A New Prognostic Model for Response in Myelofibrosis Patients Treated with JAK2 Inhibitors: A Study from Three US Academic Centers

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1842-1842 ◽  
Author(s):  
Menghrajani Kamal ◽  
Philip S. Boonstra ◽  
Alissa A. Weber ◽  
Cecelia Perkins ◽  
Krisstina L. Gowin ◽  
...  

Abstract Background: JAK2 inhibitors have been shown to improve symptoms and produce durable reductions in splenomegaly in patients with myelofibrosis (MF), and ruxolitinib has been shown to improve survival in MF patients (Cervantes et al., 2013; Verstovsek et al., 2013). Current prognostic models such as DIPSS plus (Gangat et al., 2011) predict survival in MF based on clinical, laboratory, and cytogenetic information, but their value in predicting clinical response or survival during treatment with JAK2 inhibitors remains unknown. We hypothesized that clinical features such as bone marrow fibrosis and splenomegaly may have independent effects on therapy response. Therefore, we conducted a retrospective analysis to create a new model to risk stratify patients with respect to their likelihood of responding to oral JAK2-inhibitor therapy. Methods: We studied a cohort of 203 patients with bone marrow biopsy-proven MF seen at University of Michigan, Stanford University, and Mayo Clinic in Scottsdale, AZ. These patients were all treated with ruxolitinib or an experimental JAK2 inhibitor. Our primary endpoint was defined as IWG-MRT criteria for splenic response by palpation (Tefferi et al., 2013). Response in patients with spleen size of less than 5 cm was defined as complete resolution of splenomegaly. Of the 203 patients studied, splenic response was evaluated after 3 months of therapy in 167 patients and after 6 months of therapy in 138 patients; 127 patients were in both groups. A logistic regression was performed to identify factors that would predict clinical response. Results: The following characteristics were significantly associated with spleen response at 3 and 6 months: initial spleen size, European consensus criteria grading of MF on bone marrow biopsy, initial DIPSS plus score, and initial WBC count. Cellularity on marrow biopsy was not significant. We enriched a baseline logistic model of initial dose of oral JAK2 therapy and DIPSS plus score with additional prognostic factors. We found the following clinical characteristics to be jointly associated with splenic response: normalized initial dose of oral JAK2 inhibitor, initial spleen size, DIPSS plus score, degree of fibrosis by European consensus criteria. Duration of disease from time of diagnosis to time of treatment initiation was not prognostic for splenic response. We used this model to calculate the probability of splenic response based on a risk score: Risk score = –1.18(Dose) + 0.09(Initial Spleen Size in cm) + 0.20(DIPSS-plus Points) +0.92 (if fibrosis is MF-3). The probability at 6 months can then be calculated from the risk score as follows: [1/(1+e(risk score-2.6))]. The figure demonstrates the prognostic gain of our model over a model based on DIPSS plus alone. Conclusion: With this observational study, we propose a predictive model which may serve as a clinical tool to identify which patients are most likely to benefit from JAK2 inhibitor-based therapies. Further validation in independent data sets will be required before this model can be more widely applied. Disclosures Mesa: Incyte Corporation, CTI, NPS Pharma, Inc., Gilead Science Inc., Celgene: Research Funding. Gotlib:Incyte: Consultancy, Honoraria, Research Funding, Travel Reimbursement Other; Gilead: Research Funding; Sanofi: Research Funding; Novartis: Research Funding, Travel Reimbursement, Travel Reimbursement Other. Talpaz:ARIAD Pharmaceuticals, Inc., BMS, Sanofi, Incyte, Pfizer: Research Funding.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 15-16
Author(s):  
Naveen Pemmaraju ◽  
Boyd Mudenda ◽  
Cunlin Wang ◽  
Jiao JI ◽  
Ming Lu ◽  
...  

Background: Pelcitoclax (APG-1252), a novel dual inhibitor of Bcl-2/Bcl-xL, is active as monotherapy in patients with advanced solid tumors and well tolerated up to 240 mg twice weekly (NCT03387332). Preclinical data suggest that cells with Janus-associated kinase-2 (JAK2) mutations, including those associated with bone marrow fibrosis, are dependent on Bcl-2/Bcl-xL for survival and that addition of BH3 mimetics targeting Bcl-2/Bcl-xL induces apoptosis. Furthermore, in JAK2‒mutated cell models, apoptotic synergy is demonstrated when a JAK2 inhibitor and Bcl-2/Bcl-xL inhibitor are combined, as inhibition of Bcl-xL overcomes resistance to JAK2 inhibitors. Taken together, APG-1252 could overcome resistance to JAK2 inhibitors, and the combination could augment clinical benefit in patients with suboptimal responses to JAK2 inhibitor‒based therapy. Study Objectives: The primary objective of this open-label trial is to evaluate the safety and efficacy of APG-1252, as monotherapy and when combined with ruxolitinib, in adults with histologically or cytologically confirmed MF who require therapy and are ineligible for JAK2 inhibitors (and can receive single-agent APG-1252) or have had inadequate responses to ruxolitinib-based therapy (and can receive this treatment plus APG-1252). Secondary objectives include APG-1252 pharmacokinetics, time to response, and duration of response. Exploratory objectives include changes in cytogenetics and molecular mutations, bone marrow fibrosis, and cytokines on treatment. Study Design: The study is divided into Part 1 (APG-1252 monotherapy) and Part 2 (APG-1252 plus ruxolitinib). For Part 1, the key inclusion criterion is ineligibility for JAK2 inhibitors and for Part 2, inadequate responses to prior ruxolitinib-based therapy. A standard 3+3 dose-escalation design is being implemented to determine the maximum tolerated dose (MTD) of APG-1252 monotherapy in Part 1 and APG-1252 combined with ruxolitinib in Part 2. APG-1252 will initially be administered at 160 mg intravenously by 30-minute injection once weekly in a 28-day cycle. The dose can be escalated to a maximum of 240 mg or reduced to a minimum of 80 mg, depending on tolerability. Part 2 will begin once the MTD and recommended phase 2 dose (RP2D) of APG-1252 monotherapy have been determined. In Part 2, ruxolitinib will be administered orally twice daily per the package insert. After the MTD for APG-1252 monotherapy has been determined, no additional patients will be enrolled in Part 1; however, up to 15 to 30 additional patients can be enrolled in Part 2, to further evaluate the safety and anticancer activity of the combination at MTD or RP2D. Patients will continue treatment until disease progression or unacceptable toxicity. Clinical responses are being assessed every 12 weeks according to criteria from the International Working Group‒Myeloproliferative Neoplasms Research and Treatment and European LeukemiaNet panels, while optimal clinical benefit will be evaluated at 24 weeks. Enrollment will be from September 2020 and preliminary results estimated in October 2022. For further information, contact: [email protected]. Registration: ClinicalTrials.gov Identifier NCT04354727. Disclosures Pemmaraju: Pacylex Pharmaceuticals: Consultancy; Roche Diagnostics: Honoraria; LFB Biotechnologies: Honoraria; Stemline Therapeutics: Honoraria, Research Funding; Celgene: Honoraria; AbbVie: Honoraria, Research Funding; MustangBio: Honoraria; Affymetrix: Other: Grant Support, Research Funding; Cellectis: Research Funding; Daiichi Sankyo: Research Funding; Plexxikon: Research Funding; Samus Therapeutics: Research Funding; DAVA Oncology: Honoraria; Blueprint Medicines: Honoraria; Novartis: Honoraria, Research Funding; Incyte Corporation: Honoraria; SagerStrong Foundation: Other: Grant Support. Mudenda:Ascentage Pharma Group Inc.: Current Employment, Current equity holder in publicly-traded company. Wang:Ascentage Pharma Group Inc.: Current Employment, Current equity holder in publicly-traded company. JI:Ascentage Pharma (Suzhou) Co., Ltd.: Current Employment, Current equity holder in publicly-traded company. Lu:Ascentage Pharma Group: Current Employment, Current equity holder in publicly-traded company. Fu:Ascentage Pharma Group Inc.: Current Employment, Current equity holder in publicly-traded company. Liang:Ascentage Pharma Group Inc.: Current Employment, Current equity holder in publicly-traded company. McClain:Ascentage Pharma Group Inc.: Current Employment, Current equity holder in publicly-traded company. Sheladia:Ascentage Pharma Group Inc.: Current Employment, Current equity holder in publicly-traded company. Verstovsek:Novartis: Consultancy, Research Funding; Sierra Oncology: Consultancy, Research Funding; Blueprint Medicines Corp: Research Funding; PharmaEssentia: Research Funding; ItalPharma: Research Funding; AstraZeneca: Research Funding; Protagonist Therapeutics: Research Funding; Promedior: Research Funding; Celgene: Consultancy, Research Funding; NS Pharma: Research Funding; Genentech: Research Funding; CTI Biopharma Corp: Research Funding; Incyte Corporation: Consultancy, Research Funding; Roche: Research Funding; Gilead: Research Funding. Yang:Ascentage Pharma (SuZhou) Co., Ltd: Current Employment, Current equity holder in publicly-traded company, Other: Leadership and other ownership interests. Zhai:Ascentage Pharma (SuZhou) Co., Ltd: Current Employment, Current equity holder in publicly-traded company, Other: Leadership and other ownership interests.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5059-5059
Author(s):  
Ana Esther Kerguelen Fuentes ◽  
Dolores Hernández-Maraver ◽  
Miguel Angel ◽  
Canales Albendea ◽  
Ana Rodriguez de la Rua

Abstract Abstract 5059 JAK2 inhibitors are known to improve symptoms, to control myeloproliferation and to reduce splenomegaly in patients diagnosed with chronic myeloproliferative neoplasms (MPNs)Ph(-). However their ability to decrease the allele burden and achieve molecular responses is controversial. Objective: To evaluate hematologic, clinical and molecular responses according to the criteria of the European LeukemiaNet and European Myelofibrosis Network in 13 patients treated with JAK2 inhibitors. Material and Methods: We performed a prospective study in the Haematology Service of the Hospital La Pazbetween 1987 and 2012 in 13 patients diagnosed with NMP Ph (-) and treated with of JAK2 inhibitors: 5 secondary mylofibrosis (SFM)to homozygous polycythemia vera JAK (+), 4 SFM to essential thrombocythemias JAK (-), 2 primary myelofibrosis (one JAK (-) and one heterozygous JAK (+)) and 2 homozygous PV JAK (+) resistant to hydrea. The RT-PCR was performed at 6 or 12 months after the first determination of the allelic burden. Median follow-up was 3 months (1 – 15). A) Hematologic Response (HR): 3/5 SFM to PV(1)/TE JAK(-)(2) reached HR at 3 months of initiation of JAK2 inhibitor to 20mg/day. Molecular and clinical response were not evaluated. B) Clinical Response: Three patients had a reduction in the spleen size. Only one patient in the SFM group had a reduction in the spleen size (18 cm before the drug was commenced to 13. 7 cm) and the allele burden decrease from 55% to 23% after 5 months of therapy with JAK2 inhibitor at 25mg/12h (increase of 5mg/12h after 15 days of initiation of medication). 2/3 MFS to TE JAK(-) had a reduction from 15, 3 cm before the drug was commenced to 9 cm after 3 months of therapy with JAK2 inhibitor at 20 mg/12h. 3/3 MFP JAK(-) had a 6cm reduction in spleen size. Twenty cm splenomegaly was documented before starting JAK2 inhibitor to 15 mg/day. C) Molecular Response: 2/5 SFM to PV decreased the previous allele burden value. One patient decreased by 25% the previous allele burden value (99. 28%) at 6 months of JAK2 inhibitor. Second patient decreased by 13% the previous allele burden value (55%) at 6 months of starting JAK2 inhibitor to 25 mg/day. In 1/2 PV, the previous allele burden value (93. 17%) decreased by 11. 4% at 6 months of starting JAK2 inhibitor at 100mg/24h. D) Lack of response and disease progression: One patient with SMF secondary to JAK 2 (-) ET had dose reductions from 20 mg twice a day secondary to grade IV thrombocytopenia and renal toxicity. Patient finally developed acute leukemia. Conclusions: Our study confirms that JAK2 inhibitors reduce splenomegaly in MPNs JAK(-)and JAK(+). Prospective studies with an adequate sample size are necessary to demonstrate whether splenomegaly and symptom reductions achieved with inhibition of JAK2 could be associated to decrease the allele burden and achieve molecular responses in MPNs JAK(+). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2781-2781
Author(s):  
Wolf-Karsten Hofmann ◽  
Florian Nolte ◽  
Ouidad Benlasfer ◽  
Eckhard Thiel ◽  
Gerhard Ehninger ◽  
...  

Abstract Abstract 2781 Poster Board II-757 Lenalidomide belongs to a proprietary class of immunmodulatory drugs showing therapeutic activity in patients with myelodysplastic syndrome (MDS), in particular in those having the 5q-abnormality, but also in patients not showing this cytogenetical aberration. In 2008, Ebert et al. (PLos Med. 2, e35) could demonstrate that there is a specific gene expression profile in bone marrow cells collected from MDS-patients either with 5q- syndrome as well as MDS-patients having no 5q-abnormality which is strongly correlated with the clinical response to treatment with lenalidomide. Whereas this finding is not of clinical importance in patients with MDS del 5q (overall response 75 %) it may play a pivotal role for prediction of clinical response to lenalidomide in non-del 5q MDS-patients. Therefore, we have studied gene expression profile (HG-U133plus2.0, Affymetrix, Santa Clara, CA) of routinely isolated low-density mononuclear bone marrow cells from 8 patients with IPSS low/int-1 risk MDS having no deletion on chromosome 5 but were subsequently treated with lenalidomide 5 mg/day. All of the patients were transfusion dependent for red blood cells. The median duration of treatment with lenalidomide was 22 weeks. RNA was extracted by Trizol and quality controlled by using a Bioanalyzer 2100 system (Agilent, Waldborn, Germany) to exclude RNA degradation. Microarray hybridization was performed according to the standard Affymetrix protocol. Data were analyzed by Microarray Analysis Suites 5.0 (MAS 5.0; Affymetrix) and GeneSpring (Agilent Technologies, Santa Clara, CA). For clustering analysis we utilized the gene list of 68 discriminating genes as published by Ebert et al. the molecular analysis did clearly separate two groups of patients having specific gene expression profiles according to the responder/non-responder group as published previously. Furthermore, single sample prediction could discriminate three out of 8 patients to be possible responders to lenalidomide but this was not correlated to the clinical course of those patients while on treatment with lenalidomide. However, none of the MDS-patients receiving lenalidomide did show significant clinical response as defined by reduction of transfusion requirement by 50 % or transfusion independence. In conclusion, prediction of response to lenalidomide in non-del 5q patients by gene expression profiling so far remains critical. Prospective analysis of molecular changes including DNA analysis in larger clinical trials using lenalidomide in non-del 5q MDS-patients are required to establish reliable predictive markers in MDS. Disclosures: Hofmann: Celgene: Research Funding. Platzbecker:Celgene: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4544-4544
Author(s):  
Ronan T. Swords ◽  
Kevin R. Kelly ◽  
Devalingam Mahalingam ◽  
Stephen C. Cohen ◽  
Larry J. Miller ◽  
...  

Abstract Abstract 4544 Background The importance of bone marrow aspiration and biopsy in the evaluation of hematopoietic and non-hematopoietic disorders is well established. Recently, a new FDA-cleared battery powered bone marrow biopsy system was developed to allow operators access to the bone marrow space quickly and efficiently. Aims The first aim of this study was to evaluate the quality of core specimens using the new powered device compared to specimens obtained using the traditional manual technique in a swine model. The second aim was to evaluate the safety and efficacy of the device in patients presenting for outpatient hematology clinic visits. Materials and Methods For the pre-clinical evaluation of the device, three anesthetized pigs were used for the study. The powered device (OnControl, Vidacare Corporation, San Antonio, TX, USA) was comprised of a battery powered driver and needle set. The manual device used was a T-Handle Jamshidi bone marrow biopsy needle (Cardinal Health, Dublin, OH, USA). Core biopsy samples obtained were assessed for length and sample quality and then submitted for analysis to a pathologist blinded to the device used. The clinical evaluation of the device was conducted in accordance with practice guidelines and directions for use. Data collection included insertion success, time from insertion to removal, specimen quality, operator satisfaction with control/function of the device and overall operator satisfaction based on a scoring system (0-5; 0=totally unacceptable, 5=outstanding). Results Twenty six samples were collected from the swine model (19 samples using the powered device and 9 using the manual technique). No cellular artifact or thermal damage was reported in any of the samples obtained. The mean lengths for samples obtained using the powered and manual techniques were respectively 19.4mm±1.6mm and 18.6mm±5.3mm. For the clinical evaluation of the device, 16 patients were recruited from 2 centers. Mean insertion time was 11.25±3.39 seconds and mean time from needle contact with skin to needle removal was 38.5±13.94 seconds. No complications were reported. Five operators rated the overall use of the device as outstanding in 75% of cases. Conclusions In this study, the manual and powered samples were equivalent in specimen quality. The powered device however, captured longer biopsies when compared to the manual technique. In the patients evaluated, the device was easy to use as well as being safe and effective. The mean procedural time was significantly faster than previously reported with a manual technique. A randomized study of the powered device compared to the manual technique is underway. Disclosures: Swords: Vidacare Corporation: Research Funding. Kelly:Vidacare Corporation: Research Funding. Mahalingam:Vidacare Corporation: Research Funding. Cohen:Vidacare Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding. Miller:Vidacare Corporation: Employment, Equity Ownership. Philbeck:Vidacare Corporation: Employment, Equity Ownership. Brenner:Vidacare Corporation: Consultancy, Research Funding. Giles:Vidacare Corporation: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3876-3876 ◽  
Author(s):  
Andrzej J Jakubowiak ◽  
William Bensinger ◽  
David Siegel ◽  
Todd M. Zimmerman ◽  
Jan M. Van Tornout ◽  
...  

Abstract Abstract 3876 Poster Board III-812 Background Elotuzumab is a humanized monoclonal IgG1 antibody directed against CS1, a cell surface glycoprotein, which is highly and uniformly expressed in multiple myeloma (MM). In mouse xenograft models of MM, elotuzumab demonstrated significantly enhanced anti-tumor activity when combined with bortezomib compared to bortezomib alone (Van Rhee et al., Mol. Cancer Ther., in press, 2009). This phase 1/2 trial will determine the maximum tolerated dose (MTD), overall safety, pharmacokinetics (PK) and clinical response of elotuzumab in combination with bortezomib in patients with relapsed MM following 1-3 prior therapies. Methods The study consists of 4 escalating cohorts of elotuzumab (2.5 mg/kg to 20 mg/kg) administered on Days 1 and 11 and bortezomib (1.3 mg/m2) administered on Days 1, 4, 8 and 11 of a 21-day cycle. Patients with progressive disease at the end of Cycle 2 or 3 also receive oral dexamethasone (20 mg) on Days 1, 2, 4, 5, 8, 9, 11 and 12 of each subsequent cycle. Patients with stable disease or better at the end of 4 cycles will continue treatment for 6 or more cycles unless withdrawn earlier due to unexpected toxicity or disease progression. Key entry criteria: age ≥ 18 years; confirmed diagnosis of MM and documentation of 1 to 3 prior therapies; measurable disease M-protein component in serum and/or in urine; and no prior bortezomib treatment within 2 weeks of first dose. Results To date, a total of 16 MM patients with a median age of 64 years have been enrolled in the study. The median time from initial diagnosis of MM was 3.5 years and patients had received a median of 2 prior MM treatments. Patients have been treated in four cohorts; 3 each in 2.5, 5 and 10 mg/kg elotuzumab cohorts, and 7 in the 20 mg/kg elotuzumab cohort. No dose limiting toxicity (DLT) was observed during the first cycle of the study and the MTD was not established. Five SAEs have been reported in four patients in later treatment cycles; two events, chest pain and gastroenteritis, occurring in one patient, were considered elotuzumab-related. Other SAEs include grade 3 sepsis, vomiting, pneumonia and grade 2 dehydration. The most common AEs reported include Grade 1-3 diarrhea, constipation, nausea, fatigue, thrombocytopenia, neutropenia, anemia and peripheral neuropathy. The best clinical response (EBMT criteria) for the 16 patients who have received at least two cycles of treatment is shown in the table below. Preliminary PK analysis suggests a serum half-life of 10-11 days at higher doses (10 and 20 mg/kg). Preliminary analysis of peripheral blood mononuclear cells and bone marrow of patients on study indicates that objective responses in the study correlate well with complete saturation of CS1 sites by elotuzumab on bone marrow plasma and NK cells. Conclusions The combination of elotuzumab with bortezomib has a manageable adverse event profile and shows promising preliminary efficacy with ≥PR in 44% and ≥MR in 75% of all enrolled patients. Accrual is ongoing in the expanded 20 mg/kg cohort. Updated safety, efficacy, and PK data will be presented at the meeting. Disclosures: Jakubowiak: Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Centocor Ortho Biotech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Exelixis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Off Label Use: Bortezomib in combination with elotuzumab for the treatment of relapsed/refractory multiple myeloma. Bensinger:Millennium: Membership on an entity's Board of Directors or advisory committees. Siegel:Millennium: Speakers Bureau; Celgene: Speakers Bureau. Zimmerman:Millennium: Speakers Bureau; Centecor: Speakers Bureau. Van Tornout:BMS: Employment. Zhao:Facet Biotech: Employment. Singhal:Facet Biotech: Employment. Anderson:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1529-1529 ◽  
Author(s):  
Ronan Swords ◽  
Javier Anguita ◽  
Russell A. Higgins ◽  
Andrea Yunes ◽  
Michael Naski ◽  
...  

Abstract Abstract 1529 Introduction: The importance of bone marrow aspiration and biopsy in the evaluation of hematopoietic and non-hematopoietic disorders is well established. However, this technique is associated with morbidity and mortality risks.1 Recently, a battery-powered bone marrow biopsy system was developed to allow operators to safely, quickly and efficiently access the marrow space. We previously evaluated this device in swine models and in patients needing routine hematology outpatient evaluation.2 In the current study we compared the powered device to the traditional manual technique by relatively assessing pain scores, procedure times, biopsy capture rates, quality of material retrieved, safety and operator satisfaction. Methods: Two large academic medical centers participated in this trial (San Antonio, TX and Madrid, Spain). The study protocol was approved by each center's institutional review board. Adult patients requiring bone marrow biopsies were considered for the study. Following informed consent, patients were randomized to have procedures using a manual biopsy device (T-handle Jamshidi bone marrow biopsy and aspiration set, Cardinal Health, Dublin, OH) or the Powered device (OnControl 11 gauge/102mm Bone Marrow Biopsy System, Vidacare Corporation, Shavano Park, TX). After infiltration of the skin and medullary bone with local anesthesia, a visual analog scale (VAS) pain score was recorded immediately following skin puncture and once again at the end of the procedure for each patient. Procedure time was measured from skin puncture to core specimen ejection from the needle. Pathologic assessment of 30 randomized samples was carried out. Operator satisfaction with devices was measured on a scale of 0–10, with 10 as the highest rating. Statistics were calculated using t-test and chi-square, with an alpha-level of 0.05. Results: Five operators from 2 sites enrolled 50 patients (Powered, n=25; Manual, n=25). Of those patients, 58% were male and 42% were female; and had a mean age of 56.0±18.0 years. The mean height was 167.5 ± 10.5cm and the mean weight was 78.7 ± 22.7kg. Forty percent were lymphoma patients—the largest diagnostic group. Between patient groups, there were no significant differences in the means for these variables. See Table below for quantitative results, including pathology analysis. For the pathology qualitative analysis, there was no difference between groups for hemorrhage, clot/particle spicules, or smear spicules. Conclusions: Results of this trial suggest that the use of a Powered bone marrow biopsy device significantly reduces needle insertion pain. While not reflected in the results, overall pain may be better tolerated due to the important difference in procedure time. Moreover, the superior size and overall quality of core specimens retrieved by the Powered device provides more material for pathologic evaluation, thereby increasing diagnostic yield and reducing the need for repeat procedures. Cohesiveness of the medullary bone sampled was comparable for both techniques; however, the Powered system was less likely to recover non-hematopoietic tissue (e.g. cortical bone and soft tissue). Artifact was slightly more common with the Powered device (aspiration, hemorrhage and crush) but this did not impact on the diagnostic quality of the sample. No differences in safety data were noted for either technique and operator satisfaction favored the Powered device. 1. Bain BJ. Bone marrow biopsy morbidity and mortality. British Journal of Haematology 2003;121:949-51. 2. Swords RT, Kelly KR, Cohen SC et al. Rotary powered device for bone marrow aspiration and biopsy yields excellent specimens quickly and efficiently. J Clin Pathol 2010;63:562-5. Disclosures: Swords: Vidacare Corporation: Research Funding. Anguita:Vidacare Corporation: Research Funding. Kelly:Vidacare Corporation: Research Funding. Philbeck:Vidacare Corporation: Employment. Miller:Vidacare Corporation: Employment, Equity Ownership. Brenner:Vidacare Corporation: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 180-180
Author(s):  
Meng Ling Choong ◽  
Christian Pecquet ◽  
Shi Jing Tai ◽  
Jacklyn WY Yong ◽  
Vishal Pendharkar ◽  
...  

Abstract Abstract 180 Background and Aims. The main pathogenic molecular events associated with myeloproliferative neoplasms (Polycythemia Vera, Essential Thrombocytosis, and Primary Myelofibrosis) are mutations in Janus kinase 2 (JAK2) or in the thrombopoietin receptor that arise in the hematopoietic stem/progenitor cells. Both type of mutations lead to constitutive activation of the JAK2 signaling pathways. The approved JAK2 inhibitor (Ruxolitinib) is not expected to be selective for the mutant JAK2/receptor signaling or to completely suppress the multiple signaling pathways activated by the aberrant JAK2 signaling. We postulate that myeloproliferative neoplasms can be treated more effectively if we target the constitutive JAK2 signaling by a JAK2 inhibitor together with another kinase inhibitor targeting a specific pathway that is co-activated by the aberrant JAK2 signaling. This should increase targeting specificity, reduce JAK2 inhibitor dosages, and minimize potential side effects of these drugs. To this end, we constructed cell line models of myeloproliferative neoplasms and tested the models using a JAK2 inhibitor in combination with a panel of kinase inhibitors to identify combination pairs that give the best synergism. The synergistic pair was further confirmed in mouse models of myeloproliferative neoplasms. Methods. Mouse Ba/F3 cells were engineered to express either JAK2 WT, or JAK2 V617F, or TpoR W515L, or TpoR JAK2 WT, or TpoR JAK2 V617F, or Bcr-Abl. The effect of two JAK2 inhibitors (Ruxolitinib and TG101348) in combination with a panel of 15 various kinase inhibitors (one JNK, one B-Raf, one ROCK-1, one TIE-2, one PI3K, two CDK, two MAPK, three p38, and three mTOR inhibitors). An 8×8 constant ratio Latin square design were used for testing inhibition of cell proliferation/survival in these cell line models. Calculations were carried out using the Chou-Talalay method to determine which drug-pair demonstrated synergism in inhibiting cell growth. Further eight PI3K inhibitors were acquired and tested when we found strong synergism between the JAK2 inhibitors and the PI3K inhibitor ZSTK474 in the first panel. The engineered Ba/F3 cells were also inoculated into female BALB/c nude mice to generate the JAK2 mutant mouse model. These mice were treated intravenously with Ruxolitinib and the PI3K inhibitor GDC0941. Blood profile and physical parameters of the mice were measured for 14 days post treatment. Bone marrow cells from mice reconstituted with bone marrow from JAK2 V617F knock-in mice were plated for colony formation in the presence or absence of Ruxolitinib and the PI3K inhibitor GDC0941. Primary Epo-independent colonies from CD34+ cells of one PV patient were assessed in two independent experiments in the presence or absence of combination drugs. Results. Out of 15 kinase inhibitors tested, three PI3K inhibitors (ZSTK474, GDC0941 and BEZ235), synergized with JAK2 inhibitors (Ruxolitinib and TG101348) in inhibiting cell growth. The combination index was less than 0.5 in all 8×8 dose combination ratios. The JAK2-PI3K inhibitors combination was specific for JAK2 signaling as growth of Ba/F3 cells expressing Bcr-Abl (at equivalent STAT5 activation levels) was unaffected by this combination treatment. Balb/c mice inoculated with Ba/F3 cells expressing TpoR JAK2 V617F were found to have increased spleen weight due to proliferation of autonomous cells. Our combination treatment using Ruxolitinib and GDC0941 could drastically reduce spleen weight compared to treatment with either compound alone. Endogenous erythroid colony forming unit (CFU-E) and burst forming unit (BFU-E) formation from JAK2 V617F knock-in bone marrow cells was reduced significantly by the combined use of Ruxolitinib and GDC0941 compared to individual drugs. Similarly, Epo-independent BFU-E colony formation from peripheral CD34+ cells of one JAK2 V617F-positive PV patient was reduced significantly by the drug combination. Conclusions. Our findings of strong synergy between the JAK2 inhibitors and PI3K inhibitors suggested that we may be able to administer these drugs at lower concentrations than when the drugs are used individually. It provides a framework for combination trials using compounds in these two classes in patients with myeloproliferative neoplasms. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 689-689
Author(s):  
John S. Welch ◽  
Allegra Petti ◽  
Christopher A. Miller ◽  
Daniel C. Link ◽  
Matthew J. Walter ◽  
...  

Abstract To determine how AML subclonal architecture changes during decitabine treatment, and whether specific mutations might correlate with sensitivity vs. resistance to decitabine, we performed exome sequencing at multiple time points during single agent decitabine therapy. We enrolled 69 patients with either AML (age ≥ 60, or with relapsed/refractory disease, N = 45) or MDS (N = 24) on a phase I clinical trial. All subjects were treated with decitabine 20 mg/m2 on days 1-10 of 28 day cycles. With a median follow-up of 13.7 months, the intention to treat clinical response (complete remission with or without complete count recovery: CR/CRi) is 40%, with survival correlating with response (median survival - CR/CRi: 583 days; partial response/stable disease (PR/SD): 260 days; progressive disease (PD) or failure to complete cycle 1: 36 days, p < 0.0001). We performed exome sequencing on unfractionated bone marrow cells at diagnosis (day 0), cycle 1 day 10, cycle 1 day 28, cycle 2 day 28, and, when possible, during remission and at clinical relapse/progression. We have completed sequencing analysis for the first 34 cases (outcomes: 5 CR, 15 CRi, 3 PR, 8 SD, and 3 PD). Several important themes have emerged, as follows: 1) We correlated mutation status at diagnosis with clinical response. All six patients with TP53 mutations obtained clinical CR or CRi, and exome analysis demonstrated near complete elimination of the TP53- associated founding clones by the end of cycle 2 (p < 0.03). Long-term outcomes were similar in these patients compared with other patients who achieved CR/CRi: four patients relapsed after 8, 9, 10, or 17 cycles; 1 patient is doing well post-transplant; and one patient died of an infectious complication after cycle 2. No other mutations were significantly associated with clinical response or with consistent mutation clearance. 2) We observed a reduction in blast counts, which preceded mutation elimination in fourteen cases with CR, CRi or PR. This suggests that decitabine may induce morphological blast differentiation in vivo prior to mutation elimination. 3) In eight of nine cases with a clinical response followed by relapse, clinical progression was associated with expansion of a pre-existing subclone. We have not yet observed any recurrent mutations that reliably predict whether a subclone will contribute to relapse. Intriguingly, in two of these cases, the relapse-associated subclone was detectable at diagnosis and was eliminated more slowly than the founding clone mutations, suggesting that this subclone harbored intrinsic decitabine-resistance. 4) Complete remission can occur with concomitant non-malignant, clonal hematopoiesis. In three cases with a CR, a new clonal population was selected for during the remission. In two of these cases, there were no shared mutations between the founding clone and the emergent, non-malignant, clonal hematopoiesis, suggesting that these clones were unrelated. 5) Mutational architecture is generally stable, but differential chemo-sensitivity can be detected even between subclones in the same patient. In ten cases with PR or SD, we observed minimal shifts within the mutational burden over the course of eight weeks, suggesting that "clonal drift" is a relatively slow process. However, in four cases with SD, what appeared clinically to be simple persistent disease was in fact a dynamic elimination of one subclone, and its replacement by a different subclone. Similarly, in three cases with CRi, we observed rapid clearance of a subclone with slower clearance of the founding clone, again suggesting differential chemo-sensitivity among subclones. 6) Finally, we correlated pharmacologic markers with clinical outcomes. We observed no correlation between steady-state plasma decitabine levels and clinical responses. Using Illumina 450k methylation arrays, we observed a correlation between response and the extent of decitabine-induced hypomethylation in total bone marrow cells that persisted on cycle 1 day 28 (p < 0.01), but not on cycle 1 day 10 (p < 0.1). In summary, these data reveal that response to decitabine is associated with morphologic blast clearance before mutations are eliminated, that relapse is associated with subclonal outgrowth that may be identified early in the treatment course, and that TP53 mutations may be predictive of rapid clinical responses, although, like most responses to decitabine, these are not necessarily durable. Disclosures Off Label Use: Decitabine treatment of AML.. Uy:Novartis: Research Funding. Oh:CTI Biopharma: Membership on an entity's Board of Directors or advisory committees; Incyte: Membership on an entity's Board of Directors or advisory committees. Abboud:Novartis: Research Funding; Gerson Lehman Group: Consultancy; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Pfizer: Research Funding; Merck: Research Funding; Teva Pharmaceuticals: Research Funding. Cashen:Celgene: Speakers Bureau. Schroeder:Celgene: Other: Azacitidine provided for this trial by Celgene; Incyte: Consultancy. Jacoby:Sunesis: Research Funding; Novo Nordisk: Consultancy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 23-23 ◽  
Author(s):  
Gabor Kovacs ◽  
Sebastian Boettcher ◽  
Jasmin Bahlo ◽  
Sandra Kluth ◽  
Matthias Ritgen ◽  
...  

Abstract Introduction: Within clinical trials in CLL, response assessment is based on the NCI 1996 guidelines or its update, the iwCLL 2008 guidelines, respectively. Whereas detailed response criteria with clear cut-off values are provided for the assessment of most parameters, a few parameters such as splenomegaly are not defined quantitatively in the guidelines. In addition, the detection of MRD, which was recommended for clinical trials but not formally included in the definition of response, is gaining increasing importance. Both MRD negativity (with a threshold of <10-4 leukemic cells per leukocytes) and the occurrence of a complete response (CR) predict long progression free survival (PFS). In order to investigate the value of MRD with respect to clinical response, the MRD status was explored in patients (pts) with CR and partial remission (PR) in two phase III trials of the GCLLSG. Furthermore, we evaluated the relevance of residual splenomegaly, lymphadenopathy or bone marrow involvement in MRD negative (-) pts with clinical PR. Patients and Methods: 542 pts from two prospective phase III trials of the GCLLSG (CLL8 trial: fludarabine and cyclophosphamide without (FC) or with rituximab (FCR); CLL10 trial: FCR vs bendamustine and rituximab (BR)) were included in the analysis (Figure 1). The comprehensive dataset included MRD results from peripheral blood at final restaging (RE) (2 months after the end of last treatment cycle), bone marrow (BM), clinical and radiological assessment for organomegaly and lymphadenopathy. Clinical response was defined according to the iwCLL 2008 guidelines. Splenomegaly was determined by physical and radiological examination. Moreover, different cut-off values defining splenomegaly by CT or ultrasound (longest diameter >12 cm and >14 cm) were investigated. PFS was analyzed using Kaplan-Meier methodology, and survival curves were compared using two-sided log-rank tests. Additionally hazard ratios (HR) and 95% confidence intervals (CI) were calculated. Significance was set at a p value<0.05. No adjustments for multiple testing were performed. Results: 542 pts were included in the analysis. Their median age was 61 years, median CIRS score 2 (range 0-6), median follow up time 45.9 months (mo) (range 5.5-96.1). 121 pts (22.3%) received FC, 283 (52.2%) FCR and 138 (25.5%) BR. 13.3% of pts had Binet stage A, 52.3 % stage B and 34.4% stage C disease. Among 514 pts with IGHV results, 63.0% had an unmutated status. In 524 pts FISH was available, del(17p) was only found in 1.3% (exclusion criterion in CLL10 trial), del(11q) in 25.0%, 12+ in 10.1%, normal in 25.4%, and del(13q) in 38.2% of the pts. MRD negativity was achieved in 81.8% (175/214) of pts with CR and in 47.9% (157/328) of the pts with PR, respectively. There was a statistically significant difference in PFS between MRD- CRs and MRD positive (+) CRs (69.2 mo vs 40.4 mo; HR 0.445, 95% CI=0.282-0.703, p=0.001). Additionally, there was a statistically significant difference between MRD- PRs and MRD+ CRs (61.7 mo vs 40.4 mo; HR 0.537, 95% CI=0.340-0.847, p=0.008). No statistically significant difference between MRD- CRs and MRD- PRs was detected (69.2 mo vs. 61.7 mo; HR 0.822, 95% CI=0.572-1.182, p=0.29) (Figure 2). Of the 157 pts presenting with an MRD- PR, 106 pts were evaluable for remaining CLL involvement: 48 pts (45.3%) had a splenomegaly, 12 (11.3%) lymphadenopathy, 19 (17.9%) bone marrow involvement as the sole abnormality. Only 25.5% (27) of the pts had more than one abnormality. There was no statistically significant difference in PFS between MRD- PRs with single splenomegaly and MRD- CRs (not reached (NR) vs 69.2 mo; HR 0.737, 95% CI=0.387-1.404, p=0.4). Moreover, patients with MRD- PRs and single splenomegaly had a statistically significant longer PFS than MRD+ CR pts (NR vs 40.4 mo; HR 0.348, 95% CI=0.172-0.701, p=0.003). (Figure 3) The difference was independent of the cut-off values used for splenomegaly (12 cm or 14 cm) (p=0.001 and p=0.03). Conclusion: MRD negativity determined in the peripheral blood after end of treatment is a potent predictor of treatment efficacy regardless of the clinical response assessment. The persistence of splenomegaly as sole abnormality post treatment in MRD- patients has no negative influence on PFS. More data are needed to prove the relevance of residual BM involvement and lymphadenopathy in MRD- PR pts. These results support the use of MRD for response evaluation. Figure 1 Figure 1. Disclosures Boettcher: Roche: Honoraria, Research Funding, Travel grant Other. Ritgen:Roche: Honoraria, Research Funding, Travel grant Other. Cramer:Mundipharma: Travel grant, Travel grant Other; Roche: Travel grant Other. Maurer:Mundipharma: Travel grant Other. Doehner:Roche: Research Funding. Stilgenbauer:Roche: Consultancy, Honoraria, Research Funding. Kneba:Mundipharma: Consultancy, Research Funding; Roche: Consultancy, Research Funding. Fischer:Roche: Travel grant Other. Hallek:Mundipharma: Consultancy, Research Funding; Roche: Consultancy, Research Funding. Eichhorst:Roche: Membership on an entity's Board of Directors or advisory committees, Research Funding, Travel grant Other; Mundipharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Travel grant, Travel grant Other; GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy. Off Label Use: The Combination of Bendamustine and Rituximab is not approved for frontline chemoimmunotherapy of CLL.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3167-3167
Author(s):  
Anais Roeser ◽  
Guillaume Moulis ◽  
Mikael Ebbo ◽  
Louis Terriou ◽  
Elsa Poullot ◽  
...  

Abstract Introduction Acquired amegakaryocytic thrombocytopenia (AAT) is an extremely rare disease characterized by acquired megakaryocytic aplasia or hypoplasia with no other lineage abnormalities. Given limited evidence, the first aim of this study was to describe the characteristics, management and outcome of patients with AAT, the second aim was to examine the therapeutic response through a systematic review of published case reports. Patients and Methods We carried out a retrospective multicenter study through the French Reference Network for Adult Autoimmune Cytopenias, including patients aged &gt; 18 years with acquired thrombocytopenia with a platelet count &lt; 50 x 10 9/L, associated with a megakaryocytes / granulocytes ratio &lt; 50 % on bone marrow, diagnosed from July 2007 to February 2020. Exclusion criteria were: abnormal granular lineage, evidence of dysplasia, bone marrow infiltration by tumor cells or hematologic malignancy, significant karyotype abnormality, and significant paroxysmal nocturnal hemoglobinuria clone. Bone marrow biopsy were centrally reviewed. Patients' medical charts were collected using the standardized form of the referral center for adult immune thrombocytopenia (ITP). Response to treatment was defined according to standardized international criteria for ITP: response (R) and complete response (CR) were respectively defined as platelet count of &gt; 30 × 10 9/L with at least a doubling of the baseline value, and platelet count of &gt; 100 × 10 9/L ; overall response as either R or CR. We performed a systematic review conducted through Medline and Scopus databases from 1970 to April 2021. Cases were included in the analysis if initial platelet count was &lt; 50 x 10 9/L and bone marrow examination was available, demonstrating a megakaryocyte hypoplasia or aplasia with no alternate diagnosis. Results We screened 23 patients reported as thrombocytopenia with absence or decreased megakaryocytes. Eleven patients were excluded because of: presence of megakaryocytes on bone marrow biopsy despite megakaryocytic aplasia on bone marrow aspirate (n=2), absence of bone marrow biopsy (n=4), aplastic or hypoplastic bone marrow (n=3), moderate thrombocytopenia &gt; 50 x 10 9/L (n=1), lack of data (n=1). Twelve patients were included in the analysis. AAT patients had a median age of 52.5 years, 5/12 (41.7%) were female, 6/12 (50%) had a preexisting autoimmune disease (Table 1). All bone marrow biopsies reviewed to date contained CD8+ T-cell infiltrates. Eight patients received a first line treatment with corticosteroids and/or intravenous immunoglobulins (IVIg), a single response was observed. Ten patients received cyclosporine in monotherapy resulting in 4CR, and 1R or in combination with diverse agents with heterogenous responses. Six had received a single therapy with thrombopoietin receptor agonists (TPO-RAs) inducing 4 CR. Eventually, 9 patients (75%) achieved a CR under therapy, obtained with ciclosporin alone in 3 cases, ciclosporin in association with TPO-RA or ATG in 2 cases, cyclophosphamide followed-up by mycophenolate mofetil in 1 case, and TPO-RAs alone in 4 patients (of whom 3 had previously received at least on immunosuppressive therapy). After a median follow up time of 4.0 years (range 1.2 - 11.9), 2 (16%) patients eventually developed an aplastic anemia, 7 and 41.5 months respectively after initial AAT diagnosis. The literature search yielded 108 articles, of which 75 articles reporting 85 cases were included in the final analysis. The pooled analysis of newly reported and historic cases included 97 cases. Overall response rates to corticosteroids and IVIg were respectively 22.4 % and 5.3 % (Table 2). Ciclosporin was used as single agent in 37.1 % of patients, with an overall response rate of 66.7 %. TPO-RAs were used in 9 cases, with a CR in 7 patients (77.8%). Overall, 9/97 patients (9.3 %) experienced an aplastic anemia during the follow-up. The presence of a thymoma was associated with a higher risk of aplastic anemia (OR 6.83 (95%CI 1.22-34.00, p=0.020)). Conclusion Distinguishing AAT from ITP is of significance as the outcome and response to therapy strongly differ. Aplastic anemia may occur in the follow-up but remain rare. Corticosteroids and IVIg are inefficient in most cases, ciclosporin appear to be very effective, TPO-RA could also be an option, as single therapy or in associations. Further data will be needed to define the respective place of these treatments. Figure 1 Figure 1. Disclosures Moulis: Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Argenix: Membership on an entity's Board of Directors or advisory committees; Grifols: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sobi: Membership on an entity's Board of Directors or advisory committees. Ebbo: Grifols: Honoraria, Membership on an entity's Board of Directors or advisory committees; Octapharma: Other: Attendance Grant; Amgen: Honoraria; Sobi: Other: Attendance Grant; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees. Terriou: Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Haioun: Amgen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Gilead: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; F. Hoffmann-La Roche Ltd: Honoraria, Research Funding; Servier: Honoraria, Research Funding; Takeda: Honoraria, Research Funding; Miltenyi: Honoraria, Research Funding. Michel: Amgen,Novartis,UCB,Argenx,Rigel: Honoraria. Godeau: Amgen: Consultancy; Novartis: Consultancy; Grifols: Consultancy; Sobi: Consultancy. Mahevas: GSK: Research Funding; Amgen: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document