QT Interval Effects and M-Protein Response in a Phase 1 Study of Siltuximab (Anti-IL-6 Monoclonal Antibody) in Patients with Monoclonal Gammopathy of Undetermined Significance, Smoldering Multiple Myeloma, or Indolent Multiple Myeloma.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2972-2972
Author(s):  
Sheeba K. Thomas ◽  
Alexander Suvorov ◽  
Lucien Noens ◽  
Oleg Rukavitsin ◽  
Joseph Fay ◽  
...  

Abstract Abstract 2972 Introduction Siltuximab is a chimeric monoclonal antibody that binds human interleukin (IL)-6 with high affinity. Formal assessments of siltuximab's effects on cardiac repolarization using triplicate electrocardiograms (ECGs) have not yet been performed in clinical studies. A phase 1 study was conducted to evaluate the effect of siltuximab, administered at the highest dose level used in clinical studies, on the QT interval in patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), or indolent multiple myeloma (IMM, i.e., asymptomatic MM with ≤3 lytic bone lesions but no other end organ damage). Methods Thirty patients with MGUS, SMM, or IMM who met the following criteria on ECG at screening: pulse 45−90 bpm, QTcF and QTcB ≤500 ms, QRS <100 ms, and PR <200 ms received siltuximab 15 mg/kg q3w as a 60 min IV infusion for 4 cycles. Patients were excluded for significant cardiac disease. ECGs and pharmacokinetics assessment were performed at Cycle 1 (pre-infusion [baseline]; end of infusion; and 1, 3, and 24 hrs post-infusion) and at Cycle 4 (pre-infusion, end of infusion, and 1 hr post-infusion). At all timepoints, triplicate 12-lead ECGs were conducted and evaluated by a central cardiology laboratory. No effect on QTc interval was concluded if the upper limit of the least square (LS) mean 90% confidence interval (CI) for the change from baseline QTc at each time point was <20 ms. Safety data were also collected. Preliminary assessment of clinical activity was performed using M-protein measurements from local laboratories. Patients achieving a 50% reduction from baseline in M-protein after 4 cycles were eligible for extended siltuximab therapy (15 mg/kg q4w). Results Thirty patients (14 MGUS, 15 SMM, 1 IMM) with median age 59.5 (range 24, 79) yrs were enrolled. Median serum protein electrophoresis was 1.21 (range 0, 5.4) g/dL, and median urine protein electrophoresis was 0 (range 0, 267) mg/24 hrs. Twenty-eight patients completed all 4 treatment cycles, among whom 27 were evaluable for the primary endpoint of QT interval assessment. The maximum mean increase in QTc from baseline occurred 3 hrs after the Cycle 1 infusion (QTcF = 3.2 ms [LS mean 90% CI −0.01, 6.45]; QTcB = 2.7 ms [LS mean 90% CI −0.69, 6.14]). At all other time points for both QTcF and QTcB, the mean increase from baseline was ≤1.5 ms and the upper limit of LS mean 90% CI was ≤5.07 ms. An effect of siltuximab on QTc interval was therefore ruled out. Furthermore, no patient had a QTcF or QTcB increase from baseline >30 ms, and no correlation was observed between siltuximab serum concentrations and change from baseline in QTcB or QTcF. Twenty (67%) of 30 treated patients had ≥1 adverse events (AEs). AEs reported by ≥10% of patients were nausea, fatigue (20% each); thrombocytopenia, headache (each 13%); dyspnea, leukopenia, neutropenia, paraesthesia, and upper respiratory tract infection (each 10%). The majority of AEs were grade ≤2. However, 8 (27%) patients had ≥1 AE grade ≥3: neutropenia (n=3); hypertriglyceridemia, hypertension, hypotension, leukopenia, and myalgia (each n=1); and 1 patient had grade 3 ascites, cellulitis, peripheral edema, portal hypertension, and hepatic cirrhosis (diagnosis made during hospitalization). This patient discontinued treatment due to cellulitis (possibly related to siltuximab) with peripheral edema and ascites (not related to siltuximab). A second patient discontinued treatment due to grade 2 atrial fibrillation that was not related to siltuximab. No severe infusion reactions or deaths were reported. After the first 4 cycles (3 mos), 3 MGUS patients achieved an M-protein response (≥50% reduction from baseline), and 9 patients (3 MGUS, 5 SMM, 1 IMM) had minor responses (≥25% and <50% reduction from baseline). Two patients who qualified for extended treatment with siltuximab continued to receive therapy (17 and 6 cycles, respectively) at the time of database lock. Conclusion Siltuximab, given at the highest dose level used in clinical studies, did not affect the QTc interval. Overall safety was similar to what has been previously reported for other single-agent siltuximab studies. M-protein responses were seen by local laboratory assessment within the first 4 cycles. A randomized phase 2 study is ongoing to further evaluate the efficacy and safety of single-agent siltuximab in high-risk SMM. Disclosures: Thomas: Millenium: Research Funding; Novartis: Research Funding; Immunomedics: Research Funding; Johnson & Johnson: Research Funding; Celgene: Research Funding; Onyx: Membership on an entity's Board of Directors or advisory committees. van de Velde:Johnson & Johnson: Employment, Equity Ownership. Bandekar:Johnson & Johnson: Employment, Equity Ownership. Puchalski:Johnson & Johnson: Employment, Equity Ownership. Qi:Johnson & Johnson: Employment, Equity Ownership. Uhlar:Johnson & Johnson: Employment, Equity Ownership.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1959-1959 ◽  
Author(s):  
Jatin J Shah ◽  
Jeffrey A. Zonder ◽  
Adam Cohen ◽  
Donna Weber ◽  
Sheeba Thomas ◽  
...  

Abstract Abstract 1959 Background: Kinesin Spindle Protein (KSP) is required for cell cycle progression through mitosis. Inhibition of KSP induces mitotic arrest and cell death. ARRY-520 is a potent, selective KSP inhibitor. Cancers such as multiple myeloma (MM) which depend on the short-lived survival protein MCL-1 are highly sensitive to treatment with ARRY-520. ARRY-520 shows potent activity in preclinical MM models, providing a strong rationale for its clinical investigation in this disease. Methods: This Phase 1 study was designed to evaluate the safety and pharmacokinetics (PK) of ARRY-520 administered intravenously (IV) on Day 1 and Day 2 q 2 weeks without/with granulocyte-colony stimulating factor (G-CSF). Patients (pts) with relapsed/refractory (RR) MM with 2 prior lines of therapy (including both bortezomib and an immunomodulatory agent, unless ineligible for or refusing to receive this therapy) were eligible. Cohorts of at least 3 pts were enrolled in a classical 3 + 3 dose escalation design. Pts were treated for 2 cycles (4 weeks) to evaluate safety prior to dose escalation. Results: Twenty five pts have been treated to date, with a median age of 60 years (range 44–79) and a median of 5 prior regimens (range 2–16). All pts received prior bortezomib or carfilzomib, 21 pts received prior lenalidomide, 17 pts prior thalidomide, and 18 pts had a prior stem cell transplant. Pts received ARRY-520 without G-CSF at 1 mg/m2/day (n = 3), and at 1.25 mg/m2/day (n = 7, 6 evaluable). A dose-limiting toxicity (DLT) of Grade 4 neutropenia was observed at 1.25 mg/m2/day, and this was considered the maximum tolerated dose (MTD) without G-CSF. As neutropenia was the DLT, dose escalation with prophylactic G-CSF support was initiated, at doses of 1.5 mg/m2/day (n = 7, 6 evaluable), 2.0 mg/m2/day (n = 6) and 2.25 mg/m2/day (n = 2) with G-CSF. Both the 2.0 mg/m2/day and 2.25 mg/m2/day dose levels were determined to be non-tolerated, with DLTs of febrile neutropenia (FN) (2 pts at 2.0 mg/m2/day and both pts at 2.25 mg/m2/day) and Grade 3 mucositis (both pts at 2.25 mg/m2/day). One out of 6 evaluable pts at 1.5 mg/m2/day also developed a DLT of FN. In an attempt to optimize the Phase 2 dose, an intermediate dose level of 1.75 mg/m2/day with G-CSF is currently being evaluated. The most commonly reported treatment-related adverse events (AEs) include those observed with other KSP inhibitors, such as hematological AEs (thrombocytopenia, neutropenia, anemia, leukopenia), fatigue, mucositis and other gastro-intestinal AEs. Pts displayed linear PK, a low clearance and a moderate volume of distribution, with moderate-to-high inter-individual variability in PK parameters. The median terminal elimination half life is 65 hours. The preliminary efficacy signal as a single agent is encouraging with 2 partial responses (PR) observed to date per IMWG and EBMT criteria in a heavily pretreated population (23 evaluable pts). A bortezomib-refractory pt with 8 prior lines of therapy, including a tandem transplant, treated at 1 mg/m2/day of ARRY-520 obtained a PR after Cycle 6, with urine protein and kappa light chain levels continuing to decline over time. He remains on-study after 15 months of ARRY-520 treatment. A pt with 2 prior lines of therapy, including prior carfilzomib, has obtained a PR after Cycle 8 at 2 mg/m2/day of ARRY-520, and she is currently ongoing after 4.5 months on therapy. Fifteen pts had a best response of stable disease (SD), including 1 pt with a thus far unconfirmed minimal response, and 6 had progressive disease. A total of 10 pts (43%) achieved a PR or SD lasting > 12 weeks. Several additional pts have shown other evidence of clinical activity, with decrease in paraproteins, increase in hemoglobin levels and regression of plasmacytomas. The median number of cycles is 4 (range 1–28+). Treatment activity has not correlated with any baseline characteristics or disease parameters to date. Conclusions: : The selective KSP inhibitor ARRY-520 has been well tolerated, and shows promising signs of single agent clinical activity in heavily pretreated pts with RR MM. Prophylactic G-CSF has enabled higher doses to be tolerated. No cardiovascular or liver enzyme toxicity has been reported. Enrollment is ongoing at 1.75 mg/m2/day with G-CSF support, and a planned Phase 2 part of the study will be initiated as soon as the MTD is determined. Complete Phase 1 data will be disclosed at the time of the meeting. Disclosures: Shah: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Research Funding. Off Label Use: Revlimid (lenalidomide) in combination with dexamethasone is indicated for the treatment of multiple myeloma patients who have received at least one prior therapy. Zonder:Millennium: Consultancy, Myeloma and Amyloidosis Patient Day Symposium – Corporate support from multiple sponsors for a one-day educational event, Research Funding; Celgene:; Novartis:; Proteolix: . Weber:novartis-unpaid consultant: Consultancy; Merck- unpaid consultant: Consultancy; celgene- none for at least 2 years: Honoraria; millenium-none for 2 years: Honoraria; celgene, Millenium, Merck: Research Funding. Wang:Celgene: Research Funding; Onyx: Research Funding; Millenium: Research Funding; Novartis: Research Funding. Kaufman:Celgene: Consultancy, Honoraria, Research Funding; Millenium: Consultancy, Honoraria; Merck: Research Funding; Genzyme: Consultancy. Walker:Array Biopharma: Employment, Equity Ownership. Freeman:Array Biopharma: Employment, Equity Ownership. Rush:Array Biopharma: Employment, Equity Ownership. Ptaszynski:Array Biopharma: Consultancy. Lonial:Millennium, Celgene, Bristol-Myers Squibb, Novartis, Onyx: Advisory Board, Consultancy; Millennium, Celgene, Novartis, Onyx, Bristol-Myers Squibb: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3145-3145 ◽  
Author(s):  
Paul G. Richardson ◽  
Myo Htut ◽  
Cristina Gasparetto ◽  
Jeffrey A. Zonder ◽  
Thomas G. Martin ◽  
...  

Background: The bone marrow microenvironment of many multiple myeloma (MM) patients contains high levels of CD123-expressing plasmacytoid dendritic cells (pDCs). These pDCs have been shown to augment MM growth and contribute to drug resistance (Chauhan, et al., Cancer Cell, 2009). Tagraxofusp, a novel CD123 targeted therapy, has demonstrated high levels of anti-tumor activity in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN), an aggressive CD123+ malignancy of pDC origin. Tagraxofusp demonstrated potent in vitro and in vivo activity against MM cell lines and primary tumor samples via both a direct anti-MM effect and indirect pDC-targeting effect (Ray, et al., Leukemia, 2017), as well as demonstrating synergy in these systems when used in combination with traditional MM therapies including pomalidomide (POM). As such, targeting pDCs with tagraxofusp may offer a novel therapeutic approach in MM. Methods: This multicenter, single arm Phase 1/2 trial enrolled patients with relapsed or refractory (r/r) MM and tested two different doses of tagraxofusp (7 or 9 mcg/kg). Patients received tagraxofusp as a daily IV infusion for days 1-5 of a 28-day cycle as a single agent for the initial run-in cycle (cycle 0) and in combination with standard doses/administration of POM and dexamethasone (DEX) in cycles 1 and beyond. Objectives included evaluation of safety and tolerability, identification of the maximum tolerated or tested dose, and efficacy. Results: 9 patients with r/r MM received tagraxofusp (7 mcg/kg, n=7; 9 mcg/kg, n=2). 5 males, median age 65 years (range: 57-70), median 3 prior therapies (range 2-6). Median follow-up was 12 months (range: 7 - 19). The most common treatment-emergent AEs (TEAEs) were hypoalbuminemia 67% (6/9); chills, fatigue, insomnia, nausea and pyrexia each 56% (5/9); and dizziness, headache, hypophosphatemia, and thrombocytopenia each 44% (4/9). The most common grade 3 and 4 TEAEs were thrombocytopenia 44% (4/9) and neutropenia 33% (3/9). No grade 5 events reported. 5 patients treated with tagraxofusp and POM+DEX had a partial response (PR) after tumor evaluation. These patients demonstrated a rapid decrease in a set of myeloma-related laboratory values from pre-tagraxofusp treatment levels after the first combination cycle of tagraxofusp and POM+DEX. Additionally, these 5 patients demonstrated >50% decreases in peripheral blood pDC levels after both tagraxofusp monotherapy and combination therapy. Conclusions: Tagraxofusp was well-tolerated, with a predictable and manageable safety profile, when dosed in combination with POM+DEX in patients with r/r MM. Evidence of pDC suppression in peripheral blood and BM was observed in this patient population. 5 patients that received tagraxofusp and POM+DEX combination had PRs and decreases in pDC levels while on treatment with tagraxofusp. Given CD123 expression on pDCs in the tumor microenvironment and the potential synergy of tagraxofusp with certain MM agents including POM, tagraxofusp may offer a novel mechanism of action in MM. NCT02661022. Disclosures Richardson: Oncopeptides: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding. Gasparetto:Celgene: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; Janssen: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; BMS: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed . Zonder:Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Consultancy, Membership on an entity's Board of Directors or advisory committees. Martin:Roche and Juno: Consultancy; Amgen, Sanofi, Seattle Genetics: Research Funding. Chen:Stemline Therapeutics: Employment, Equity Ownership. Brooks:Stemline Therapeutics: Employment, Equity Ownership, Patents & Royalties. McDonald:Stemline Therapeutics: Employment, Equity Ownership. Rupprecht:Stemline Therapeutics: Employment, Equity Ownership. Wysowskyj:Stemline Therapeutics: Employment, Equity Ownership. Chauhan:C4 Therapeutics.: Equity Ownership; Stemline Therapeutics: Consultancy. Anderson:Gilead Sciences: Other: Advisory Board; Janssen: Other: Advisory Board; Sanofi-Aventis: Other: Advisory Board; OncoPep: Other: Scientific founder ; C4 Therapeutics: Other: Scientific founder .


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4730-4730 ◽  
Author(s):  
Jeffrey Matous ◽  
David S Siegel ◽  
Sagar Lonial ◽  
R. Donald Harvey ◽  
Claudia Kasserra ◽  
...  

Abstract Background: Pomalidomide (POM) is indicated for patients (pts) with relapsed or refractory multiple myeloma (RRMM) who received ≥ 2 prior therapies including lenalidomide and bortezomib and demonstrated progression on or within 60 days of completion of the last treatment (Tx). Renal impairment (RI) is a common comorbidity of multiple myeloma (MM) occurring in 20% to 40% of pts (Eleutherakis-Papaikovou, et al. Leuk Lymphom, 2007; Knudsen, et al., Eur J Haematol, 2000). POM is extensively metabolized, with < 5% eliminated renally as the parent drug (Hoffmann, et al., Cancer Chemother Pharmacol, 2013). POM in combination with low-dose dexamethasone (LoDEX) has shown efficacy in pts with RRMM and moderate RI (creatinine clearance [CrCl] < 30-44 mL/min), but pts with severe RI (CrCl < 30 mL/min; serum creatinine> 3 mg/dL) were excluded from most trials (Siegel, et al., Blood. 2012; Weisel, et al., J Clin Oncol, 2013). MM-008 is a multicenter, open-label, phase 1 study assessing the pharmacokinetics (PK) and safety of POM + LoDEX in pts with RRMM and normal or severely impaired renal function. Methods: Pts withRRMM (≥ 1 prior Tx) and normal kidney function or mild RI (creatinine clearance [CrCl] ≥ 60 mL/min; Cohort A—control arm), severe RI (CrCl < 30 mL/min) not requiring dialysis (Cohort B), and severe RI requiring dialysis (Cohort C) were eligible. Cohort A received POM 4 mg, and Cohort B received POM 2 or 4 mg on days 1-21 of a 28-day cycle, following a 3 + 3 dose-escalation design. Cohort B results informed the 4 mg dosing of Cohort C. All cohorts received DEX 40 mg (20 mg for pts aged > 75 yrs) on days 1, 8, 15, and 22. Tx continued until progression or unacceptable toxicity. Dose-limiting toxicities (DLTs) were defined as any of the following: grade (Gr) 4 neutropenia, febrile neutropenia, Gr 4 thrombocytopenia that is a ≥ 30% decrease in platelets from baseline and requires > 1 platelet transfusion, Gr 3 thrombocytopenia with significant bleeding (requiring hospitalization and/or platelet transfusion), Gr 4 infection, or ≥ Gr 3 other non-hematologic toxicity related to POM. Serial plasma samples were analyzed to generate PK parameters. Updated PK and AE data for all cohorts will be presented. Results: As of July 17, 2014, updated data for 16 treated pts were available (8 in Cohort A; 3 in Cohort B at 2 mg; 4 in Cohort B at 4 mg; and 1 in Cohort C). Median age was 67 yrs (range, 46-76 yrs), 56% were male, all had Eastern Cooperative Oncology Group performance status 0 or 1, and a median time from diagnosis of 3.8 yrs (range, 0.6-12.5). No DLTs in cycle 1 were reported for any cohort. The most common Gr ≥ 3 adverse events (AEs) were neutropenia, anemia, infection, and fatigue (Table). Median relative dose intensity was consistent across cohorts: 90% (Cohort A), 90% (Cohort B; 2 mg), 100% (Cohort B; 4 mg) and 100% (Cohort C). Three pts discontinued due to AEs (2 in Cohort A and 1 in Cohort B 4 mg); no deaths have occurred during treatment phase. Conclusion: MM-008 is an ongoing trial prospectively evaluating the PK and safety of POM + LoDEX in pts with RRMM and severe RI. Preliminary PK data support mean dose-normalized exposure in pts with RRMM being similar between those with severe RI and those with no or mild RI at the clinical dose of 4 mg; early tolerability data (after one cycle) are encouraging. Table Cohort A(n = 8) Cohort B(n = 3) Cohort B(n = 4) Cohort C(n = 1) Cohort Characteristics POM dose 4 mg 2 mg 4 mg 4 mg CrCl (mL/min) ≥ 60 mL/min < 30 mL/min without dialysis < 30 mL/min without dialysis < 30 mL/min with dialysis Safety Dose-limiting toxicities (n) N/A 0 0 0 Grade 3/4 AEs (n) Neutropenia 4 2 1 0 Anemia 3 1 2 0 Infection 3 2 0 0 Fatigue 2 0 0 0 N/A: Not applicable (4 mg POM is approved dose for population) Disclosures Matous: Celgene Corp: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Siegel:Celgene Corp: Honoraria, Speakers Bureau; Onyx: Honoraria, Speakers Bureau; Millennium: Honoraria, Speakers Bureau. Lonial:Onyx: Consultancy; BMS: Consultancy; Novartis: Consultancy; Celgene: Consultancy; Millennium: Consultancy. Harvey:Celgene Corp: Research Funding. Kasserra:Celgene Corp: Employment, Equity Ownership. Li:Celgene Corp: Employment, Equity Ownership. Chen:Celgene Corp: Employment. Doerr:Celgene Corporation: Employment. Sternas:Celgene Corp: Employment, Equity Ownership. Zaki:Celgene : Employment, Equity Ownership. Jacques:Celgene Corp: Employment, Equity Ownership. Shah:Celgene Corp: Consultancy, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5752-5752 ◽  
Author(s):  
Hiroshi Handa ◽  
Kenshi Suzuki ◽  
Takaaki Chou ◽  
Takafumi Matsushima

Background Ixazomib is the first oral proteasome inhibitor to be investigated clinically for the treatment of MM. Phase 1 studies have shown single-agent activity and manageable toxicities in RRMM (Kumar et al. Blood 2014) and phase 1/2 studies have suggested the feasibility and activity of weekly oral ixazomib plus Rd in previously untreated MM (Kumar et al. ASH 2012; Richardson et al. ASH 2013). These findings have led to ongoing phase 3 trials of weekly ixazomib 4 mg + Rd in RRMM and previously untreated MM. However, the early-phase studies were conducted in Western pts. This phase 1, open-label multicenter study aimed to determine the safety, tolerability, and pharmacokinetics (PK) of weekly ixazomib alone or with Rd in Japanese pts with RRMM (Japic Clinical Trials Information no. 121822). Methods Primary objectives were to evaluate the safety and tolerability, including dose-limiting toxicities (DLTs) and adverse events (AEs), and the PK of ixazomib alone or with Rd. A secondary objective was evaluation of antitumor activity. Japanese pts aged ≥20 years with RRMM who had received at least 2 prior regimens, which must have included bortezomib, thalidomide or lenalidomide, and corticosteroids, were eligible. All had measurable disease and ECOG performance status of 0–2. Pts with grade ≥2 peripheral neuropathy or grade ≥2 diarrhea at study entry were excluded. Pts received ixazomib 4 mg on days 1, 8, and 15 of 28-day cycles, alone or with Rd (lenalidomide 25 mg on days 1–21, dexamethasone 40 mg on days 1, 8, 15, and 22), per the regimen used in the ongoing phase 3 trials. AEs were graded per NCI-CTCAE v4.03. Blood samples for PK analysis were taken at multiple time points prior to and after dosing on days 1 and 15 of cycle 1. Responses were assessed per IMWG uniform response criteria. Results Fourteen pts were enrolled; 8 (57%) were male, median age was 62.5 yrs (range 53–71), 4 pts were aged ≥65 yrs, median number of prior therapies was 7. Seven pts received single-agent ixazomib and 7 received ixazomib + Rd. One pt in each cohort was excluded from the DLT-evaluable population. Two patients experienced DLTs in cycle 1: 1 pt receiving single-agent ixazomib had grade 4 thrombocytopenia and grade 3 diarrhea, hypertension, hypokalemia, hyponatremia, and nausea; 1 pt in the ixazomib + Rd cohort had grade 4 thrombocytopenia and neutropenia. All events were considered treatment-related. At data cut-off (Jan 6 2014), 6 pts remained on treatment and 8 had discontinued due to: progressive disease (PD; n=3), AEs (n=3), symptomatic deterioration, and protocol violation (each n=1). At data cut-off, pts (n=14) had received a median of 6 cycles of ixazomib (range 1–21); the 7 pts in the ixazomib + Rd cohort had received a median of 4 cycles (range 1–12) of ixazomib + Rd. Thirteen (93%) pts experienced treatment-related AEs; the most common were neutropenia (71%), thrombocytopenia (71%), leukopenia (64%), lymphopenia (57%), and diarrhea (50%). There were no cases of peripheral neuropathy. Nine (64%) pts had grade ≥3 AEs; the most common were lymphopenia (50%), neutropenia (43%), and thrombocytopenia (36%). Two (14%) pts (single-agent cohort) had serious AEs (grade 2 bronchitis in 1 pt, and grade 4 thrombocytopenia and grade 3 hypokalemia in 1 pt). Three pts discontinued due to AEs; 1 due to diarrhea in the single-agent cohort, and 1 due to neutropenia and 1 due to thrombocytopenia in the ixazomib + Rd cohort. There were no deaths. PK data showed ixazomib was rapidly absorbed with a Tmax at 1.08–1.83 hrs. Terminal half-life (geometric mean) was 5.7 days for single-agent ixazomib and 5.2 days for ixazomib + Rd. There were no substantial differences in the ixazomib PK profile between the two cohorts. Thirteen pts were response-evaluable. One pt (ixazomib + Rd cohort) had a partial response; at data cut-off, this pt remained in response with a 100% M-protein reduction (unconfirmed VGPR) and duration of response of ~10.8 months. Seven pts had stable disease (including 3 with M-protein reductions of 25–50%), 2 had PD, and 3 were not assessable. Conclusions These data suggest that ixazomib 4 mg alone or with Rd is feasible and tolerable in Japanese pts with RRMM. The AEs were manageable, reflecting the AE profile seen in Western populations, supporting the use of this dose and schedule in Japanese pts. Disclosures Handa: Celgene: Research Funding; Yakult: Research Funding; Kirin: Research Funding; Chugai: Research Funding. Off Label Use: Investigational agent ixazomib for the treatment of Japanese patients with relapsed and/or refractory multiple myeloma.. Matsushima:Takeda Pharmaceutical Company Limited : Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4509-4509 ◽  
Author(s):  
R. Frank Cornell ◽  
Adriana C Rossi ◽  
Rachid Baz ◽  
Craig C Hofmeister ◽  
Chaim Shustik ◽  
...  

Abstract Introduction - Inhibition of Exportin 1 (XPO1) is a novel treatment approach for multiple myeloma (MM). XPO1 mediates the nuclear export of cell-cycle regulators and tumor suppressor proteins leading to their functional inactivation. In addition, XPO1 promotes the export and translation of the mRNA of key oncoproteins (e.g. c-MYC, BCL-2, Cyclin D). XPO1 overexpression occurs in solid and hematological malignancies, including MM and is essential for MM cell survival. Selinexor, the first oral SINE compound, has shown promising anti-MM activity in phase 1 studies but has been associated with gastrointestinal and constitutional toxicities including nausea, anorexia and fatigue. KPT-8602 is a second generation oral SINE compound with similar in vitro potency to selinexor, however, has substantially reduced brain penetration compared with selinexor, and demonstrated markedly improved tolerability with minimal anorexia and weight loss in preclinical toxicology studies. In murine models of MM, KPT-8602 can be dosed daily (QDx5) with minimal anorexia and weight loss. We have therefore initiated a phase 1/2 first-in-human clinical trial. Methods - This phase 1/2 clinical trial was designed to evaluate KPT-8602 as a single agent and in combination with low dose dexamethasone (dex) in patients (pts) with relapsed / refractory MM (RRMM). KPT-8602 is dosed orally (QDx5) for a 28-day cycle with a starting dose of 5 mg. Low dose dex (20 mg, twice weekly) is allowed after cycle 1 if at least a minimal response (MR) is not observed. The primary objective is to evaluate the safety and tolerability including dose-limiting toxicity (DLT), determine the maximum tolerated dose (MTD), the recommended Phase 2 dose (RP2D), and evidence for anti-MM activity for KPT-8602 single agent and in combination with dex. The pharmacokinetic (PK) and pharmacodynamic (PDn; XPO1 mRNA) profile of KPT-8602 will also be determined. PDn predictive biomarker analysis and ex vivo drug response assays are underway using tumor cells from bone marrow aspirates before treatment, during and at relapse. These analyses include cell death pathway assays by flow and nuclear/cytoplasmic localization of XPO1, NF-ƙB, IƙBα, IKKα, NRIF and p53 by imaging flow and IHC. Results - As of 01-Aug-2016, 6 pts 2 M/4 F, (median of 6 prior treatment regimens, median age of 71) with RRMM have been enrolled. Common related grade 1/2 adverse events (AEs) include thrombocytopenia (3 pts), nausea (2 pts) and diarrhea (2 pts). Grade 3 AEs include neutropenia (1 pt) and dehydration (1 pt). No grade 4 or 5 AEs have been reported. No DLTs have been observed and the MTD has not been reached. 5 pts were evaluable for responses (1 pt pending evaluation): 1 partial response, 1 minimal response, and 3 stable disease; no pts have progressed on therapy with the longest on for >5 months. The PK properties following oral administration showed that 5 mg of KPT-8602 was rapidly absorbed (mean tmax= 1 hr, mean Cmax= 30.6 ng/mL). The mean AUCinf was calculated to be 141 ng•hr/mL. After tmax, KPT-8602 declined at an estimated mean t½ of 4 hr. At the same dose level, XPO1 mRNA expression was the highest (~2.5 fold) at 8 hr post dose. Conclusions - Oral KPT-8602 is well tolerated in heavily pretreated pts with RRMM. Gastrointestinal and constitutional toxicities observed with twice weekly selinexor have not been observed with 5x/week KPT-8602, including in pts on study for >4 months. PK was predictable and in line with selinexor. These early results show encouraging disease control with pts remaining on therapy. Enrollment is on-going. Disclosures Rossi: Takeda: Speakers Bureau; Janssen: Speakers Bureau; Onyx: Research Funding, Speakers Bureau; Celgene: Consultancy, Speakers Bureau. Baz:Takeda/Millennium: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Research Funding; Signal Genetics: Research Funding; Bristol-Myers Squibb: Research Funding; Merck: Research Funding; Novartis: Research Funding. Hofmeister:Karyopharm Therapeutics: Research Funding; Arno Therapeutics, Inc.: Research Funding; Signal Genetics, Inc.: Membership on an entity's Board of Directors or advisory committees; Janssen: Pharmaceutical Companies of Johnson & Johnson: Research Funding; Incyte, Corp: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Takeda Pharmaceutical Company: Research Funding; Teva: Membership on an entity's Board of Directors or advisory committees. Shustik:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Millenium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Richter:Amgen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Jannsen: Speakers Bureau. Chen:Janssen: Honoraria, Research Funding; Takeda: Research Funding; Celgene: Honoraria, Research Funding. Vogl:Takeda: Consultancy, Research Funding; Celgene: Consultancy; GSK: Research Funding; Calithera: Research Funding; Teva: Consultancy; Karyopharm: Consultancy; Acetylon: Research Funding; Constellation: Research Funding. Shacham:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Baloglu:Karyopharm Therapeutics: Employment, Equity Ownership. Senapedis:Karyopharm Therapeutics: Employment, Equity Ownership. Ellis:Karyopharm Therapeutics: Employment, Equity Ownership. Friedlander:Karyopharm Therapeutics: Employment. Choe-Juliak:Karyopharm Therapeutics: Employment. Sullivan:Karyopharm Therapeutics: Research Funding. Kauffman:Karyopharm Therapeutics Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5696-5696 ◽  
Author(s):  
Myo Htut ◽  
Cristina Gasparetto ◽  
Jeffrey Zonder ◽  
Thomas G. Martin ◽  
Emma C. Scott ◽  
...  

Abstract Background: The bone marrow microenvironment of many multiple myeloma (MM) patients harbors high quantities of plasmacytoid dendritic cells (pDCs), which are specialized immune cells that express the interleukin-3 receptor (CD123). These pDCs have been shown to augment MM growth and contribute to drug resistance, suggesting that targeting pDCs may offer clinical benefit for MM patients. SL-401, a novel targeted therapy directed to CD123, has previously demonstrated potent preclinical in vitro and in vivo activity against MM cell lines and primary tumor samples via both a direct anti-MM effect and an indirect effect by targeting neighboring pDCs. SL-401 has also demonstrated synergy in these systems when used in combination with traditional MM therapies including pomalidomide (POM). Clinically, SL-401 has demonstrated high levels of anti-tumor activity in patients with an aggressive CD123+ malignancy of pDC origin, namely blastic plasmacytoid dendritic cell neoplasm (BPDCN). SL-401 is currently being evaluated in combination with POM and dexamethasone (DEX) in relapsed or refractory (r/r) MM patients. Preliminary results are reported here. Methods and Results: This multicenter, single arm Phase 1/2 trial of patients with r/r MM includes a lead-in (stage 1) and expansion (stage 2). In stage 1, patients receive SL-401 as a daily IV infusion at 7, 9, or 12 ug/kg/day for days 1-5 of a 28 day cycle as a single agent for the initial run-in cycle (cycle 0) and in combination with standard doses/administration of POM+DEX in cycles 1 and beyond, in a 3x3 design. In stage 2, patients receive SL-401 in combination with POM+DEX at the dose and regimen determined in stage 1. Objectives include characterization of the safety profile of SL-401 in combination with POM+DEX, including determination of the maximum tolerated or tested dose, and detection of efficacy signals including evaluation of tumor response based on International Myeloma Working Group criteria, duration of response, progression-free survival, and translational evaluation of changes in BM microenvironmental pDCs. As of 7-25-16, 2 patients with r/r MM received SL-401 at 7 ug/kg in combination with POM+DEX. The median age was 65 years (range: 63-67 years). The most common treatment-related AEs, all grades, were thrombocytopenia (2/2, both grade 1) and hypoalbuminemia (2/2, both grade 2); there has been no DLT. Rapid onset decrease in a set of myeloma-related laboratory values from pre-SL-401 treatment was observed in both patients after the first combination cycle of SL-401 and POM+DEX. In one patient, serum M-protein decreased from 2.34 to 1.19 g/dL (cycle 1), free light chain kappa decreased from 40.1 to 8.27 mg/dL (cycle 1), and free light chain kappa/lambda ratio decreased from 58.12 to 41.35 (cycle 1). In the other patient, serum M-protein decreased from 1.88 to 0.87 (cycle 1) and then was 0.96 (cycle 3) g/dL, free light chain kappa decreased from 134 to 49.4 (cycle 1) and then was 92.5 (cycle 3) mg/dL, and free light chain kappa/lambda ratio decreased from 638.1 to 76 (cycle 1) and then was 111.45 (cycle 3). Both patients remain on study receiving ongoing SL-401 at 2+ and 4+ months. Dose escalation to 9 ug/kg is planned if a third patient clears the 7 ug/kg cohort. Conclusions:This is the first clinical study to evaluate SL-401 in combination with other agents. SL-401 thus far has been well-tolerated in combination with POM+DEX in r/r MM patients, with no unexpected AEs observed. After the first cycle of SL-401 and POM+DEX combination therapy, 2 of 2 patients experienced a rapid decrease in serum M-protein and remain on SL-401 therapy. Given CD123 expression on microenvironmental immune pDCs and the potential synergy of SL-401 with certain current MM agents including POM, SL-401 may offer a novel therapeutic approach in MM. This Phase 1/2 trial continues to enroll and updated data will be presented. Clinical trial information: NCT02661022. Disclosures Zonder: Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria; Prothena: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Pharmacyclics: Other: DSMC membership. Martin:Sanofi: Research Funding; Amgen: Research Funding. Chen:Stemline Therapeutics, Inc.: Employment, Equity Ownership. Shemesh:Stemline Therapeutics: Employment, Equity Ownership. Brooks:Stemline Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Chauhan:Stemline Therapeutics: Consultancy. Anderson:Oncopep: Other: Scientific Founder; Acetylon: Other: Scientific Founder; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Sonofi Aventis: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees. Richardson:Jazz Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3788-3788
Author(s):  
Veerendra Munugalavadla ◽  
Leanne Berry ◽  
Changchun Du ◽  
Sanjeev Mariathasan ◽  
Dion Slaga ◽  
...  

Abstract Abstract 3788 Poster Board III-724 Multiple myeloma (MM) is a malignancy characterized by clonal expansion and accumulation of long-lived plasma cells within the bone marrow. Phosphatidylinositol 3' kinase (PI3K) -mediated signaling is frequently dysregulated in cancer and controls fundamental cellular functions such as cell migration, growth, survival and development of drug resistance in many cancers, including MM, and therefore represents an attractive therapeutic target. Here, we demonstrate in vitro, that a potent and selective pan-isoform PI3Kinhibitor, GDC-0941, modulates the expected pharmacodynamic markers, inhibits cell-cycle progression and induces apoptosis; overcomes resistance to apoptosis in MM cells conferred by IGF-1 and IL-6; and is additive or synergistic with current standard of care drugs including dexamethasone, melphalan, lenolidamide and bortezomib. In cell lines we find sensitivity to GDC-0941 is positively correlated with pathway activation as determined by phospho-AKT-specific flow-cytometry and Western-blot analysis. Preliminary results indicate apoptosis of MM cells is correlated with increased expression of the proapoptotic BH3-only protein BIM; mechanisms of increased apoptosis in MM will be further explored and an update presented. We further extend these in vitro findings to show that GDC-0941 has activity as a single agent in vivo and combines well with standard of care agents in several murine xenograft models to delay tumor progression and prolong survival. Our results suggest that GDC-0941 may combine well with existing therapies, providing a framework for the clinical use of this agent, and a rational approach to improving the efficacy of myeloma treatment. Disclosures: Munugalavadla: Genentech: Employment, Patents & Royalties. Berry:Genentech: Employment, Patents & Royalties. Du:Genentech, Inc.: Employment, Equity Ownership. Mariathasan:Genentech: Employment, Patents & Royalties. Slaga:Genentech: Employment, Patents & Royalties. Sun:Genentech Inc.: Employment. Chesi:Genentech, Inc.: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Merck: Research Funding. Bergsagel:Genentech: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Merck: Research Funding. Ebens:Genentech, Inc.: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4219-4219 ◽  
Author(s):  
Shaji K. Kumar ◽  
Ravi Vij ◽  
Jonathan L. Kaufman ◽  
Joseph R. Mikhael ◽  
Thierry Facon ◽  
...  

Abstract Background: The anti-apoptotic protein BCL-2 has been implicated in mediating the survival of multiple myeloma (MM) cells. Venetoclax is a potent, selective, orally bioavailable small-molecule BCL-2 inhibitor. Venetoclax induces cell death in MM cell lines in vitro and primary MM samples ex vivo. Certain genetic subtypes of MM cells are particularly sensitive to venetoclax, including t(11;14) cells, which express a high ratio of BCL2 to MCL1 (venetoclax resistance factor). The current Phase 1 study evaluates safety, efficacy, and pharmacokinetics (PK) in patients (pts) with relapsed/refractory MM. Methods: Primary objectives are to evaluate safety, PK, and recommended phase two dose; other objectives include assessing preliminary efficacy and the impact of chromosomal abnormalities. In dose-escalation (DE) cohorts, venetoclax was given orally daily at 300, 600, 900, or 1200 mg after a 2-week dose ramp-up (3+3 design). Patients in the safety expansion (SE) cohort received 1200 mg daily after ramp-up. All patients were monitored for tumor lysis syndrome (TLS). Results: As of June 17, 2015, 37 patients were enrolled in the study: 30 from DE cohorts and 7 from the SE. Median (range) age was 66 years; 19 (51%) were female. Fourteen were ISS stage I, 13 stage II, 8 stage III, 2 unknown. The median (range) number of prior lines of therapy was 6 (1-19). Thirty-two had prior bortezomib (20 refractory), 35 lenalidomide (18 refractory), and 26 had prior stem cell transplant. Fourteen patients had t(11;14), 4 had t(4;14), 5 had del 17p, and 17 had del 13q. Adverse events (AEs) in ≥20% of patients were nausea (49%), diarrhea (38%), vomiting (30%), anemia (27%), fatigue (24%). Grade 3/4 AEs (≥10%): thrombocytopenia (22%), anemia (19%), neutropenia (11 %). Serious AEs (≥2 patients): pyrexia (n=3), cough, malignant neoplasm progression, and sepsis (2 each); 2 (upper abdominal pain and anemia) were possibly related to venetoclax. Thirty (81%) patients have discontinued venetoclax: 24 due to PD, 3 for AEs (worsening shortness of breath, hypokalemia, and nausea), 2 withdrew consent, 1 due to death (brain hemorrhage following injury). Four deaths occurred (2 due to PD, 1 due to brain hemorrhage, 1 due to pneumopathy). Two of the 6 patients in the 600 mg cohort experienced DLTs of upper abdominal pain and nausea with abdominal pain. No patients met the criteria for laboratory or clinical TLS. Based on preliminary PK (n=21), the mean Cmax and AUC24 were ~dose-proportional at all studied doses (300, 600, 1200 mg) except 900 mg, and dose-normalized venetoclax exposure in MM was similar to that in CLL and NHL pts. Thirty-two of the 37 patients were evaluable for preliminary efficacy (Table). Two patients, both t(11;14), achieved a complete response (1 at 600 mg and 1 at 900 mg). Responses were first achieved at 1.8 and 1.1 months and were maintained for 9.7 and 9.0 months, respectively (900 mg pt remains in CR). Among the 16 patients receiving 1200 mg in the DE or SE cohort, 6 of whom had t(11;14), 5 achieved SD, 6 experienced PD, and 5 are not yet evaluable. Conclusions: Venetoclax monotherapy had a tolerable safety profile in heavily-pretreated relapsed/refractory MM, and no new safety signals were observed compared to other venetoclax studies. The study continues to enroll in the SE cohort at 1200 mg. Responses (including CR) and longer time on venetoclax were observed in t(11;14) patients. These early results suggest that venetoclax has single agent activity, most prominently in t(11;14) patients. Figure 1. Figure 1. Disclosures Kumar: Celgene: Research Funding; Millenium/Takeda: Research Funding; Onyx: Research Funding; AbbVie: Research Funding; Janssen: Research Funding; Sanofi: Research Funding; Celgene, Millenium, Sanofi, Skyline, BMS, Onyx, Noxxon,: Other: Consultant, no compensation,; Skyline, Noxxon: Honoraria. Off Label Use: Venetoclax is an investigational drug that is not yet approved in this indication.. Vij:Takeda, Onyx: Research Funding; Celgene, Onyx, Takeda, Novartis, BMS, Sanofi, Janssen, Merck: Consultancy. Kaufman:Janssen: Consultancy; Spectrum: Consultancy; Merck: Research Funding; Celgene: Consultancy; Onyx: Consultancy; Novartis: Consultancy; Novartis: Research Funding; Onyx: Research Funding. Mikhael:Sanofi: Research Funding; AbbVie: Research Funding; Celgene: Research Funding; Onyx: Research Funding. Moreau:Takeda: Other: Adboard; Janssen: Other: Adboard; Celgene: Other: Adboard; Novartis: Other: Adboard; Amgen: Other: Adboard. Alzate:AbbVie: Employment, Equity Ownership. Morris:AbbVie: Employment, Equity Ownership. Ross:AbbVie: Employment, Equity Ownership. Dunbar:AbbVie: Employment, Equity Ownership. Zhu:AbbVie: Employment, Equity Ownership. Maciag:AbbVie: Employment, Equity Ownership. Agarwal:AbbVie: Employment, Equity Ownership. Leverson:AbbVie: Employment, Equity Ownership. Enschede:AbbVie: Employment, Equity Ownership. Humerickhouse:AbbVie: Employment, Equity Ownership. Touzeau:AbbVie: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 957-957 ◽  
Author(s):  
Sham Mailankody ◽  
Myo Htut ◽  
Kelvin P. Lee ◽  
William Bensinger ◽  
Todd Devries ◽  
...  

Abstract Introduction: B-cell maturation antigen (BCMA) is expressed on malignant plasma cells and is an attractive therapeutic target for multiple myeloma. BCMA CAR T-cells, antibody drug conjugates and bispecific T-cell engagers have demonstrated substantial preclinical and clinical activity to date. JCARH125 is a BCMA-targeting CAR T product containing a lentiviral CAR construct with a fully human scFv, optimized spacer, 4-1BB co-stimulatory and CD3z activation domains. The construct has shown minimal tonic signaling and lack of inhibition by soluble BCMA. JCARH125 is generated using a manufacturing process developed to optimize various aspects, including increased consistency of cell health, in the drug product. Methods: EVOLVE (NCT03430011) is a multi-center, phase 1/2 trial of JCARH125 in patients with relapsed and/or refractory multiple myeloma, who have received 3 or more prior regimens, which must include autologous stem cell transplant, a proteasome inhibitor, immunomodulatory drug and an anti-CD38 monoclonal antibody, unless not a candidate (i.e. contraindicated) to receive one or more of the above treatments. Lymphodepleting chemotherapy (LDC) consisting of 3 days of fludarabine (30 mg/m2) and cyclophosphamide (300 mg/m2) is given 2 to 7 days prior to JCARH125 infusion. A single dose of JCARH125 is given on day 1. Dose escalation is determined using the modified toxicity probability interval 2 (mTPI-2). A minimum of 3 patients are evaluated at each dose level (DL). The first 2 DLs evaluated were 50 and 150x 106 CAR+ T cells. Additional DLs are planned, followed by an expansion at the recommended phase 2 dose (RP2D). The primary objectives of the phase 1 portion are safety and identifying a RP2D. Results: At the time of the July 12, 2018 data analysis, 19 patients have been enrolled (i.e. apheresed) and 13 patients dosed with JCARH125. Only one patient was unable to receive JCARH125, due to sepsis after LDC, leading to death before JCARH125 administration. Eight patients were evaluable for safety (≥ 1 mo follow-up). (n = 5 DL1; n = 3 DL2). Three patients (all from DL1) were evaluable for confirmed response (≥ 2 mo follow-up) per International Myeloma Working Group (IMWG) criteria. Data reported here are from these initial 8 patients. Median follow-up is 5 weeks (range 4 - 13 weeks). Median age is 53 years (range 36 - 66) with a median time from diagnosis of 4 years (range 2 - 12). Patients had received a median of 10 prior regimens (range 4 - 15). Of these 8 patients, 4 (50%) were refractory (no response or progression within 60 days of last therapy) to bortezomib, carfilzomib, lenalidomide, pomalidomide and an anti-CD38 monoclonal antibody. Seven of 8 (88%) had prior autologous stem cell transplant and 4 of 8 (50%) have IMWG high risk cytogenetics. As of the data cut, no DLTs have been observed at the first 2 DLs. Cytokine release syndrome (CRS), all grade 1 or 2, was observed in 6 of 8 (75%) patients. Median onset of CRS was 9 days (range 4 - 10) with a median duration of 4.5 days (range 2 - 19 days). None of the patients with grade 2 CRS required vasopressor support and only 1 patient received tocilizumab. No patients had grade ≥ 3 CRS. Three of 8 (38%) patients experienced neurologic adverse events (AE). Two patients had grade 1 events, and 1 had a grade 3 event (lethargy), which resolved within 24 hours after receiving steroids. Onset of neurologic AEs was 9,11 and 12 days with a duration of 2, 3 and 1 days respectively. Notably, the patient who experienced grade 3 neurotoxicity (NT), developed secondary plasma cell leukemia (PCL) just prior to receiving LDC. All 8 patients have evidence of objective response (≥ MR), including the patient with secondary PCL. 3 patients, all treated at DL1 (50 x 106 CAR+ T-cells), have confirmed responses (1 PR, 2 sCR) with the remainder unconfirmed (1 CR, 2 VGPR, 1 PR, 1 MR). As of the data cut, no patients have progressed. Additional clinical and translational data on at least 30 patients and additional follow up of at least 4 months will be available at time of presentation. Conclusion: At initial lower dose levels, JCARH125 showed an acceptable safety profile with no DLTs reported thus far. Incidence of grade ≥ 3 NT was low and no grade ≥ 3 CRS has occurred with clear clinical activity. Although durability of response and response rate in a greater number of patients remain to be determined, early experience with JCARH125 support a favorable risk-benefit profile and rapid clinical development. Disclosures Mailankody: Takeda: Research Funding; Janssen: Research Funding; Physician Education Resource: Honoraria; Juno: Research Funding. Bensinger:celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; amgen: Speakers Bureau; Takeda: Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Devries:Junot Therapeutics: Employment. Piasecki:Juno Therapeutics: Employment, Equity Ownership; Cascadian Therapeutics: Patents & Royalties; Amgen: Patents & Royalties. Ziyad:Juno Therapeutics: Employment, Equity Ownership. Blake:Celgene: Employment, Equity Ownership. Byon:Juno Therapeutics: Employment, Equity Ownership. Jakubowiak:Janssen: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Adaptive Biotechnologies: Consultancy, Honoraria; SkylineDx: Consultancy, Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1874-1874 ◽  
Author(s):  
Ben Buelow ◽  
Anita D'Souza ◽  
Cesar Rodriguez ◽  
Ravi Vij ◽  
Rajneesh Nath ◽  
...  

Introduction Multiple myeloma (MM) is an incurable plasma cell malignancy with an estimated incidence in 2019 of ~32,000 in the United States. Although median survival is greater than 8 years, treatment options are limited for patients who relapse on or are refractory to standard treatment regimens containing proteasome inhibitors, immune-modulating drugs and anti-CD38 antibodies (triple refractory). Novel therapies are critical to the treatment of these patients. Chimeric antigen receptor T cells (CAR-Ts) and T-cell redirecting Bispecific Antibodies (T-BsAbs) targeting B-cell maturation antigen (BCMA) -a protein found exclusively on the surface of plasma cells- have shown efficacy against relapsed/refractory MM in early phase clinical trials. However, toxicity from over-activation of T-cells still hinders these approaches. Utilizing Teneobio's proprietary next generation sequencing (NGS)-based discovery tool incorporating in silico analysis of heavy chain only/fixed light chain antibody sequences (HCA/Flic, respectively) to enrich for antigen specific antibodies, we made a high affinity αBCMA HCA and a library of αCD3 Flic antibodies that showed a >2 log range of EC50s for T cell activation in vitro. TNB-383B combines a high affinity αBCMA HCA with a low-activating αCD3 Flic; in preclinical studies TNB-383B showed equivalent anti-tumor efficacy but significantly reduced cytokine secretion compared to BCMA-targeted T-BsAbs incorporating a strongly-activating αCD3 (similar in strength to the αCD3s used in other T-BsAbs currently in clinical trials). A Phase 1 study investigating the safety, pharmacokinetics, and preliminary activity of TNB-383B in patients with relapsed/refractory multiple myeloma (RRMM) is ongoing and described. This trial represents, to the best of our knowledge, the first reported clinical trial of a HCA/Flic hybrid antibody in humans. Study Design TNB383B.0001 (NCT03933735) is an open-label, multi-center study of TNB-383B in patients with RRMM. The study is divided into escalation (Arm A, N=24) and expansion (Arm B, N=48) arms. Subjects who have received 3 or more prior lines of therapy with exposure to a PI, an IMiD, and an anti-CD38 antibody are eligible for this study. Documentation of BCMA expression by tumor cells is not required for entry, although prior treatment with a BCMA-targeted agent is an exclusion criterion. Other key inclusion/exclusion criteria include EGFR of >30ml/min, ANC ≥1000/mm3 and platelets ≥50,000/mm3 and minimal bone marrow biopsy requirements on-study. Subjects must be admitted for 48 hours following the 1st dose in Cycle 1 (21-day cycle length), but TNB-383B may be administered on an outpatient basis thereafter. Dose Escalation TNB-383B is administered as an intravenous infusion. Dose escalation is proceeding via a 3+3 design with fixed (as opposed to weight based) doses per protocol. Arm B will be initiated once the maximum tolerated dose (MTD, or recommended phase 2 dose, RP2D) has been selected. Patients will be treated until progression, unacceptable toxicity, or other discontinuation criteria are met. One patient has been enrolled thus far. Statistical Methods and Study Endpoints In Arm A occurrence of dose limiting toxicities (DLTs) will drive identification of the MTD (or RP2D in line with standard practices. In Arm B accrual will be suspended if more than 33% of subjects experience a DLT event. Adverse events, laboratory profiles, physical exams, and vital signs will be assessed throughout the study. Adverse events will be graded according to the NCI CTCAE, version 5.0. Concentrations of TNB-383B and Anti-Drug Antibodies (ADA) will be determined at designated time points throughout the study. Values for standard pharmacokinetic parameters of TNB-383B including the maximum observed serum concentration (Cmax), the time to Cmax, area under the concentration-time curve, clearance, and terminal half-life will be determined using non-compartmental methods. The activity endpoints (determined using the IMWG uniform response criteria) include overall response rate, progression-free survival and overall survival. The relationship between biomarkers, including soluble BCMA and A Proliferation Inducing Ligand (APRIL; the endogenous ligand for BCMA), and activity will be assessed. Disclosures Buelow: Teneobio, Inc.: Employment, Equity Ownership. Rodriguez:Takeda, Amgen: Consultancy, Speakers Bureau. Vij:Janssen: Honoraria; Celgene: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Genentech: Honoraria; Takeda: Honoraria, Research Funding; Karyopharm: Honoraria; Sanofi: Honoraria. Nath:Teneobio, Inc.: Consultancy. Snyder:Teneobio, Inc.: Consultancy. Pham:Teneobio, Inc.: Employment, Equity Ownership. Patel:Teneobio, Inc.: Employment, Equity Ownership. Iyer:Teneobio, Inc.: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document