Blockade of XBP1 Splicing by Inhibition of IRE1α Is a Promising Therapeutic Option in Multiple Myeloma

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Naoya Mimura ◽  
Mariateresa Fulciniti ◽  
Gullu Gorgun ◽  
Yu-Tzu Tai ◽  
Diana D. Cirstea ◽  
...  

Abstract Abstract 133 Multiple myeloma (MM) cells are characterized by high protein synthesis resulting in chronic endoplasmic reticulum (ER) stress, which is adaptively managed by the unfolded protein response (UPR). Therefore blockade of UPR could provide a novel therapeutic option in MM. Upon UPR, inositol-requiring enzyme 1α (IRE1α) is activated by auto-phosphorylation, resulting in activation of its endoribonuclease domain to cleave XBP1 mRNA from XBP1 unspliced form (XBP1u: inactive) to generate the XBP1 spliced form (XBP1s: active). XBP1s protein in turn regulates genes responsible for protein folding and degradation, playing a pro-survival signaling role in the UPR. In this study, we specifically examined whether IRE1α-XBP1 pathway is a potential therapeutic target in MM. We first examined the biologic significance of IRE1α by knockdown using lentiviral shRNA and observed significant growth inhibition in IRE1α knockdown cells. We next examined the impact of inhibition of XBP1 splicing using a novel small molecule IRE1α endoribonuclease domain inhibitor MKC-3946 (MannKind, Valencia CA). MKC-3946 blocked not only the basal level, but also inducible (by tunicamycin) XBP1s, evidenced by RT-PCR analysis in RPMI8226 cells, without affecting phosphorylation of IRE1α. Importantly, MKC-3946 also inhibited XBP1s in primary tumor cells from MM patients. We also confirmed functional inhibition of XBP1s, with target genes including SEC61A1, p58IPK, and ERdj4 downregulated by MKC-3946 treatment. Importantly, MKC-3946 triggered growth inhibition in MM cell lines, without toxicity in normal mononuclear cells. Furthermore, it significantly enhanced cytotoxicity induced by bortezomib or 17-AAG in RPMI8226 and INA6 cells, as well as primary tumor cells from MM patients. Both bortezomib and 17-AAG induced ER stress with XBP1s, which was markedly blocked by MKC-3946. Moreover, apoptosis induced by bortezomib or 17-AAG was enhanced by MKC-3946, associated with increased CHOP mRNA and protein, a proapoptotic factor triggered by ER stress. We next demonstrated that XBP1s was induced by bortezomib in INA6 cells co-cultured with bone marrow (BM) stromal cells, which was inhibited by MKC-3946, associated with enhanced cytotoxicity induced by the combination. Finally, MKC-3946 inhibited XBP1s in a model of in vivo ER stress induced by tunicamycin. To evaluate the anti-MM effect of MKC-3946, we used the subcutaneous RPMI8226 xenograft model in mice. MKC-3946 significantly reduced MM tumor growth in the treatment versus control group, associated with prolonged overall survival. We also confirmed that MKC-3946 treatment significantly inhibited XBP1s in excised tumors, assessed by RT-PCR. In order to examine the activity of MKC-3946 on MM cell growth in the context of the human BM microenvironment in vivo, we used the SCID-hu model, in which INA6 cells are directly injected into a human bone chip implanted subcutaneously in SCID-mice. MKC-3946 treatment significantly inhibited tumor growth compared with vehicle control. Moreover, XBP1s in excised tumor cells was inhibited, evidenced by RT-PCR. In conclusion, these data demonstrate that blockade of XBP1s by MKC-3946 triggers MM cell growth inhibition in vivo and prolongs host survival. Taken together, our results demonstrate that blockade of XBP1 splicing by inhibition of IRE1α endoribonuclease domain is a potential novel therapeutic option in MM. Disclosures: Tam: MannKind Corporation: Employment, Equity Ownership. Zeng:MannKind Corporation: Employment, Equity Ownership. Patterson:MannKind Corporation: Employment, Equity Ownership. Richardson:Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Munshi:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees; MannKind: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4074-4074 ◽  
Author(s):  
Naoya Mimura ◽  
Teru Hideshima ◽  
Gullu Gorgun ◽  
Diana Cirstea ◽  
Loredana Santo ◽  
...  

Abstract Abstract 4074 Aberrant protein folding results in the accumulation of misfolded/unfolded proteins in the endoplasmic reticulum (ER), which in turn triggers ER stress followed by unfolded protein response (UPR), an adaptive response against ER stress. Since multiple myeloma (MM) cells have high protein synthesis, they are sensitive to ER stress and require strict ER quality control for cell survival. Upon UPR, IRE1α is activated by auto-phosphorylation resulting in activation of its endoribonuclease domain to splice XBP1 mRNA from XBP1 unspliced form (XBP1u: inactive) to XBP1 spliced form (XBP1s: active). Since XBP1 is a transcription factor regulating genes which are responsible for protein folding and ER associated degradation (ERAD), IRE1α-XBP1 pathway acts as a pro-survival signaling pathway under the UPR condition. In this study, we examined whether IRE1α-XBP1 pathway is a potential novel therapeutic option in MM. We first examined IRE1α expression and confirmed its expression in all MM cell lines. In contrast, XBP1s was not detected by RT-PCR in most cell lines except in for RPMI8226 cells. To assess biologic significance of IRE1α in MM cell, we knock-downed its expression using shRNA and found that downregulation of IRE1α inhibited MM cell growth, indicating that IRE1α has a crucial role in MM cell survival. We next examined the impact of inhibition of XBP1 splicing by a small molecule IRE1α endoribonuclease inhibitor MKC-3946 (Mannkind, Valencia CA) in MM cells in vitro. As expected, MKC-3946 significantly inhibited tunicamycin-induced XBP1s without affecting phosphorylation of IRE1α. MKC-3946 induced only modest cytotoxicity in MM cell lines without toxicity in normal mononuclear cells from healthy donors; however, it significantly enhanced cytotoxicity in combination with bortezomib or 17-AAG. Both bortezomib and 17-AAG induced ER stress evidenced by induction of XBP1s; conversely, MKC-3946 blocked XBP1s triggered by these agents. Furthermore, apoptosis induced by these agents was enhanced with MKC-3946 associated with increased CHOP, which is a known pro-apoptotic protein induced in uncompensated ER stress condition. Importantly, MKC-3946 enhanced the cytotoxicity of bortezomib or 17-AAG in INA6 cells, even in the presence of increased IL-6 or bone marrow stromal cells. Finally, MKC-3946 was active inhibiting XBP1 splicing in a model of ER stress and significantly inhibited growth of RPMI8226 plasmacytoma in a xenograft murine model when used in combination with a low dose of bortezomib. Taken together, our results demonstrate that inhibition of XBP1 splicing by blockade of IRE1α is a promising therapeutic option in MM. Disclosures: Blumenthal: Mannkind Corporation: Employment, Equity Ownership. Tam:Mannkind Corporation: Employment, Equity Ownership. Kertesz:Mannkind Corporation: Employment, Equity Ownership. Zeng:Mannkind Corporation: Employment, Equity Ownership. Patterson:Mannkind Corporation: Employment, Equity Ownership. Munshi:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees. Anderson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1844-1844
Author(s):  
John Richards ◽  
Myriam N Bouchlaka ◽  
Robyn J Puro ◽  
Ben J Capoccia ◽  
Ronald R Hiebsch ◽  
...  

AO-176 is a highly differentiated, humanized anti-CD47 IgG2 antibody that is unique among agents in this class of checkpoint inhibitors. AO-176 works by blocking the "don't eat me" signal, the standard mechanism of anti-CD47 antibodies, but also by directly killing tumor cells. Importantly, AO-176 binds preferentially to tumor cells, compared to normal cells, and binds even more potently to tumors in their acidic microenvironment (low pH). Hematological neoplasms are the fourth most frequently diagnosed cancers in both men and women and account for approximately 10% of all cancers. Here we describe AO-176, a highly differentiated anti-CD47 antibody that potently targets hematologic cancers in vitro and in vivo. As a single agent, AO-176 not only promotes phagocytosis (15-45%, EC50 = 0.33-4.1 µg/ml) of hematologic tumor cell lines (acute myeloid leukemia, non-Hodgkin's lymphoma, multiple myeloma, and T cell leukemia) but also directly targets and kills tumor cells (18-46% Annexin V positivity, EC50 = 0.63-10 µg/ml) in a non-ADCC manner. In combination with agents targeting CD20 (rituximab) or CD38 (daratumumab), AO-176 mediates enhanced phagocytosis of lymphoma and multiple myeloma cell lines, respectively. In vivo, AO-176 mediates potent monotherapy tumor growth inhibition of hematologic tumors including Raji B cell lymphoma and RPMI-8226 multiple myeloma xenograft models in a dose-dependent manner. Concomitant with tumor growth inhibition, immune cell infiltrates were observed with elevated numbers of macrophage and dendritic cells, along with increased pro-inflammatory cytokine levels in AO-176 treated animals. When combined with bortezomib, AO-176 was able to elicit complete tumor regression (100% CR in 10/10 animals treated with either 10 or 25 mg/kg AO-176 + 1 mg/kg bortezomib) with no detectable tumor out to 100 days at study termination. Overall survival was also greatly improved following combination therapy compared to animals treated with bortezomib or AO-176 alone. These data show that AO-176 exhibits promising monotherapy and combination therapy activity, both in vitro and in vivo, against hematologic cancers. These findings also add to the previously reported anti-tumor efficacy exhibited by AO-176 in solid tumor xenografts representing ovarian, gastric and breast cancer. With AO-176's highly differentiated MOA and binding characteristics, it may have the potential to improve upon the safety and efficacy profiles relative to other agents in this class. AO-176 is currently being evaluated in a Phase 1 clinical trial (NCT03834948) for the treatment of patients with select solid tumors. Disclosures Richards: Arch Oncology Inc.: Employment, Equity Ownership, Other: Salary. Bouchlaka:Arch Oncology Inc.: Consultancy, Equity Ownership. Puro:Arch Oncology Inc.: Employment, Equity Ownership. Capoccia:Arch Oncology Inc.: Employment, Equity Ownership. Hiebsch:Arch Oncology Inc.: Employment, Equity Ownership. Donio:Arch Oncology Inc.: Employment, Equity Ownership. Wilson:Arch Oncology Inc.: Employment, Equity Ownership. Chakraborty:Arch Oncology Inc.: Employment, Equity Ownership. Sung:Arch Oncology Inc.: Employment, Equity Ownership. Pereira:Arch Oncology Inc.: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1176-1176
Author(s):  
Xin Gao ◽  
Tongyu Wu ◽  
Jamie Lahvic ◽  
Kirby D. Johnson ◽  
Erik A. Ranheim ◽  
...  

Abstract The generation of hematopoietic stem cells (HSCs) via endothelial-to-hematopoietic transition within the aorta-gonad-mesonephros (AGM) region of the mammalian embryo is crucial for development of the adult hematopoietic system. Many questions remain unanswered regarding the molecular program in hemogenic endothelium that promotes the budding of hematopoietic cell clusters containing HSCs. We demonstrated that a deletion of a Gata2 cis-element reduced GATA-2 levels in the AGM and abrogated the capacity of hemogenic endothelium to generate HSCs. Consistent with the defective HSC generator, the mutant fetal livers were deficient in hematopoietic stem and progenitor cells (HSPCs). Using an ex vivo intact AGM culture system, we demonstrated that retrovirus-mediated GATA-2 expression in the +9.5-/- AGM rescues its hematopoietic defect. Thus, the reduced GATA-2 levels in the +9.5-/- AGM cause the HSC generation defect, and this rescue assay provides a unique system to decipher the downstream genetic network. To discover novel druggable regulators in the GATA-2 pathway to promote HSC generation, we profiled the expression pattern of all G-protein-coupled-receptors, which represent the most successful class of pharmaceutical targets, in the AGM using our RNA-seq dataset (+9.5+/+ vs. +9.5-/- AGM). This global GPCR analysis revealed four GATA-1 and GATA-2 co-regulated genes, Adora3, Gpr65, Ltb4r1, and Adora2b. Database mining revealed that only the Gpr65 expression pattern resembled that of Gata2. To evaluate GPR65 functions during HSC generation, we conducted an shRNA-based loss-of-function analysis in the AGM. While downregulating Gpr65 did not alter the abundance of the CD31+ c-Kit+ hematopoietic cell population, it significantly increased the CD31+ c-Kit+ Sca1+ HSC-containing cell population (1.4 fold, p<0.05), indicating that GPR65 suppresses HSC generation. To validate the involvement of GPR65 during the HSC generation process in vivo, we conducted a morpholino oligonucleotide (MO)-based loss-of-function study in zebrafish. In situ hybridization analysis revealed high Runx1/c-Myb expression (labeling definitive HSCs and progenitors) in 48% of embryos injected with Gpr65 MOs compared with 11% of wild type embryos. Consistent with the ex vivo AGM analysis, this increase in Runx1/c-Myb expression upon Gpr65 MO treatment suggests GPR65 is a negative regulator of HSC emergence in vivo. To dissect the molecular mechanism governing GPR65-suppressed HSC generation, we tested whether lowering Gpr65 levels altered the expression of key HSC regulators. Quantitative RT-PCR analysis revealed that downregulating Gpr65 by 60-70% in AGM CD31+ c-Kit- endothelialcells increased Gata2 mRNA by 2.9 fold (p<0.05), Gata2 primary transcripts by 3.9 fold (p<0.05), and elevated expression of the GATA-2 target gene Runx1 (2.9 fold, p<0.05). These results support a mechanism whereby GPR65-mediated Gata2 repression is an important determinant of GPR65-suppressed HSC generation. In addition to this important function in the AGM, Gpr65 knockdown studies in primary fetal liver HSPCs revealed GPR65 suppression of Gata2 transcription to the same magnitude as in the AGM. To determine if GPR65-mediated Gata2 repression requires the +9.5 site, we infected freshly isolated HSPCs from fetal livers heterozygous for the +9.5 site with retrovirus expressing shRNA targeting Gpr65. Quantitative RT-PCR with allele-specific primers revealed that Gpr65 knockdown significantly upregulates Gata2 primary transcripts from the wild type (3.1 fold, p<0.01), but not the 9.5 mutant, allele. These results establish a requirement of the +9.5 site for GPR65 to repress Gata2 transcription. As we reported that SetD8, the only enzyme known to monomethylate H4K20, represses Gata2 expression via the +9.5 site, we tested whether GPR65 represses Gata2 expression through SetD8. H4K20me1 ChIP revealed that downregulating Gpr65 significantly reduces H4K20me1 levels at the +9.5 site by 30% (p<0.005), suggesting that GPR65 repression of Gata2 transcription involves SetD8. Our studies indicate that a G-protein coupled receptor, GPR65, is negative regulator of HSC generation and establish a GATA-2-GPR65 Type Iincoherent feedforward loop that controls HSC generation, providing a foundation to develop new targets for expanding HSCs for transplantation therapies and a new druggable target to treat hematologic disorders. Disclosures Zon: FATE Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Scholar Rock: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4131-4131 ◽  
Author(s):  
Trinayan Kashyap ◽  
Irfana Muqbil ◽  
Amro Aboukameel ◽  
Boris Klebanov ◽  
Ramzi Mohammad ◽  
...  

Abstract Background: XPO1 (exportin-1/CRM1) mediates nuclear export of proteins containing leucine-rich amino-acid consensus sequences. XPO1 cargo proteins include many of the major tumor suppressor proteins (p53, IkB, pRB, FOXOs) and their export leads to the inactivation of cell cycle checkpoints. Overexpression of XPO1 has been reported to correlate with poor cancer prognosis. The Selective Inhibitor of Nuclear Export (SINE) compound, selinexor, binds covalently to the cargo pocket on XPO1, inhibits nuclear export which leads to cell cycle arrest and specific cancer cell death. Selinexor is currently in advanced clinical trials for patients with solid and hematological malignancies including patients with relapsed/refractory Diffuse Large B-Cell Lymphoma (DLBCL) (NCT02227251). Using preclinical models, we recently demonstrated that proteasome inhibitors (PI) can re-sensitize multiple myeloma that acquired resistance to selinexor. Here, we aimed to find if treatment with selinexor and bortezomib is beneficial for the treatment of DLBCL. Methods: DLBCLcell lines were treated with selinexor in combination with bortezomib. Cell viability was examined using standard viability assays after 72 hours of treatment. Whole cell protein lysates were evaluated by immunoblotting. NF-κB transcriptional activity was analyzed using an ELISA assay. WSU-DLCL2 cells were grown as sub-cutaneous tumors in ICR SCID mice. Tumor bearing mice were divided into 4 groups and were administered either vehicle, sub-maximum tolerated doses of selinexor (10 mg/kg p.o. twice a week, M, Th), bortezomib (1 mg/kg i.v. twice a week, M, TH) and the combination of selinexor (10 mg/kg p.o. twice a week) plus bortezomib (1 mg/kg i.v. twice a week). Results: The combination treatment of selinexor with bortezomib synergistically killed DLBCL cells compared to the single agents alone. Co-treatment with bortezomib enhanced selinexor mediated nuclear retention of IκB-α. Selinexor plus bortezomib treatment decreased NF-κB transcriptional activity. Finally, the combination of selinexor with bortezomib showed superior anti-tumor efficacy in the combination group compared to single agent treatments in WSU-DLCL2 xenograft model. Conclusions: Based on our results, inhibition of NF-κB transcriptional activity through forced nuclear retention of IκB appears to be an important mechanism underlying the synergistic effects of selinexor plus bortezomib in many different cell lines including DLBCL. The superior efficacy of selinexor plus bortezomib combination both in vitro and in vivo when compared to single agents along provides a rational for conducting clinical trials with these combinations in DLBCL patients. Disclosures Kashyap: Karyopharm Therapeutics: Employment, Equity Ownership. Klebanov:Karyopharm Therapeutics: Employment, Equity Ownership. Senapedis:Karyopharm Therapeutics: Employment, Equity Ownership. Shacham:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Kauffman:Karyopharm Therapeutics Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Landesman:Karyopharm Therapeutics: Employment, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5196-5196
Author(s):  
Marsha Crochiere ◽  
Boris Klebanov ◽  
Erkan Baloglu ◽  
Ori Kalid ◽  
Trinayan Kashyap ◽  
...  

Abstract Introduction: SINE are a family of small molecules that selectively inhibit nuclear export by forming a slowly reversible covalent bond with Cysteine 528 (Cys528) in the cargo binding pocket of Exportin 1 (XPO1/CRM1). SINE binding to XPO1 leads to forced nuclear retention and activation of major tumor suppressor proteins (TSPs) such as p53, FOXO, pRB and IkB, resulting in selective death of cancer cells. Selinexor is an orally bioavailable SINE compound currently in human phase I and II clinical trials for advanced hematological and solid cancers. Oral selinexor demonstrates maximal pharmacokinetic exposure at 1-2 hours in humans with associated increases in pharmacodynamic markers of XPO1 inhibition in 2-4 hours that last for up to 48 hours. The goal of this study was to develop a binding assay that would enable quantification of XPO1 occupancy in PBMCs from patients following oral administration of selinexor. Methods: To measure the binding of SINE to XPO1, biotinylated leptomycin B (LMB) was utilized. Biotinylated LMB binds covalently and irreversibly to Cys528 in the cargo-binding site of free XPO1 with activity confirmed to be similar to that of unmodified LMB in cytotoxicity assays. To measure SINE binding to XPO1 in vitro, cancer cell lines and PBMCs from normal human donors were treated with SINE compounds prior to treatment with biotinylated LMB. Any XPO1 that did not bind SINE instead binds to biotinylated LMB and can be quantified. In in vivo studies, mice were treated with selinexor, followed by collection of PBMCs for treatment with biotinylated LMB. After incubation with biotinylated LMB, cells were harvested, lysed, and protein lysates were subjected to pull-down experiments with streptavidin-conjugated beads followed by immunoanalysis of XPO1. Results: To evaluate selinexor-XPO1 binding kinetics in vitro, MM.1S, AML2, AML3, and HEL cells were treated with 0 - 10 µM of SINE compounds and unbound XPO1 was pulled down from cell lysates treated with biotinylated LMB. Immunoanalysis showed that 50% XPO1 occupancy with selinexor was achieved at 0.07 µM in MM.1S, 0.1 µM in AML2, 0.03 µM in AML3, and 0.12 µM in HEL cells. Selinexor-XPO1 occupancy experiments using human PBMCs isolated from donor whole blood showed 50% XPO1 occupancy at 0.05 µM. In mice, 50% XPO1 occupancy in PMBCs was achieved after 4 hours treatment with 1.2 mg/kg (3.6 mg/m2) selinexor, while 90% XPO1 occupancy was achieved at 8.1 mg/kg (24.3 mg/m2). Mice treated with a single dose of selinexor from 1.5 to 10 mg/kg for 4-96 hours revealed sustained, dose dependent XPO1 occupancy in PBMCs for up to 72 hours. Conclusions: We have developed a sensitive and robust assay to measure selinexor binding to XPO1 that can be used to evaluate drug exposure following treatment with oral selinexor in preclinical and clinical studies. Studies are ongoing to determine whether there is a correlation between XPO1 occupancy (pharmacodynamics measurement) with disease response in patients with solid and hematological malignancies. Disclosures Crochiere: Karyopharm: Employment. Klebanov:Karyopharm Therpeutics: Employment. Baloglu:Karyopharm: Employment. Kalid:Karyopharm Therapeutics: Employment. Kashyap:Karyopharm Therapeutics: Employment. Senapedis:Karyopharm: Employment. del Alamo:Karyopharm: Employment. Rashal:Karyopharm Therapeutics: Employment. Tamir:Karyopharm: Employment. McCauley:Karyopharm Therapeutics: Employment, Equity Ownership. Carlson:Karyopharm Therapeutics: Employment. Savona:Karyopharm: Consultancy, Equity Ownership; Gilead: Consultancy; Incyte: Consultancy; Celgene: Consultancy. Kauffman:Karyopharm Therapeutics, Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Shacham:Karyopharm Therapeutics, Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Landesman:Karyopharm Therapeutics: Employment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 237-237 ◽  
Author(s):  
Michael P. Rettig ◽  
Matthew Holt ◽  
Julie Prior ◽  
Sharon Shacham ◽  
Michael Kauffman ◽  
...  

Abstract Background Exportin 1 (XPO1) also called CRM1, is a widely expressed nuclear export protein, transporting a variety of molecules including tumor suppressor proteins and cell cycle regulators. Targeted inhibition of XPO1 is a new strategy to restore multiple cell death pathways in various malignant diseases. SINEs are novel, orally available, small molecule Selective Inhibitors of Nuclear Export (SINE) that specifically bind to XPO1 and inhibit its function. Methods We used WST-1 cell proliferation assays, flow cytometry, and bioluminescence imaging to evaluate the efficacy of multiple SINEs to induce apoptosis alone and in combination with cytarabine (AraC) or doxorubicin in vitro in chemotherapy sensitive and resistant murine acute promyelocytic leukemia (APL) cells. This murine model of APL was previously generated by knocking in the human PML-RARa cDNA into the 5’ regulatory sequence of the cathepsin G locus (Westervelt et al. Blood, 2003). The abnormal co-expression of the myeloid surface antigen Gr1 and the early hematopoietic markers CD34 and CD117 identify leukemic blasts. These Gr1+CD34+CD117+ APL cells partially retain the ability to terminally differentiate toward mature granulocytes (mimicking more traditional AML models) and can be adoptively transferred to secondary recipients, which develop a rapidly fatal leukemia within 3 weeks after tumor inoculation. To assess the safety and efficacy of SINEs in vivo, we injected cryopreserved APL cells intravenously via the tail vein into unconditioned genetically compatible C57BL/6 recipients and treated leukemic and non-leukemic mice (n=15/cohort) with 15 mg/kg of the oral clinical staged SINE KPT-330 (currently in Phase 1 studies in patients with solid tumors and hematological malignancies) alone or in combination with 200 mg/kg cytarabine every other day for a total of 2 weeks. Peripheral blood was obtained weekly from mice for complete blood counts and flow cytometry to screen for development of APL. Results The first generation SINE, KPT214, inhibited the proliferation of murine APL cell lines in a dose and time dependent manner with IC50 values ranging from of 95 nM to 750 nM. IC50 values decreased 2.4-fold (KPT-185) and 3.5-fold (KPT-249) with subsequent generations of the SINEs. Consistent with the WST-1 results, Annexin V/7-aminoactinomycin D flow cytometry showed a significant increase of APL apoptosis within 6 hours of KPT-249 application. Minimal toxicity against normal murine lymphocytes was observed with SINEs even up to doses of 500 nM. Additional WST-1 assays using AraC-resistant and doxorubicin-resistant APL cell lines demonstrated cell death of both chemotherapy-resistant cell lines at levels comparable to the parental chemosensitive APL cell lines. Combination therapy with low dose KPT-330 and AraC showed additive effects on inhibition of cell proliferation in vitro. This additive effect of KPT-330 and chemotherapy on APL killing was maintained in vivo. As shown in Figure 1, treatment with AraC or KPT-330 alone significantly prolonged the survival of leukemic mice from a median survival of 24 days (APL + vehicle) to 33 days or 39 days, respectively (P < 0.0001). Encouragingly, combination therapy with AraC + KPT-330 further prolonged survival compared to monotherapy (P < 0.0001), with some mice being cured of the disease. Similar in vivo studies with the AraC-resistant and doxorubicin-resistant APL cells are just being initiated. Conclusions Our data suggests that the addition of a CRM1 inhibitor to a chemotherapy regimen offers a promising avenue for treatment of AML. Disclosures: Shacham: Karyopharm Therapeutics Inc.: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties. Kauffman:Karyopharm Therapeutics Inc.: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties. McCauley:Karyopharm Therapeutics, Inc: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 672-672
Author(s):  
Elizabeth R Macari ◽  
Alison Taylor ◽  
David Raiser ◽  
Kavitha Siva ◽  
Katherine McGrath ◽  
...  

Abstract Ribosomal protein (RP) mutations are found in many diseases, including Diamond Blackfan anemia (DBA), where defective erythropoiesis, craniofacial abnormalities and increased cancer risk are major complications. RP mutations cause p53 activation through accumulation of free RPs that bind and sequester MDM2, the negative regulator of p53. We previously characterized a zebrafish mutant in rps29, a gene found mutated in DBA patients. Rps29-/- embryos have hematopoietic and endothelial defects, including decreased cmyb and flk1 expression and defects in hemoglobinization. Consistent with other animal models of RP dysfunction, p53 knockdown in rps29-/- embryos rescued these defects. To uncover novel compounds that correct the phenotypes of DBA, we performed a chemical screen in rps29-/- embryos. Several structurally distinct calmodulin (CaM) inhibitors successfully rescued hemoglobin (Hb) levels in the mutant embryo. To confirm that CaM inhibitors could rescue mammalian models of DBA, we applied them to human and murine models. Treating cord blood-derived CD34+ cells deficient in RPS19 with the CaM inhibitor, trifluoperazine (TFP), relieved the erythroid differentiation block. Injection of TFP in a DBA murine model significantly increased red blood cell number and Hb levels. Mechanistic studies in A549 cells infected with lentivirus expressing RPS19 shRNA demonstrated that TFP blocks p53 nuclear accumulation and induction of multiple p53 transcriptional target genes (p<0.05). Through p53 genetic manipulation, we determined that TFP inhibits p53 transcriptional activity through its c-terminal domain (CTD). Since this region has many residues that can be phosphorylated by CaM-dependent kinases, we hypothesized that TFP blocked phosphorylation of residues in the CTD. To test this hypothesis, phosphomimetic mutants were transfected into Saos2 cells and p53 transcriptional activity in response to TFP was evaluated using p21mRNA levels. TFP treatment of cells containing WT p53 or a transactivation domain mutant, S15D, resulted in a 4-fold reduction in p21 mRNA levels, while all four phosphomimetic mutants in the CTD had attenuated responses to TFP (<2-fold). The common CaM-dependent kinases that phosphorylate these CTD residues are Chk1 and Chk2. Investigation of the role of Chk1 and Chk2 found that a chk2 morpholino and multiple inhibitors of Chk2, but not Chk1, rescued Hb levels in the rps29-/- embryo (p<0.05). Chk2 inhibitors also mimic CaM inhibition in our in vitro assays. In conclusion, we have shown a novel mechanism by which CaM inhibitors mediate p53 activity through the CTD and can rescue the phenotypes of multiple in vitro and in vivo models of DBA. Our data strongly suggests that CaM or Chk2 inhibitors may be effective therapies for DBA patients, and a clinical trial is being planned with TFP. Disclosures Ebert: Genoptix: Consultancy, Patents & Royalties; H3 Biomedicine: Consultancy; Celgene: Consultancy. Zon:FATE Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Scholar Rock: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2629-2629 ◽  
Author(s):  
Shodeinde Coker ◽  
Zbigniew M Szczepiorkowski ◽  
Alan H. Seigel ◽  
Antonio Ferrari ◽  
Luca Benatti ◽  
...  

Abstract Introduction Crohn's disease and Ataxia Telangiectasia have been managed by extended release of dexamethasone from autologous red blood cells (RBC) with encapsulated dexamethasone sodium phosphate DSP. The EryDexSystem (EDS) is an automated system that loads RBC ex vivo using hypotonic opening of RBC followed by hypertonic resealing of the RBC and washing to prepare the DSP-RBC for infusion. In vivo, DSP is dephosphorylated within the RBC to dexamethasone which passively diffuses into the plasma. The objective of this two-phase study was to elucidate pharmacokinetics (PK) and in vivo 24-hour recovery of RBCs as well as RBC survival (T50) properties of RBC encapsulated DSP. Materials and Methods The study was conduct in two separate Phases, A and B. Phase A, the 24-hour RBC recovery and T50 survival phase, was designed as a randomized, concurrently controlled, single-blind, single-center study to determine the in vivo kinetics of EDS-processed autologous RBC. Healthy volunteer consenting subjects were randomized to receive autologous RBCs prepared using EDS and loaded with either 15-20mg DSP (Group 1A) or sham hypotonic saline (Group 2A). EDS prepared RBC were radiolabeled with 51-Cr following standard methods, and the in vivo labeled RBC followed over 49 days post infusion. The Phase B PK study was designed as an open-label, single-center Phase I study that evaluated two dose levels of DSP encapsulated in RBCs using the EDS. Healthy volunteer consenting subjects were randomized to receive autologous RBCs loaded with either 2.5-5 mg DSP (Group 1B) or 15-20 mg (Group 2B). Post-infusion plasma levels of dexamethasone were followed (over 42 days). Both studies conformed to the Declaration of Helsinki. Results Phase A: Ten subjects (3male; 7 female) were randomized to Groups 1A or 2A. The mean 24-hour RBC recovery ± SD [95% CL] was 77.9 ± 3.3% [73.8-81.9%] and 72.7 ± 10.5% [57.8-85.7%] for Groups 1A and 2A, respectively. The mean ± SD RBC life span in Group 1A was 84.3 ± 8.3 days with a mean T50 of 42.1 ± 4.1 [95% CL: 37.0, 47.3] days, whereas these values were 88.9 ± 6.2 days and 44.4 ± 3.1 [95% CL: 40.6, 48.3] days, respectively, in Group 2A. Sixteen (16) treatment-emergent adverse events (TEAEs) were recorded in Group 1A and 23 in Group 2A. All TEAEs were judged to be unlikely related to the treatment. Phase B: Eighteen subjects (12 male; 6 female) were randomized to Groups 2A and 2B. The actual DSP loading doses (mean ± SEM) were 4.2±0.27 mg and 16.9±0.90 mg. Release of dexamethasone from RBCs in vivo peaked at 1 hour after the end of IV infusion independent of the dose. A detailed summary of the PK parameters for dexamethasone for each treatment group is shown in Table 1. A sustained release of dexamethasone could be detected until 14 and 35 days after the single IV infusion ofEryDex in Group 1B and 2B, respectively. Six (6) TEAEs were reported in each group and were judged to be unlikely related to the study drug or procedure. Conclusion The results for the mean RBC in vivo recovery for DSP-loaded EDS-processed cells meet the FDA criteria for 24-hour RBC recovery of ≥ 75%, without adverse impact on the survival of EDS-processed RBCs. Most of the dexamethasone was rapidly released from the RBCs in vivo with a maximum peak occurring 1 hour after the end of the intravenous infusion, independent of the dose administered, but sustained release of dexamethasone could be detected until 14 and 35 days post infusion for the low and high doses, respectively. DSP-loaded autologous RBCs prepared using the EDS delivered a sustained dose of dexamethasone in vivo. Additional efficacy studies in targeted patient populations are indicated. Disclosures Szczepiorkowski: EryDel S.P.A.: Research Funding. Ferrari:EryDel S.P.A.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Benatti:EryDel S.P.A.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Mambrini:EryDel S.P.A.: Employment, Equity Ownership. Hartman:EryDel S.P.A.: Consultancy. Dumont:EryDel S.P.A.: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4393-4393 ◽  
Author(s):  
Rebecca Valentin ◽  
Marisa O. Peluso ◽  
Timothy Z. Lehmberg ◽  
Ammar Adam ◽  
Li Zhang ◽  
...  

Abstract Background CD47 is over-expressed by many tumor types and protects tumor cells from destruction via tumor-intrinsic and -extrinsic means. The fully human anti-CD47 monoclonal antibody (mAb) SRF231 has previously been shown to block the "don't eat me" CD47/signal regulatory protein alpha (SIRPα) interaction and induce macrophage-mediated phagocytic uptake of CD47-expressing tumor cells, either alone or in the presence of anti-CD20 mAb. Furthermore, SRF231 inhibited tumor growth in preclinical models of aggressive non-Hodgkin lymphoma (Holland P, et al. ASH 2016). Here, we explored the activity of SRF231 against CLL cells for the first time, both as monotherapy and in combination with rituximab or venetoclax (VEN). Methods Peripheral blood mononuclear cells from 24 CLL patients were evaluated for CD47 surface expression by flow cytometry. Primary CLL or Jurkat target cells were treated ex vivo with SRF231 or isotype control and evaluated in phagocytosis and cell death assays. Human monocyte-derived macrophages were cocultured with fluorescently-labeled target tumor cells and exposed to SRF231 and/or rituximab (commercial supply). BH3 profiling was performed by gently permeabilizing primary CLL cells and measuring the release of cytochrome C (Cyto-C) in response to BH3-only peptides by flow cytometry. Priming for apoptosis was measured by Cyto-C release in response to BIM BH3 peptide, and pro-survival protein dependencies were measured by response to specific BH3-only sensitizer peptides. Statistical analyses were by unpaired and paired t-test with a two-tailed nominal p ≤ 0.05 considered as significant. In vivo antitumor activity was assessed using tumor xenograft studies in CB17 SCID mice. Mice with established, subcutaneous Ri-1 tumors were randomized and treated with either isotype control, SRF231, VEN (Medkoo), or combination of SRF231 and VEN. Results CD47 was expressed in all primary CLL cells (n = 24, median mean fluorescence intensity [MFI] 7913, range 3575-18,329) with a slightly higher expression in unmutated CLL (U-CLL) vs mutated CLL (M-CLL) samples (U-CLL median MFI = 9106, n = 8 vs M-CLL, median MFI = 7713, n = 14, 2 unknown, p = 0.047). Primary CLL cells were significantly more susceptible to phagocytosis upon ex vivo treatment with SRF231 in combination with rituximab (median % increase in phagocytosis over isotype control of 32.28% in the combination vs 11.78% with rituximab alone, n = 24, p < 0.0001). Upon coculture of Jurkat cells with macrophages, SRF231 not only induced phagocytosis (EC50, 332 ± 65 ng/mL, n = 3), but also induced cell death of non-phagocytosed target tumor cells (EC50, 295 ± 43 ng/mL, n = 3). While soluble SRF231 did not induce significant target tumor cell killing, immobilized SRF231 induced Jurkat cell and primary CLL cell death (median % alive of 34.6% in SRF231 treated cells vs 64.4% in controls, n = 24, p < 0.0001). To assess the mechanism of cell death induction, tumor cells were pretreated with a pan-caspase inhibitor, Z-VAD-FMK, which revealed that SRF231-mediated tumor cell death is caspase-independent. In primary CLL cells, BH3 profiling confirmed that SRF231 did not alter mitochondrial priming for apoptosis or pro-survival Bcl-2 family protein dependencies. Pre-treatment with the phospholipase C (PLC) inhibitor U73122 prior to SRF231 exposure partially blocked the ability of SRF231 to kill CLL cells (median % alive of 45.4% in pre-treated cells vs 25.4% in controls, n = 6, p = 0.0029). In addition to these in vitro studies, SRF231 displayed profound antitumor activity in a xenograft model of B-cell lymphoma as a single agent, and led to complete and durable tumor regression in combination with VEN. Conclusion Ex vivo treatment of primary CLL cells with SRF231 led to dual antitumor effects of tumor cell-extrinsic plus -intrinsic mechanisms by augmenting rituximab-induced phagocytosis and inducing tumor cell death. SRF231 induced death of tumor cells through a caspase-independent mechanism that depends at least partially on PLC. In vivo, SRF231 in combination with VEN led to complete and durable tumor regression in a xenograft model. SRF231 is currently being evaluated across multiple tumor types in a Phase 1 clinical trial (NCT03512340). Disclosures Valentin: Roche: Other: Travel reimbursement; AbbVie: Other: Travel reimbursement. Peluso:Surface Oncology: Employment, Equity Ownership. Adam:Surface Oncology: Employment, Equity Ownership. Zhang:Surface Oncology: Employment, Equity Ownership. Armet:Surface Oncology: Employment, Equity Ownership. Guerriero:GSK: Research Funding; Eli Lilly: Research Funding. Lee:Surface Oncology: Employment, Equity Ownership. Palombella:Surface Oncology: Employment, Equity Ownership. Holland:Surface Oncology: Employment, Equity Ownership. Paterson:Surface Oncology: Employment, Equity Ownership. Davids:Surface Oncology: Research Funding; Celgene: Consultancy; Verastem: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; MEI Pharma: Consultancy, Research Funding; Pharmacyclics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche/Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Astra-Zeneca: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Merck: Consultancy; TG Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 657-657 ◽  
Author(s):  
Tony Peled ◽  
Guy Brachya ◽  
Nurit Persi ◽  
Chana Lador ◽  
Esti Olesinski ◽  
...  

Abstract Adoptive transfer of cytolitic Natural Killer (NK) cells is a promising immunotherapeutic modality for hematologic and other malignancies. However, limited NK cell in vivo persistence and proliferation have been challenging clinical success of this therapeutic modality. Here we present a reliable, scalable and GMP-compliant culture method for the expansion of highly functional donor NK cells for clinical use. Nicotinamide (NAM), a form of vitamin B-3, serves as a precursor of nicotinamide adenine dinucleotide (NAD) and is a potent inhibitor of enzymes that require NAD including ADP ribosyltransferases and cyclic ADP ribose/NADase. As such, NAM is implicated in the regulation of cell adhesion, polarity, migration, proliferation, and differentiation. We have previously reported that NAM augments tumor cytotoxicity and cytokine (TNFα and IFN-γ) secretion of NK cells expanded in feeder-free culture conditions stimulated with IL-2 or IL-15. Immunophenotype studies demonstrated NK cells expanded with NAM underwent typical changes observed with cytokine only-induced NK cell activation with no significant differences in the expression of activating and inhibitory receptors. CD200R and PD-1 receptors were expressed at low levels in resting NK cells, but their expression was up-regulated following activation in typical cytokine expansion cultures. Interestingly, the increase in CD200R and PD-1 was reduced by NAM, suggesting these NK cells to be less susceptible to cancer immunoevasion mechanisms (Fig 1). In vivo retention and proliferation is a pre-requisite for the success of NK therapy. We have reported that NK expanded with NAM displayed substantially better retention in the bone marrow, spleen and peripheral blood of irradiated NSG mice. Using a carboxyfluorescein succinimidyl ester (CFSE) dilution assay, we demonstrated increased in vivo proliferation of NAM-cultured NK cells compared with cells cultured without NAM. These results were recently confirmed using a BrdU incorporation assay in irradiated NSG mice (Fig.2). These findings were mechanistically supported by a substantial increase in CD62L (L-selectin) expression in cultures treated with NAM. CD62L is pivotal for NK cell trafficking and homeostatic proliferation and its expression is down regulated in IL-2 or IL-15 stimulated cultures (Fig. 3). These data provided the foundation for the development of a feeder cell-free scalable culture method for clinical therapy using apheresis units obtained from healthy volunteers. CD3+ cells were depleted using a CliniMACS T cell depletion set. Following depletion, the CD3- fraction was analyzed for phenotypic markers and cultured in closed-system flasks (G-Rex100 MCS, Wilson Wolf) supplemented with 20ng/ml IL-15 or 50ng/ml IL-2 GMP, 10% human serum, minimum essential medium-α and NAM USP for two weeks. While at seeding, NK cells comprised 5-20% of total culture seeded cells, at harvest, NK cells comprised more than 97% of the culture. Although overall contamination of the NK cultures was low with either IL-15 or IL-2, a lower fraction of CD3+ and CD19+ cells was observed with IL-15 vs IL-2 (0.2±0.1% vs. 0.4±0.2% and 1.3±0.4% vs. 2.4±0.6%, respectively). Consequently, we decided to use IL-15 for clinical manufacturing. Optimization of NAM concentration studies showed similar expansion with 2.5 and 5 mM and a decrease in expansion with 7.5 mM NAM. Since NAM at 5 mM had a stronger impact on CD62L expression and on the release of IFNγ and TNFα than NAM at 2.5 mM, we selected 5mM NAM for clinical manufacturing. Overall median NK expansion after two weeks in closed G-Rex flasks supplemented with IL-15 and 5mM NAM was 50-fold (range 37-87). An additional and significant increase in expansion was obtained after doubling the culture medium one week post seeding. While there was a marked advantage for single culture feeding, more feedings had less impact on NK expansion and had a negative effect on the in vivo retention potential. Our optimized expansion protocol therefore involved one feeding during the two weeks expansion duration resulting in 162±30.7-fold expansion of NK cells relative to their input number in culture. Based on these data, we have initiated a clinical trial at University of Minnesota, to test the safety and efficacy of escalating doses (2 x 107/kg - 2 x 108/kg) of our novel NAM NK cell product in patients with refractory non-Hodgkins lymphoma and multiple myeloma (NCT03019666). Disclosures Peled: Gamida Cell: Employment, Equity Ownership. Brachya: Gamida Cell: Employment. Persi: Gamida Cell: Employment. Lador: gamida Cell: Employment, Equity Ownership. Olesinski: gamida cell: Employment. Landau: gamida cell: Employment, Equity Ownership. Galamidi: gamida cell: Employment. Peled: Biokine: Consultancy; Biosight: Consultancy. Miller: Celegene: Consultancy; Oxis Biotech: Consultancy; Fate Therapeutics: Consultancy, Research Funding. Bachanova: Oxis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Zymogen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Seattle-Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceuticals Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document