenitor cells and 99.4±0.7% of the stem cells were present in the VLA-5+ fraction. Hence, VLA-5 is not downregulated during the process of mobilization and the observed increase in VLA-5 expressing cells after transplantation is indeed caused by selective homing of VLA-5+ cells. To shed more light on the role of VLA-5 in the process of homing, BM and MPB cells were treated with an antibody to VLA-5. After VLA-5 blocking of MPB cells an inhibition of 59±7% in the homing of progenitor cells in bone marrow could be found, whereas homing of these subsets in the spleen of the recipients was only inhibited by 11±4%. For BM cells an inhibition of 60±12% in the bone marrow was observed. Homing of BM cells in the spleen was not affected at all after VLA-5 blocking. Based on these data we conclude that mobilization of hematopoietic progenitor/stem cells does not coincide with a downregulation of VLA-5. The observed increase in VLA-5 expressing cells after transplantation is caused by preferential homing of VLA-5+ cells. Homing of progenitor/stem cells to the bone marrow after transplantation apparantly requires adhesion interactions that can be inhibited by blocking VLA-5 expression. Homing to the spleen seems to be independent of VLA-5 expression. These data are indicative for different adhesive pathways in the process of homing to bone marrow or spleen.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2563-2563
Author(s):  
Fernando Fierro ◽  
Thomas Illmer ◽  
Duhoui Jing ◽  
Philip Le Coutre ◽  
Gerhard Ehninger ◽  
...  

Abstract Recent data show that the tyrosine kinase inhibitor Imatinib mesylate (IM) also affects normal hematopoietic stem cells (HSC), T lymphocyte activation and dendritic cell function not relying on the specific inhibition of bcr-abl activity. Mesenchymal stem cells (MSC) have been identified in the bone marrow (BM) as multipotent non-hematopoietic progenitor cells that differentiate into osteoblasts, adipocytes, chondrocytes, tenocytes, skeletal myocytes, and cells of visceral mesoderm. MSC interact with HSC, influencing their homing and differentiation through cell-cell contact and the production of factors including chemokines We evaluated possible effects of IM in vitro on human bone marrow-derived MSC. Screening the activity of fourty-two receptor tyrosine kinases by a phospho-receptor tyrosine kinase (RTK)-array revealed an exclusive inhibition of platelet-derived growth factor receptor (PDGFRβ) by IM which consequently affects downstream targets of PDGFRβ as Akt and Erk1/2 signalling pathways in a concentration and time dependent manner. Furthermore, perinuclear multivesicular bodies harbouring PDGFRβ were found within 18–20 hours culture of MSC in the presence of 5 μM IM. Cell proliferation and clonogenicity (evaluated as the capability to form colony forming units - fibroblasts (CFU-F)) of MSC were significantly inhibited by IM in a concentration dependent fashion. IM inhibits significantly the differentiation process of MSC into osteoblasts as evaluated by decreased alkaline phosphatase activity and reduced calcium phosphate precipitates. In contrary, differentiation of MSC into adipocytes was strongly favoured in presence of IM. All these functional deficits described, probably contribute to an observed 50% reduction in the support of clonogenic hematopoietic stem cells, as evaluated by a long term culture-initiating cells (LTC-IC)-based assay. In summary our experiments show that IM inhibits the capacity of human MSC to proliferate and to differentiate into the osteogenic lineage, favouring adipogenesis. This effect is mainly mediated by an inhibition of PDGFRβ autophosphorylation leading to a more pronounced inhibition of PI3K/Akt compared to Erk1/2 signalling. This work confirms the role of PDGFRβ recently described for the proliferation and differentiation potential of MSC and provides a first possible explanation for the altered bone metabolism found in certain patients treated with IM.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 405-405
Author(s):  
Kenichi Miharada ◽  
Göran Karlsson ◽  
Jonas Larsson ◽  
Emma Larsson ◽  
Kavitha Siva ◽  
...  

Abstract Abstract 405 Cripto is a member of the EGF-CFC soluble protein family and has been identified as an important factor for the proliferation/self-renewal of ES and several types of tumor cells. The role for Cripto in the regulation of hematopoietic cells has been unknown. Here we show that Cripto is a potential new candidate factor to increase self-renewal and expand hematopoietic stem cells (HSCs) in vitro. The expression level of Cripto was analyzed by qRT-PCR in several purified murine hematopoietic cell populations. The findings demonstrated that purified CD34-KSL cells, known as highly concentrated HSC population, had higher expression levels than other hematopoietic progenitor populations including CD34+KSL cells. We asked how Cripto regulates HSCs by using recombinant mouse Cripto (rmCripto) for in vitro and in vivo experiments. First we tested the effects of rmCripto on purified hematopoietic stem cells (CD34-LSK) in vitro. After two weeks culture in serum free media supplemented with 100ng/ml of SCF, TPO and 500ng/ml of rmCripto, 30 of CD34-KSL cells formed over 1,300 of colonies, including over 60 of GEMM colonies, while control cultures without rmCripto generated few colonies and no GEMM colonies (p<0.001). Next, 20 of CD34-KSL cells were cultured with or without rmCripto for 2 weeks and transplanted to lethally irradiated mice in a competitive setting. Cripto treated donor cells showed a low level of reconstitution (4–12%) in the peripheral blood, while cells cultured without rmCripto failed to reconstitute. To define the target population and the mechanism of Cripto action, we analyzed two cell surface proteins, GRP78 and Glypican-1, as potential receptor candidates for Cripto regulation of HSC. Surprisingly, CD34-KSL cells were divided into two distinct populations where HSC expressing GRP78 exhibited robust expansion of CFU-GEMM progenitor mediated by rmCripto in CFU-assay whereas GRP78- HSC did not respond (1/3 of CD34-KSL cells were GRP78+). Furthermore, a neutralization antibody for GRP78 completely inhibited the effect of Cripto in both CFU-assay and transplantation assay. In contrast, all lineage negative cells were Glypican-1 positive. These results suggest that GRP78 must be the functional receptor for Cripto on HSC. We therefore sorted these two GRP78+CD34-KSL (GRP78+HSC) and GRP78-CD34-KSL (GRP78-HSC) populations and transplanted to lethally irradiated mice using freshly isolated cells and cells cultured with or without rmCripto for 2 weeks. Interestingly, fresh GRP78-HSCs showed higher reconstitution than GRP78+HSCs (58–82% and 8–40%, p=0.0038) and the reconstitution level in peripheral blood increased rapidly. In contrast, GRP78+HSC reconstituted the peripheral blood slowly, still at a lower level than GRP78-HSC 4 months after transplantation. However, rmCripto selectively expanded (or maintained) GRP78+HSCs but not GRP78-HSCs after culture and generated a similar level of reconstitution as freshly transplanted cells (12–35%). Finally, bone marrow cells of engrafted recipient mice were analyzed at 5 months after transplantation. Surprisingly, GRP78+HSC cultured with rmCripto showed higher reconstitution of the CD34-KSL population in the recipients' bone marrow (45–54%, p=0.0026), while the reconstitution in peripheral blood and in total bone marrow was almost the same. Additionally, most reconstituted CD34-KSL population was GRP78+. Interestingly freshly transplanted sorted GRP78+HSC and GRP78-HSC can produce the GRP78− and GRP78+ populations in the bone marrow and the ratio of GRP78+/− cells that were regenerated have the same proportion as the original donor mice. Compared to cultured cells, the level of reconstitution (peripheral blood, total bone marrow, HSC) in the recipient mice was almost similar. These results indicate that the GRP78 expression on HSC is reversible, but it seems to be “fixed” into an immature stage and differentiate with lower efficiency toward mature cells after long/strong exposure to Cripto signaling. Based on these findings, we propose that Cripto is a novel factor that maintains HSC in an immature state and may be a potent candidate for expansion of a distinct population of GRP78 expressing HSC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 789-789 ◽  
Author(s):  
Christopher Y. Park ◽  
Wendy W Pang ◽  
Elizabeth Price ◽  
John A. Pluvinage ◽  
Stanley L. Schrier ◽  
...  

Abstract Abstract 789 Myelodysplastic syndrome (MDS) is a disorder of ineffective hematopoiesis presumed to originate from self-renewing clonal hematopoietic stem cells (HSC). Previous work has shown that immunophenotypic HSC from MDS patients harbor characteristic clonal cytogenetic abnormalities such as del(5q) at high levels, strongly suggesting that the HSC is the MDS-initiating cell (Tehranchi R., et al., NEJM, 363:11;1025-37, 2010); however, these studies did not examine other cytogenetic subtypes of MDS, nor did they functionally evaluate the HSC from these patients for their ability to initiate disease. We began a molecular and functional evaluation of FACS-purified HSC (Lin-CD34+CD38−CD90+CD45RA-) from MDS patients. These studies showed that the frequency of HSC in MDS bone marrow is not expanded when compared to normal, age-matched control samples. Annexin V staining also demonstrated no difference in apoptosis levels in MDS HSC compared to normal HSC; however, MDS committed myeloid progenitors (Lin-CD34+CD38+) exhibited increased apoptosis compared with normal progenitors (18% vs 39%, respectively, p <0.05). Transciptome analysis of FACS-purified MDS HSC from 10 low-risk MDS patients compared with HSC from an equal number of normal adults showed dysregulation of 3,258 mRNAs (FDR <0.1) including increased expression of genes positively associated with cell growth and proliferation (p < 0.001) and increased expression of inflammatory response genes (p < 0.015). In addition, there was widespread downregulation of numerous ribosomal protein transcripts in non-5q MDS including RPS6 and RPS19, but not RPS14 (p < 0.05). When FACS-purified HSC from a group of low-risk MDS patients were evaluated for the presence of known FISH abnormalities, the vast majority of HSC in MDS patients with defined cytogenetic abnormalities harbored clonal abnormalities (n=5, range 84–92% of total HSC) but they were not completely replaced, suggesting that non-MDS clones co-exist with MDS clones in MDS patient bone marrows. Finally, we show that FACS-purified MDS HSC can engraft irradiated, immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) pup recipients transplanted with as few as 1000 purified HSC. Long-term engraftment (assessed >12 weeks) was achieved with 50% of MDS samples tested (4/8), and resulted predominantly in myeloid engraftment with 0.8–5% total hCD45+ chimerism in the bone marrow. For each MDS HSC engrafted mouse, engraftment of the MDS clone was verified by FISH by detecting previously characterized cytogenetic abnormalities in FACS-sorted hCD45+ cells. The frequency of FISH positive cells was similar to that seen in the primary samples, suggesting no competitive disadvantage of MDS HSC in the xenotransplantation assay. Interestingly, methylcellulose colony and clonal liquid culture assays initiated from FACS-purified MDS HSC consistently grew poorly, suggesting that in vitro assays of hematopoietic potential may not accurately reflect MDS HSC biology. Together, these studies indicate that while MDS HSC are molecularly and functionally different from normal HSC, they are capable of engrafting immunodeficient NSG pups. Moreover, these data formally demonstrate that the HSC is the disease-initiating cell in MDS. This finding has significant implications for MDS research, as it provides a potential in vivo preclinical model for testing MDS therapeutics – an experimental model previously not available to investigators. Disclosures: Schrier: Locus: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document