Glutaminase Inhibitor CB-839 Synergizes with Pomalidomide in Preclinical Multiple Myeloma Models

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4720-4720 ◽  
Author(s):  
Francesco Parlati ◽  
Mathew Gross ◽  
Julie Janes ◽  
Evan Lewis ◽  
Andy MacKinnon ◽  
...  

Abstract Many hematological tumor cells are dependent on glutamine for growth and survival. Glutamine is the most abundant amino acid in plasma and can be utilized by tumor cells for production of energy and generation of building blocks for the synthesis of macromolecules. Small molecule CB-839 inhibits glutaminase (GLS) activity thereby blocking cellular glutamine utilization resulting in an anti-tumor effect in several hematological tumor types including multiple myeloma (MM), acute lymphocytic leukemia, and several types of non-Hodgkin’s lymphoma [Parlati et al. Blood 2013 122:4226]. Phase 1 clinical trials have been initiated to test the safety, pharmacokinetics, pharmacodynamics, and clinical activity of single agent CB-839 in several hematological malignancies. In anticipation of potential combinations of CB-839 with standard of care agents in future MM clinical trials, we tested the effects of CB-839 in combination with the IMiD, pomalidomide (POM). POM caused complete growth inhibition in MM.1S cells with an EC50 of 16 nM as opposed to partial growth inhibition in RPMI8226 cells, with an EC50 of 130 nM. CB-839 caused complete growth inhibition in MM.1S cells with an EC50 value of 26 nM and produced a cytotoxic effect in RPMI8226 cells with an EC50 of 160 nM. When combined, CB-839 enhanced the anti-proliferative activity of POM in both POM-sensitive MM.1S and POM-resistant RPMI8226 cells resulting in a synergistic anti-tumor effect as demonstrated by combination index values between 0.18-0.62 (mean= 0.36) for the MM.1S and 0.25-0.72 (mean= 0.38) for the RPMI8226 cells. To investigate the mechanism that underlies the observed synergy, RPMI8226 cells were treated for 24 hours and changes in proteins and metabolites were measured by reverse-phase-protein array and LC/MS, respectively. When treated with CB-839 alone, RPMI8226 cells respond by decreasing mTOR pathway signaling proteins (e.g. phospho-mTOR, phospho-p70S6K, phospho-PRAS40, phospho-S6), decreasing the amount of oncogenic proteins (c-Myc and c-Kit), and increasing programmed cell death pathway proteins (e.g. cleaved caspase 7, cleaved PARP), consistent with the cytotoxic activity observed for CB-839. Several of these changes were further enhanced in the presence of POM (e.g. phospho-p70S6K, phospho-S6, phospho-PRAS40, c-kit, c-Myc), however only the enhanced decrease in c-Myc reached statistical significance. Metabolite analysis showed changes with CB-839 consistent with GLS inhibition (e.g. decreases in glutamate, aspartate, succinate and malate and increases in glutamine). On the other hand, single agent POM caused very modest changes in the metabolite profile. When the two agents were combined, metabolite levels were consistent with those observed with single agent CB-839, with the notable exception of carbamoyl-aspartate where lower levels were measured in the combination group in comparison to cells treated with either agent alone. Carbamoyl-aspartate is an intermediate in the pyrimidine biosynthesis pathway and is synthesized by the multi-catalytic enzyme CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase), an enzyme that is regulated by mTOR [Ben-Sahra et al. (2013) Science339: 1323-8]. These observations suggest that CB-839 dampens mTOR signaling and POM may further attenuate this response, possibly contributing to the synergistic anti-tumor effect. These data motivated testing the anti-tumor effect of the combination of CB-839 and POM in mice bearing RPMI8226 xenografts. Oral dosing with single agent CB-839 and POM resulted in tumor growth inhibition (TGI) of 64% and 46%, respectively, whereas the combination of the two agents resulted in a TGI of 97%. Efficacious doses of CB-839 and POM alone or in combination were well tolerated with no effect on animal body weight. These promising results indicate that GLS inhibition with CB-839 in combination with POM may provide therapeutic benefit in MM and provide motivation for future clinical studies. Disclosures Parlati: Calithera Biosciences: Employment, Equity Ownership. Gross:Calithera Biosciences: Employment, Equity Ownership. Janes:Calithera Biosciences: Employment, Equity Ownership. Lewis:Calithera Biosciences: Employment, Equity Ownership. MacKinnon:Calithera Biosciences: Employment, Equity Ownership. Rodriguez:Calithera Biosciences: Employment, Equity Ownership. Shwonek:Calithera Biosciences: Employment, Equity Ownership. Bennett:Calithera Biosciences: Employment, Equity Ownership.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1844-1844
Author(s):  
John Richards ◽  
Myriam N Bouchlaka ◽  
Robyn J Puro ◽  
Ben J Capoccia ◽  
Ronald R Hiebsch ◽  
...  

AO-176 is a highly differentiated, humanized anti-CD47 IgG2 antibody that is unique among agents in this class of checkpoint inhibitors. AO-176 works by blocking the "don't eat me" signal, the standard mechanism of anti-CD47 antibodies, but also by directly killing tumor cells. Importantly, AO-176 binds preferentially to tumor cells, compared to normal cells, and binds even more potently to tumors in their acidic microenvironment (low pH). Hematological neoplasms are the fourth most frequently diagnosed cancers in both men and women and account for approximately 10% of all cancers. Here we describe AO-176, a highly differentiated anti-CD47 antibody that potently targets hematologic cancers in vitro and in vivo. As a single agent, AO-176 not only promotes phagocytosis (15-45%, EC50 = 0.33-4.1 µg/ml) of hematologic tumor cell lines (acute myeloid leukemia, non-Hodgkin's lymphoma, multiple myeloma, and T cell leukemia) but also directly targets and kills tumor cells (18-46% Annexin V positivity, EC50 = 0.63-10 µg/ml) in a non-ADCC manner. In combination with agents targeting CD20 (rituximab) or CD38 (daratumumab), AO-176 mediates enhanced phagocytosis of lymphoma and multiple myeloma cell lines, respectively. In vivo, AO-176 mediates potent monotherapy tumor growth inhibition of hematologic tumors including Raji B cell lymphoma and RPMI-8226 multiple myeloma xenograft models in a dose-dependent manner. Concomitant with tumor growth inhibition, immune cell infiltrates were observed with elevated numbers of macrophage and dendritic cells, along with increased pro-inflammatory cytokine levels in AO-176 treated animals. When combined with bortezomib, AO-176 was able to elicit complete tumor regression (100% CR in 10/10 animals treated with either 10 or 25 mg/kg AO-176 + 1 mg/kg bortezomib) with no detectable tumor out to 100 days at study termination. Overall survival was also greatly improved following combination therapy compared to animals treated with bortezomib or AO-176 alone. These data show that AO-176 exhibits promising monotherapy and combination therapy activity, both in vitro and in vivo, against hematologic cancers. These findings also add to the previously reported anti-tumor efficacy exhibited by AO-176 in solid tumor xenografts representing ovarian, gastric and breast cancer. With AO-176's highly differentiated MOA and binding characteristics, it may have the potential to improve upon the safety and efficacy profiles relative to other agents in this class. AO-176 is currently being evaluated in a Phase 1 clinical trial (NCT03834948) for the treatment of patients with select solid tumors. Disclosures Richards: Arch Oncology Inc.: Employment, Equity Ownership, Other: Salary. Bouchlaka:Arch Oncology Inc.: Consultancy, Equity Ownership. Puro:Arch Oncology Inc.: Employment, Equity Ownership. Capoccia:Arch Oncology Inc.: Employment, Equity Ownership. Hiebsch:Arch Oncology Inc.: Employment, Equity Ownership. Donio:Arch Oncology Inc.: Employment, Equity Ownership. Wilson:Arch Oncology Inc.: Employment, Equity Ownership. Chakraborty:Arch Oncology Inc.: Employment, Equity Ownership. Sung:Arch Oncology Inc.: Employment, Equity Ownership. Pereira:Arch Oncology Inc.: Employment, Equity Ownership.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1959-1959 ◽  
Author(s):  
Jatin J Shah ◽  
Jeffrey A. Zonder ◽  
Adam Cohen ◽  
Donna Weber ◽  
Sheeba Thomas ◽  
...  

Abstract Abstract 1959 Background: Kinesin Spindle Protein (KSP) is required for cell cycle progression through mitosis. Inhibition of KSP induces mitotic arrest and cell death. ARRY-520 is a potent, selective KSP inhibitor. Cancers such as multiple myeloma (MM) which depend on the short-lived survival protein MCL-1 are highly sensitive to treatment with ARRY-520. ARRY-520 shows potent activity in preclinical MM models, providing a strong rationale for its clinical investigation in this disease. Methods: This Phase 1 study was designed to evaluate the safety and pharmacokinetics (PK) of ARRY-520 administered intravenously (IV) on Day 1 and Day 2 q 2 weeks without/with granulocyte-colony stimulating factor (G-CSF). Patients (pts) with relapsed/refractory (RR) MM with 2 prior lines of therapy (including both bortezomib and an immunomodulatory agent, unless ineligible for or refusing to receive this therapy) were eligible. Cohorts of at least 3 pts were enrolled in a classical 3 + 3 dose escalation design. Pts were treated for 2 cycles (4 weeks) to evaluate safety prior to dose escalation. Results: Twenty five pts have been treated to date, with a median age of 60 years (range 44–79) and a median of 5 prior regimens (range 2–16). All pts received prior bortezomib or carfilzomib, 21 pts received prior lenalidomide, 17 pts prior thalidomide, and 18 pts had a prior stem cell transplant. Pts received ARRY-520 without G-CSF at 1 mg/m2/day (n = 3), and at 1.25 mg/m2/day (n = 7, 6 evaluable). A dose-limiting toxicity (DLT) of Grade 4 neutropenia was observed at 1.25 mg/m2/day, and this was considered the maximum tolerated dose (MTD) without G-CSF. As neutropenia was the DLT, dose escalation with prophylactic G-CSF support was initiated, at doses of 1.5 mg/m2/day (n = 7, 6 evaluable), 2.0 mg/m2/day (n = 6) and 2.25 mg/m2/day (n = 2) with G-CSF. Both the 2.0 mg/m2/day and 2.25 mg/m2/day dose levels were determined to be non-tolerated, with DLTs of febrile neutropenia (FN) (2 pts at 2.0 mg/m2/day and both pts at 2.25 mg/m2/day) and Grade 3 mucositis (both pts at 2.25 mg/m2/day). One out of 6 evaluable pts at 1.5 mg/m2/day also developed a DLT of FN. In an attempt to optimize the Phase 2 dose, an intermediate dose level of 1.75 mg/m2/day with G-CSF is currently being evaluated. The most commonly reported treatment-related adverse events (AEs) include those observed with other KSP inhibitors, such as hematological AEs (thrombocytopenia, neutropenia, anemia, leukopenia), fatigue, mucositis and other gastro-intestinal AEs. Pts displayed linear PK, a low clearance and a moderate volume of distribution, with moderate-to-high inter-individual variability in PK parameters. The median terminal elimination half life is 65 hours. The preliminary efficacy signal as a single agent is encouraging with 2 partial responses (PR) observed to date per IMWG and EBMT criteria in a heavily pretreated population (23 evaluable pts). A bortezomib-refractory pt with 8 prior lines of therapy, including a tandem transplant, treated at 1 mg/m2/day of ARRY-520 obtained a PR after Cycle 6, with urine protein and kappa light chain levels continuing to decline over time. He remains on-study after 15 months of ARRY-520 treatment. A pt with 2 prior lines of therapy, including prior carfilzomib, has obtained a PR after Cycle 8 at 2 mg/m2/day of ARRY-520, and she is currently ongoing after 4.5 months on therapy. Fifteen pts had a best response of stable disease (SD), including 1 pt with a thus far unconfirmed minimal response, and 6 had progressive disease. A total of 10 pts (43%) achieved a PR or SD lasting > 12 weeks. Several additional pts have shown other evidence of clinical activity, with decrease in paraproteins, increase in hemoglobin levels and regression of plasmacytomas. The median number of cycles is 4 (range 1–28+). Treatment activity has not correlated with any baseline characteristics or disease parameters to date. Conclusions: : The selective KSP inhibitor ARRY-520 has been well tolerated, and shows promising signs of single agent clinical activity in heavily pretreated pts with RR MM. Prophylactic G-CSF has enabled higher doses to be tolerated. No cardiovascular or liver enzyme toxicity has been reported. Enrollment is ongoing at 1.75 mg/m2/day with G-CSF support, and a planned Phase 2 part of the study will be initiated as soon as the MTD is determined. Complete Phase 1 data will be disclosed at the time of the meeting. Disclosures: Shah: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Research Funding. Off Label Use: Revlimid (lenalidomide) in combination with dexamethasone is indicated for the treatment of multiple myeloma patients who have received at least one prior therapy. Zonder:Millennium: Consultancy, Myeloma and Amyloidosis Patient Day Symposium – Corporate support from multiple sponsors for a one-day educational event, Research Funding; Celgene:; Novartis:; Proteolix: . Weber:novartis-unpaid consultant: Consultancy; Merck- unpaid consultant: Consultancy; celgene- none for at least 2 years: Honoraria; millenium-none for 2 years: Honoraria; celgene, Millenium, Merck: Research Funding. Wang:Celgene: Research Funding; Onyx: Research Funding; Millenium: Research Funding; Novartis: Research Funding. Kaufman:Celgene: Consultancy, Honoraria, Research Funding; Millenium: Consultancy, Honoraria; Merck: Research Funding; Genzyme: Consultancy. Walker:Array Biopharma: Employment, Equity Ownership. Freeman:Array Biopharma: Employment, Equity Ownership. Rush:Array Biopharma: Employment, Equity Ownership. Ptaszynski:Array Biopharma: Consultancy. Lonial:Millennium, Celgene, Bristol-Myers Squibb, Novartis, Onyx: Advisory Board, Consultancy; Millennium, Celgene, Novartis, Onyx, Bristol-Myers Squibb: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4084-4084 ◽  
Author(s):  
Veerendra Munugalavadla ◽  
Leanne Berry ◽  
Yung-Hsiang Chen ◽  
Gauri Deshmukh ◽  
Jake Drummond ◽  
...  

Abstract Abstract 4084 Related work from our group has shown the therapeutic utility of PIM inhibition in multiple myeloma cell lines, xenografts, and primary patient samples (Ebens A. et al., ASH 2010 submitted abstr.). In this study we provide detailed mechanistic findings to show that PIM kinase inhibition co-regulates several important elements of the PI3K/AKT/mTOR pathway, resulting in significant synergy for combination drug treatments. The PIM kinases are a family of 3 ser/thr growth factor- & cytokine-induced proteins hypothesized to have redundant survival and growth functions. GNE-652 is a pan-PIM kinase inhibitor with picomolar biochemical potencies and an excellent kinase selectivity profile. Myeloma cell lines exhibit sensitivity to single agent PIM inhibition and a striking synergy in combination with the PI3K inhibitor GDC-0941. Cells respond to this combination with cell cycle arrest and marked apoptosis in vitro. We tested a panel of selective PI3K/AKT/mTOR inhibitors and found PI3K and AKT inhibitors showed the greatest extent of synergy with GNE-652, whereas mTOR inhibitors were synergistic to a lesser extent. These results suggest that PIM signaling converges on both TORC1 and AKT to generate these differential synergies. BAD is a negative regulator of both Bcl-2 and Bcl-XL, and we were able to confirm previous reports that AKT and PIM cooperate to inactivate BAD (Datt et al., 1997; Yan et al., 2003). Pim has been shown to potentially inactivate PRAS40, a negative regulator of TORC1 (Zhang et al., 2009). We demonstrate that PIM or PI3K inhibition caused a loss of phosphorylation on PRAS40 and results in a physical association of PRAS40 and TORC1 and a decrease in phosphorylated p70S6K and S6RP. These reductions were apparent in 7 of 7 cell lines assayed and enhanced by the combination of PI3K and PIM inhibition in these cell lines. Consistent with prior reports (Hammerman et al., 2005), we show that a second node of convergence between PIM and TORC1 is 4E-BP1. Both GDC-0941 and GNE-652 treatments reduced phosphorylation of 4E-BP1 in 7 of 7 myeloma cell lines. Since dephosphorylated 4E-BP1 competes with eIF4G for the mRNA cap binding factor eIF4E, we assayed immunoprecipitates of eIF4E for the presence of eIF4G and 4E-BP1 and observed increased BP1 and decreased 4G. The combination treatment significantly enhanced the loss of 4G relative to either single agent, and importantly, even at 5× the IC50 concentrations for single agents, combination drug treatment achieved greater extent of effect than single agent treatment. Thus PI3K and PIM pathways are redundant at the level of cap-dependent translational initiation mediated by eIF4E. It has been hypothesized a subset of mRNAs are particularly sensitive to inhibition of cap-dependent translation, and that this includes a number of oncogenes such as cyclin D1. We assayed global protein synthesis in MM1.s cells using 35S-methionine and as expected we observed only a modest ≂∼f20% decrease caused by either GNE-652 or GDC-0941 and this decrease was not enhanced by combination treatment. However, we noted across 7 different myeloma cell lines, strong decreases in levels of cyclin D1 that were enhanced by combination treatment. In summary, we have identified several points at which PIM and PI3K/AKT/mTOR converge to provide synergistic apoptosis in multiple myeloma cell lines. These results provide the rationale for further preclinical development of PIM inhibitors and provide the basis for a possible clinical development plan in multiple myeloma. Disclosures: Munugalavadla: Genentech: Employment, Equity Ownership. Berry:Genentech: Employment, Equity Ownership. Chen:Genentech: Employment, Equity Ownership. Deshmukh:Genentech: Employment, Equity Ownership. Drummond:Genentech: Employment, Equity Ownership. Du:Genentech: Employment, Equity Ownership. Eby:Genentech: Employment, Equity Ownership. Fitzgerald:Genentech: Employment, Equity Ownership. S.Friedman:Genentech: Employment, Equity Ownership. E.Gould:Genentech: Employment, Equity Ownership. Kenny:Genentech: Employment, Equity Ownership. Maecker:Genentech: Employment, Equity Ownership. Moffat:Genentech: Employment, Equity Ownership. Moskalenko:Genentech: Employment, Equity Ownership. Pacheco:Genentech: Employment, Equity Ownership. Saadat:Genentech: Employment, Equity Ownership. Slaga:Genentech: Employment, Equity Ownership. Sun:Genentech: Employment, Equity Ownership. Wang:Genentech: Employment, Equity Ownership. Yang:Genentech: Employment, Equity Ownership. Ebens:Genentech Inc: Employment, Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Naoya Mimura ◽  
Mariateresa Fulciniti ◽  
Gullu Gorgun ◽  
Yu-Tzu Tai ◽  
Diana D. Cirstea ◽  
...  

Abstract Abstract 133 Multiple myeloma (MM) cells are characterized by high protein synthesis resulting in chronic endoplasmic reticulum (ER) stress, which is adaptively managed by the unfolded protein response (UPR). Therefore blockade of UPR could provide a novel therapeutic option in MM. Upon UPR, inositol-requiring enzyme 1α (IRE1α) is activated by auto-phosphorylation, resulting in activation of its endoribonuclease domain to cleave XBP1 mRNA from XBP1 unspliced form (XBP1u: inactive) to generate the XBP1 spliced form (XBP1s: active). XBP1s protein in turn regulates genes responsible for protein folding and degradation, playing a pro-survival signaling role in the UPR. In this study, we specifically examined whether IRE1α-XBP1 pathway is a potential therapeutic target in MM. We first examined the biologic significance of IRE1α by knockdown using lentiviral shRNA and observed significant growth inhibition in IRE1α knockdown cells. We next examined the impact of inhibition of XBP1 splicing using a novel small molecule IRE1α endoribonuclease domain inhibitor MKC-3946 (MannKind, Valencia CA). MKC-3946 blocked not only the basal level, but also inducible (by tunicamycin) XBP1s, evidenced by RT-PCR analysis in RPMI8226 cells, without affecting phosphorylation of IRE1α. Importantly, MKC-3946 also inhibited XBP1s in primary tumor cells from MM patients. We also confirmed functional inhibition of XBP1s, with target genes including SEC61A1, p58IPK, and ERdj4 downregulated by MKC-3946 treatment. Importantly, MKC-3946 triggered growth inhibition in MM cell lines, without toxicity in normal mononuclear cells. Furthermore, it significantly enhanced cytotoxicity induced by bortezomib or 17-AAG in RPMI8226 and INA6 cells, as well as primary tumor cells from MM patients. Both bortezomib and 17-AAG induced ER stress with XBP1s, which was markedly blocked by MKC-3946. Moreover, apoptosis induced by bortezomib or 17-AAG was enhanced by MKC-3946, associated with increased CHOP mRNA and protein, a proapoptotic factor triggered by ER stress. We next demonstrated that XBP1s was induced by bortezomib in INA6 cells co-cultured with bone marrow (BM) stromal cells, which was inhibited by MKC-3946, associated with enhanced cytotoxicity induced by the combination. Finally, MKC-3946 inhibited XBP1s in a model of in vivo ER stress induced by tunicamycin. To evaluate the anti-MM effect of MKC-3946, we used the subcutaneous RPMI8226 xenograft model in mice. MKC-3946 significantly reduced MM tumor growth in the treatment versus control group, associated with prolonged overall survival. We also confirmed that MKC-3946 treatment significantly inhibited XBP1s in excised tumors, assessed by RT-PCR. In order to examine the activity of MKC-3946 on MM cell growth in the context of the human BM microenvironment in vivo, we used the SCID-hu model, in which INA6 cells are directly injected into a human bone chip implanted subcutaneously in SCID-mice. MKC-3946 treatment significantly inhibited tumor growth compared with vehicle control. Moreover, XBP1s in excised tumor cells was inhibited, evidenced by RT-PCR. In conclusion, these data demonstrate that blockade of XBP1s by MKC-3946 triggers MM cell growth inhibition in vivo and prolongs host survival. Taken together, our results demonstrate that blockade of XBP1 splicing by inhibition of IRE1α endoribonuclease domain is a potential novel therapeutic option in MM. Disclosures: Tam: MannKind Corporation: Employment, Equity Ownership. Zeng:MannKind Corporation: Employment, Equity Ownership. Patterson:MannKind Corporation: Employment, Equity Ownership. Richardson:Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Munshi:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees; MannKind: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3145-3145 ◽  
Author(s):  
Paul G. Richardson ◽  
Myo Htut ◽  
Cristina Gasparetto ◽  
Jeffrey A. Zonder ◽  
Thomas G. Martin ◽  
...  

Background: The bone marrow microenvironment of many multiple myeloma (MM) patients contains high levels of CD123-expressing plasmacytoid dendritic cells (pDCs). These pDCs have been shown to augment MM growth and contribute to drug resistance (Chauhan, et al., Cancer Cell, 2009). Tagraxofusp, a novel CD123 targeted therapy, has demonstrated high levels of anti-tumor activity in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN), an aggressive CD123+ malignancy of pDC origin. Tagraxofusp demonstrated potent in vitro and in vivo activity against MM cell lines and primary tumor samples via both a direct anti-MM effect and indirect pDC-targeting effect (Ray, et al., Leukemia, 2017), as well as demonstrating synergy in these systems when used in combination with traditional MM therapies including pomalidomide (POM). As such, targeting pDCs with tagraxofusp may offer a novel therapeutic approach in MM. Methods: This multicenter, single arm Phase 1/2 trial enrolled patients with relapsed or refractory (r/r) MM and tested two different doses of tagraxofusp (7 or 9 mcg/kg). Patients received tagraxofusp as a daily IV infusion for days 1-5 of a 28-day cycle as a single agent for the initial run-in cycle (cycle 0) and in combination with standard doses/administration of POM and dexamethasone (DEX) in cycles 1 and beyond. Objectives included evaluation of safety and tolerability, identification of the maximum tolerated or tested dose, and efficacy. Results: 9 patients with r/r MM received tagraxofusp (7 mcg/kg, n=7; 9 mcg/kg, n=2). 5 males, median age 65 years (range: 57-70), median 3 prior therapies (range 2-6). Median follow-up was 12 months (range: 7 - 19). The most common treatment-emergent AEs (TEAEs) were hypoalbuminemia 67% (6/9); chills, fatigue, insomnia, nausea and pyrexia each 56% (5/9); and dizziness, headache, hypophosphatemia, and thrombocytopenia each 44% (4/9). The most common grade 3 and 4 TEAEs were thrombocytopenia 44% (4/9) and neutropenia 33% (3/9). No grade 5 events reported. 5 patients treated with tagraxofusp and POM+DEX had a partial response (PR) after tumor evaluation. These patients demonstrated a rapid decrease in a set of myeloma-related laboratory values from pre-tagraxofusp treatment levels after the first combination cycle of tagraxofusp and POM+DEX. Additionally, these 5 patients demonstrated >50% decreases in peripheral blood pDC levels after both tagraxofusp monotherapy and combination therapy. Conclusions: Tagraxofusp was well-tolerated, with a predictable and manageable safety profile, when dosed in combination with POM+DEX in patients with r/r MM. Evidence of pDC suppression in peripheral blood and BM was observed in this patient population. 5 patients that received tagraxofusp and POM+DEX combination had PRs and decreases in pDC levels while on treatment with tagraxofusp. Given CD123 expression on pDCs in the tumor microenvironment and the potential synergy of tagraxofusp with certain MM agents including POM, tagraxofusp may offer a novel mechanism of action in MM. NCT02661022. Disclosures Richardson: Oncopeptides: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding. Gasparetto:Celgene: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; Janssen: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; BMS: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed . Zonder:Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Consultancy, Membership on an entity's Board of Directors or advisory committees. Martin:Roche and Juno: Consultancy; Amgen, Sanofi, Seattle Genetics: Research Funding. Chen:Stemline Therapeutics: Employment, Equity Ownership. Brooks:Stemline Therapeutics: Employment, Equity Ownership, Patents & Royalties. McDonald:Stemline Therapeutics: Employment, Equity Ownership. Rupprecht:Stemline Therapeutics: Employment, Equity Ownership. Wysowskyj:Stemline Therapeutics: Employment, Equity Ownership. Chauhan:C4 Therapeutics.: Equity Ownership; Stemline Therapeutics: Consultancy. Anderson:Gilead Sciences: Other: Advisory Board; Janssen: Other: Advisory Board; Sanofi-Aventis: Other: Advisory Board; OncoPep: Other: Scientific founder ; C4 Therapeutics: Other: Scientific founder .


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3788-3788
Author(s):  
Veerendra Munugalavadla ◽  
Leanne Berry ◽  
Changchun Du ◽  
Sanjeev Mariathasan ◽  
Dion Slaga ◽  
...  

Abstract Abstract 3788 Poster Board III-724 Multiple myeloma (MM) is a malignancy characterized by clonal expansion and accumulation of long-lived plasma cells within the bone marrow. Phosphatidylinositol 3' kinase (PI3K) -mediated signaling is frequently dysregulated in cancer and controls fundamental cellular functions such as cell migration, growth, survival and development of drug resistance in many cancers, including MM, and therefore represents an attractive therapeutic target. Here, we demonstrate in vitro, that a potent and selective pan-isoform PI3Kinhibitor, GDC-0941, modulates the expected pharmacodynamic markers, inhibits cell-cycle progression and induces apoptosis; overcomes resistance to apoptosis in MM cells conferred by IGF-1 and IL-6; and is additive or synergistic with current standard of care drugs including dexamethasone, melphalan, lenolidamide and bortezomib. In cell lines we find sensitivity to GDC-0941 is positively correlated with pathway activation as determined by phospho-AKT-specific flow-cytometry and Western-blot analysis. Preliminary results indicate apoptosis of MM cells is correlated with increased expression of the proapoptotic BH3-only protein BIM; mechanisms of increased apoptosis in MM will be further explored and an update presented. We further extend these in vitro findings to show that GDC-0941 has activity as a single agent in vivo and combines well with standard of care agents in several murine xenograft models to delay tumor progression and prolong survival. Our results suggest that GDC-0941 may combine well with existing therapies, providing a framework for the clinical use of this agent, and a rational approach to improving the efficacy of myeloma treatment. Disclosures: Munugalavadla: Genentech: Employment, Patents & Royalties. Berry:Genentech: Employment, Patents & Royalties. Du:Genentech, Inc.: Employment, Equity Ownership. Mariathasan:Genentech: Employment, Patents & Royalties. Slaga:Genentech: Employment, Patents & Royalties. Sun:Genentech Inc.: Employment. Chesi:Genentech, Inc.: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Merck: Research Funding. Bergsagel:Genentech: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Merck: Research Funding. Ebens:Genentech, Inc.: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2972-2972
Author(s):  
Sheeba K. Thomas ◽  
Alexander Suvorov ◽  
Lucien Noens ◽  
Oleg Rukavitsin ◽  
Joseph Fay ◽  
...  

Abstract Abstract 2972 Introduction Siltuximab is a chimeric monoclonal antibody that binds human interleukin (IL)-6 with high affinity. Formal assessments of siltuximab's effects on cardiac repolarization using triplicate electrocardiograms (ECGs) have not yet been performed in clinical studies. A phase 1 study was conducted to evaluate the effect of siltuximab, administered at the highest dose level used in clinical studies, on the QT interval in patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), or indolent multiple myeloma (IMM, i.e., asymptomatic MM with ≤3 lytic bone lesions but no other end organ damage). Methods Thirty patients with MGUS, SMM, or IMM who met the following criteria on ECG at screening: pulse 45−90 bpm, QTcF and QTcB ≤500 ms, QRS <100 ms, and PR <200 ms received siltuximab 15 mg/kg q3w as a 60 min IV infusion for 4 cycles. Patients were excluded for significant cardiac disease. ECGs and pharmacokinetics assessment were performed at Cycle 1 (pre-infusion [baseline]; end of infusion; and 1, 3, and 24 hrs post-infusion) and at Cycle 4 (pre-infusion, end of infusion, and 1 hr post-infusion). At all timepoints, triplicate 12-lead ECGs were conducted and evaluated by a central cardiology laboratory. No effect on QTc interval was concluded if the upper limit of the least square (LS) mean 90% confidence interval (CI) for the change from baseline QTc at each time point was <20 ms. Safety data were also collected. Preliminary assessment of clinical activity was performed using M-protein measurements from local laboratories. Patients achieving a 50% reduction from baseline in M-protein after 4 cycles were eligible for extended siltuximab therapy (15 mg/kg q4w). Results Thirty patients (14 MGUS, 15 SMM, 1 IMM) with median age 59.5 (range 24, 79) yrs were enrolled. Median serum protein electrophoresis was 1.21 (range 0, 5.4) g/dL, and median urine protein electrophoresis was 0 (range 0, 267) mg/24 hrs. Twenty-eight patients completed all 4 treatment cycles, among whom 27 were evaluable for the primary endpoint of QT interval assessment. The maximum mean increase in QTc from baseline occurred 3 hrs after the Cycle 1 infusion (QTcF = 3.2 ms [LS mean 90% CI −0.01, 6.45]; QTcB = 2.7 ms [LS mean 90% CI −0.69, 6.14]). At all other time points for both QTcF and QTcB, the mean increase from baseline was ≤1.5 ms and the upper limit of LS mean 90% CI was ≤5.07 ms. An effect of siltuximab on QTc interval was therefore ruled out. Furthermore, no patient had a QTcF or QTcB increase from baseline >30 ms, and no correlation was observed between siltuximab serum concentrations and change from baseline in QTcB or QTcF. Twenty (67%) of 30 treated patients had ≥1 adverse events (AEs). AEs reported by ≥10% of patients were nausea, fatigue (20% each); thrombocytopenia, headache (each 13%); dyspnea, leukopenia, neutropenia, paraesthesia, and upper respiratory tract infection (each 10%). The majority of AEs were grade ≤2. However, 8 (27%) patients had ≥1 AE grade ≥3: neutropenia (n=3); hypertriglyceridemia, hypertension, hypotension, leukopenia, and myalgia (each n=1); and 1 patient had grade 3 ascites, cellulitis, peripheral edema, portal hypertension, and hepatic cirrhosis (diagnosis made during hospitalization). This patient discontinued treatment due to cellulitis (possibly related to siltuximab) with peripheral edema and ascites (not related to siltuximab). A second patient discontinued treatment due to grade 2 atrial fibrillation that was not related to siltuximab. No severe infusion reactions or deaths were reported. After the first 4 cycles (3 mos), 3 MGUS patients achieved an M-protein response (≥50% reduction from baseline), and 9 patients (3 MGUS, 5 SMM, 1 IMM) had minor responses (≥25% and <50% reduction from baseline). Two patients who qualified for extended treatment with siltuximab continued to receive therapy (17 and 6 cycles, respectively) at the time of database lock. Conclusion Siltuximab, given at the highest dose level used in clinical studies, did not affect the QTc interval. Overall safety was similar to what has been previously reported for other single-agent siltuximab studies. M-protein responses were seen by local laboratory assessment within the first 4 cycles. A randomized phase 2 study is ongoing to further evaluate the efficacy and safety of single-agent siltuximab in high-risk SMM. Disclosures: Thomas: Millenium: Research Funding; Novartis: Research Funding; Immunomedics: Research Funding; Johnson & Johnson: Research Funding; Celgene: Research Funding; Onyx: Membership on an entity's Board of Directors or advisory committees. van de Velde:Johnson & Johnson: Employment, Equity Ownership. Bandekar:Johnson & Johnson: Employment, Equity Ownership. Puchalski:Johnson & Johnson: Employment, Equity Ownership. Qi:Johnson & Johnson: Employment, Equity Ownership. Uhlar:Johnson & Johnson: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3048-3048
Author(s):  
Daniel M Sullivan ◽  
Trinayan Kashyap ◽  
Jana L Dawson ◽  
Yosef Landesman ◽  
Steven Grant ◽  
...  

Abstract Purpose: Drug resistance is the greatest obstacle to the successful treatment of multiple myeloma (MM). We investigated whether the clinical XPO1 inhibitor selinexor (KPT-330), when combined with bortezomib or carfilzomib, could overcome proteasome inhibitor (PI) resistance in myeloma. Experimental Design: PI-resistant human MM cell lines 8226-B25 and U266-PSR were treated with the XPO1 inhibitors selinexor or KOS-2464 in combination with bortezomib or carfilzomib and assayed for apoptosis and viability. Mice challenged with PI-resistant human MM cells (U266-PSR) were treated with selinexor +/- bortezomib. CD138+/light-chain+ MM cells from PI-refractory MM patients were treated with selinexor +/- bortezomib or selinexor +/- carfilzomib and assayed for apoptosis. All experiments were compared to the standard of care, bortezomib therapy. IkBα-protein was assayed by Western blot and immunofluorescence microscopy and IkBα-NFkB-complex formation by proximity ligation assay. IkBα protein knockdown in human MM cells by siRNA was performed to determine the mechanism of selinexor inhibitor action. Further analysis of selinexor/bortezomib treatment on intra-cellular protein levels and intra-cellular localization was performed by lysine and N-terminal labeling with six-plex tandem mass tags (heavy isotope) and assayed by LC-MS/MS discovery proteomics. Results: Selinexor in combination with bortezomib or carfilzomib decreased viability and induced apoptosis in PI-resistant MM cells. Resistant MM cell lines were up to 10-fold resistant to single agent bortezomib or carfilzomib when compared to parental cells. The combination of the XPO1 inhibitors selinexor or KOS-2464 sensitized drug resistant cells to bortezomib (P < 0.02) and carfilzomib (P < 0.005) when compared to single agents. Selinexor and bortezomib inhibited PI-resistant MM tumor growth and increased survival with minimal toxicity in NOD/SCID-g mice. Bone marrow mononuclear cells isolated and treated with selinexor or KOS-2464 and bortezomib or carfilzomib from newly diagnosed (n=8), relapsed (n=5), and bortezomib (n=8) and carfilzomib (n=6) refractory MM patient samples were all sensitized by selinexor and KOS-2464 to bortezomib (P < 0.043) and carfilzomib (P < 0.044) as shown by increased apoptosis. Normal, non-myeloma CD138/light-chain double-negative patient cells were not sensitized to apoptosis by XPO1 inhibitors. Immunofluorescence microscopy of IkBα in 8226-B25 PI-resistant cells showed an increase in IkBα after treatment with selinexor/bortezomib as compared with vehicle control or single agent bortezomib or selinexor. Nuclear IκBα was also increased by selinexor treatment. IkBα protein expression was increased by bortezomib (70%) and selinexor (50%) versus control. The selinexor/bortezomib combination increased IkBα protein (212%) as compared to vehicle control or single agent bortezomib or selinexor. Similar results were found in drug-naïve 8226 and U226 cells, as well as PI-resistant 8226-B25 and U225-PSR cells. The increase in nuclear IkBα after selinexor treatment was confirmed by ImageStream flow cytometry. Selinexor/bortezomib therapy significantly increased IkBα-NFkB-complexes in PI-resistant MM cells. Selinexor in combination with bortezomib increased proximity co-localization of NFkB and IkBα without affecting XPO1 protein expression after 4 hours of drug treatment. Analysis of the number of NFkB-IkBα foci/binding showed that selinexor/bortezomib increased the number of foci in the nucleus versus untreated control or single agent selinexor or bortezomib (P ≤ 0.00077). IkBα knockdown reduced selinexor-induced cytotoxicity in both IM-9 (9.5-fold) and 8226 (12.3 to 25.4-fold) human MM cells. Intracellular protein analysis by heavy isotope labeling and LC-MS/MS showed changes in several signaling pathways including p53, MAPK, VEGF and angiopoietin, IL-1, HMGB1/TLR and APRIL and BAFF as well as those related to NFkB signaling. Conclusion: Selinexor, when used in combination with bortezomib or carfilzomib has the potential to overcome PI drug resistance in MM. Disclosures Kashyap: Pharma: Employment. Landesman:Karyopharm Therapeutics: Employment. Kauffman:Karyopharm: Employment, Equity Ownership. Shacham:Karyopharm: Employment, Equity Ownership.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1652-1652
Author(s):  
Clifford J. Whatcott ◽  
James M Bogenberger ◽  
Wontak Kim ◽  
Hillary Haws ◽  
Nanna Hansen ◽  
...  

Abstract Introduction Venetoclax (ABT-199) is an approved BCL-2 inhibitor for the treatment of patients with chronic lymphocytic leukemia (CLL). Multiple clinical trials are underway to explore its efficacy in additional indications. While venetoclax demonstrated high remission rates in combination with azacitidine in early stage clinical trials, the question of durability of responses and primary and acquired resistance remain, especially given the modest activity and rapid development of resistance as a single agent. One reported mechanism of intrinsic resistance is high expression of other BCL-2 family proteins, including MCL-1. We and others have demonstrated that the CDK9 inhibitor, alvocidib, can mediate transcriptional repression of anti-apoptotic MCL-1. It has also been shown that alvocidib can increase pro-apoptotic BIM, a dual activator and sensitizer BH3-only protein that can directly induce apoptosis and simultaneously inactivate anti-apoptotic BCL-2 family proteins such as MCL-1 and BCL-2, thus having the same effect on mitochondria-associated apoptosis as MCL-1 down-regulation, with the potential to directly induce apoptosis. An alvocidib-containing cytotoxic chemotherapy regimen demonstrated favorable remission rates in high-risk AML patients over standard therapy in a randomized Phase 2 trial indicating its potential role and safety in AML. We hypothesized that alvocidib and venetoclax would synergize against AML cells by shifting the overall balance of pro- and anti-apoptotic BCL-2 proteins in favor of apoptosis and thus represent a novel active treatment regimen in AML. Aims This study seeks to examine the efficacy of a treatment regimen containing alvocidib and venetoclax in multiple preclinical studies, including in vivo models of AML. Methods Cell viability assays interrogating alvocidib and venetoclax activity in cell lines were performed using CellTiter-Glo according to manufacturer's protocol. mRNA/miRNA expression changes were assessed using standard RT-PCR technique. Protein expression changes were assessed using standard western immunoblotting technique. To assess the efficacy of an alvocidib and venetoclax combination on tumor growth in an in vivo model, the OCI-AML3 xenograft mouse model and ex vivo studies with AML patient samples were performed. Results Herein we demonstrate that alvocidib inhibits both mRNA and protein expression of MCL-1 in a time and concentration-dependent fashion in 3 out of 4 AML cell lines analyzed, while in cells where alvocidib did not reduce MCL-1 protein levels (i.e. MOLM-13) a dose-dependent decrease in miR17-92, and concomitant increase in BIM protein was observed after 24 hours of alvocidib treatment. The alvocidib-venetoclax combination resulted in very strong synergistic reductions of cell viability (with combination indices [CI] of 0.4 to 0.7), both in venetoclax-sensitive and resistant cells. The venetoclax-sensitive lines, MV4-11 and MOLM-13, exhibited 5- to 10-fold reduction of venetoclax EC50 values in the low nM range when combined with only 80 nM alvocidib. Importantly, venetoclax-resistant lines, OCI-AML3 and THP-1, exhibited at least 20-fold reduction of venetoclax EC50 values from near 1 µM to 10-50 nM, when combined with 80 nM alvocidib.In the venetoclax-resistant OCI-AML3 xenograft model, single agent alvocidib and venetoclax achieved tumor growth inhibition (TGI) of 9.7 and 31.5%, respectively, while the combination achieved 87.9% TGI at the same dose levels of individual drugs. Conclusions Taken together, our data suggest that the combination of alvocidib with venetoclax is highly synergistic in vitro and in vivo, in both venetoclax-sensitive and -resistant AML across a heterogeneous genomic background. The particularly high level of synergy achieved in venetoclax-resistant cell lines highlights the central importance of both BCL-2 and MCL-1-mediated cell survival in AML. Importantly, the addition of alvocidib to venetoclax treatment reduced IC50s to clinically achievable concentrations. Therefore, we conclude that an alvocidib/venetoclax combination may be a novel approach for the treatment of AML and warrants further pre-clinical and clinical validation. Disclosures Whatcott: Tolero Pharmaceuticals: Employment. Kim:Tolero Pharmaceuticals: Employment. Haws:Tolero Pharmaceuticals: Employment. Mesa:Celgene: Research Funding; Galena: Consultancy; Promedior: Research Funding; Ariad: Consultancy; Novartis: Consultancy; CTI: Research Funding; Incyte: Research Funding; Gilead: Research Funding. Peterson:Tolero Pharmaceuticals: Employment. Siddiqui-Jain:Tolero Pharmaceuticals: Employment. Weitman:Tolero Pharmaceuticals: Employment. Bearss:Tolero Pharmaceuticals: Employment, Equity Ownership, Patents & Royalties. Warner:Tolero Pharmaceuticals: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5672-5672 ◽  
Author(s):  
Shilpi Arora ◽  
Kaylyn Williamson ◽  
Shruti Apte ◽  
Srividya Balachander ◽  
Jennifer Busby ◽  
...  

Abstract Post-translational modifications of the histone proteins play a key role in regulating processes that require access to DNA. Specifically, methylation of lysine 27 on histone 3 (H3K27) is intimately linked with transcriptional repression. EZH2, a histone lysine methyl transferase is the catalytic component of the PRC2 complex, which catalyzes H3K27 methylation. EZH2 dysregulation has been observed in different malignancies and inhibition of its catalytic activity has emerged as a novel therapeutic approach to treat human cancers. Potent, selective and reversible EZH2 small molecule inhibitors are currently being tested in Ph. 1 clinical trials. We and others have reported EZH2 dependencies across non-Hodgkin Lymphoma subtypes in cancer cell lines, in xenograft mouse models and in lymphoma patients. We identified Multiple Myeloma as potential clinical application for EZH2 inhibitors. Treatment with EZH2 inhibitors such as CPI-360, CPI-169 and CPI-1205 cause apoptosis in multiple myeloma and plasmacytoma cell models and causes tumor growth inhibition in myeloma xenograft models at well tolerated doses. An EZH2-controlled transcriptional signature across various multiple myeloma was identified using integrated RNA-sequencing and ChIP-sequencing data. Combination studies testing EZH2 inhibitors with standard of care (SOC) agents across a panel of multiple myeloma cell lines showed synergistic responses with several of the SOC agents in vitro and in vivo. Disclosures Arora: Constellation Pharmaceuticals: Employment, Equity Ownership. Williamson:Constellation Pharmaceuticals: Employment, Equity Ownership. Apte:Constellation Pharmaceuticals: Employment, Equity Ownership. Balachander:Constellation Pharmaceuticals: Employment, Equity Ownership. Busby:Constellation Pharmaceuticals: Employment, Equity Ownership. Hatton:Constellation Pharmaceuticals: Employment, Equity Ownership. Bryant:Constellation Pharmaceuticals: Employment, Equity Ownership. Trojer:Constellation Pharmaceuticals: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document