scholarly journals Targeted Therapy of B Cell Lymphoma with a Direct Inhibitor of the NF-κB Subunit c-Rel

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 507-507
Author(s):  
Yusuke Shono ◽  
Andrea Z. Tuckett ◽  
Hsiou-Chi Liou ◽  
Samedy Ouk ◽  
Ekaterina Doubrovina ◽  
...  

Abstract NF-kB plays important roles in immunity and oncogenesis, indicating that therapeutic targeting of this pathway could be beneficial in various clinical settings; however,an NF-kB-specific inhibitor does not exist in clinical practice to date. One approach toward development of such a compound is small-molecule-mediated direct inhibition of one or several members of the NF-kB family of transcription factors, a network that comprises five structurally related proteins including p50, p52, RelA, RelB and c-Rel. After screening of a library of 15,000 small molecules with a biochemical assay, we identified two scaffolds with inhibitory activity specific for the NF-kB subunit c-Rel. These scaffolds act as direct c-Rel inhibitors by modifying the conformation of the c-Rel protein, thus preventing DNA binding. We previously reported that in vitro treatment of T cells with the thiohydantoin IT-603 induces c-Rel deficiency, resulting in suppression of T cell alloactivation without compromising T cell activation triggered by recognition of tumor-associated or viral antigens (Shono et al., Cancer Discovery, 2014). Here, we for the first time demonstrate in vivo efficacy of a c-Rel inhibitor treatment regimen in mouse models of graft-versus-host disease (GVHD) and graft-versus-lymphoma (GVL), as well as xenograft models of human B cell lymphomas, revealing that inhibition of c-Rel activity allows not only for suppression of GVHD while retaining GVL activity, but it also mediates promising anti-lymphoma effects. We first show that the novel small molecule IT-901 is a more potent c-Rel inhibitor than IT-603 and has a superior pharmacokinetic profile. IT-901 displayed significantly improved in vivo efficacy, ameliorating GVHD while preserving the anti-lymphoma activity of T cells (Figure 1a,b). Recent genetic evidence has established a pathogenetic role for NF-kB signaling in lymphoid malignancies. We therefore sought to explore the potential of IT-901 for targeted therapy of human lymphomas. We analyzed six representative diffuse large B cell lymphoma (DLBCL) cell lines including activated B-like (ABC; HBL1, TMD8, U2932) and germinal center B-like (GCB; Ly19, SU-DHL4, SU-DHL8) cell lines for nuclear translocation of c-Rel and found that c-Rel was constitutively active in all cell lines. To examine if c-Rel inhibition with IT-901 alters cytokine production by DLBCL cells, we analyzed cytokine levels in the supernatant after in vitro incubation with IT-901. IT-901 treatment resulted in decreased levels of a wide range of cytokines in TMD8 cells, with the notable exceptions of interleukin 8 (IL-8), tumor necrosis factor (TNF)-α, and TNF-β (P<0.05, Figure 2a). We next investigated if IT-901 treatment affected growth of DLBCL cells in vitro. We found that IT-901 dose-dependently inhibited cell growth of both ABC and GCB cell lines with IC50 values between 3µM to 4µM. Interestingly, IT-901 at a concentration of 3µM did not have an anti-proliferative effect on TMD8 cells, suggesting that cytokines such as IL-8 and TNF-α may be upregulated as a mechanism of resistance to c-Rel inhibition by activating alternative survival pathways. Indeed, in vitro treatment of TMD8 cells with a TNF-α neutralizing antibody inhibited cell growth, and this effect was enhanced when combining TNF-α blockade with c-Rel inhibition (P<0.01, Figure 2b). Furthermore, we detected high HMOX1 protein levels in DLBCL cells treated with IT-901, suggesting that HMOX1 expression was induced, which is a hallmark of oxidative stress. Indeed IT-901 induced production of high levels of reactive oxygen species in lymphoma cells. This suggests that induction of oxidative stress may be a second mechanism contributing to the anti-lymphoma activity of IT-901. We next analyzed primary lymphoma cells and found that the c-Rel gene is widely expressed in human B cell malignancies and frequently amplified in DLBCL and EBV-transformed B cells. Importantly, intranuclear analysis of the c-Rel protein demonstrated that this transcription factor can be constitutively active in a wide range of human lymphomas. IT-901 efficiently inhibited growth of EBV-transformed B cells in vitro, and mediated significant anti-lymphoma activity in a xenograft model of EBV-induced lymphoma (P<0.01, Figure 2c). In summary, our findings underscore multiple therapeutic benefits and great potential for clinical translation of a novel c-Rel inhibitor. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.

2019 ◽  
Vol 116 (34) ◽  
pp. 16981-16986 ◽  
Author(s):  
Claudio Scuoppo ◽  
Jiguang Wang ◽  
Mirjana Persaud ◽  
Sandeep K. Mittan ◽  
Katia Basso ◽  
...  

To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.


2003 ◽  
Vol 77 (3) ◽  
pp. 2134-2146 ◽  
Author(s):  
Vicky M.-H. Sung ◽  
Shigetaka Shimodaira ◽  
Alison L. Doughty ◽  
Gaston R. Picchio ◽  
Huong Can ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Studies of HCV replication and pathogenesis have so far been hampered by the lack of an efficient tissue culture system for propagating HCV in vitro. Although HCV is primarily a hepatotropic virus, an increasing body of evidence suggests that HCV also replicates in extrahepatic tissues in natural infection. In this study, we established a B-cell line (SB) from an HCV-infected non-Hodgkin's B-cell lymphoma. HCV RNA and proteins were detectable by RNase protection assay and immunoblotting. The cell line continuously produces infectious HCV virions in culture. The virus particles produced from the culture had a buoyant density of 1.13 to 1.15 g/ml in sucrose and could infect primary human hepatocytes, peripheral blood mononuclear cells (PBMCs), and an established B-cell line (Raji cells) in vitro. The virus from SB cells belongs to genotype 2b. Single-stranded conformational polymorphism and sequence analysis of the viral RNA quasispecies indicated that the virus present in SB cells most likely originated from the patient's spleen and had an HCV RNA quasispecies pattern distinct from that in the serum. The virus production from the infected primary hepatocytes showed cyclic variations. In addition, we have succeeded in establishing several Epstein-Barr virus-immortalized B-cell lines from PBMCs of HCV-positive patients. Two of these cell lines are positive for HCV RNA as detected by reverse transcriptase PCR and for the nonstructural protein NS3 by immunofluorescence staining. These observations unequivocally establish that HCV infects B cells in vivo and in vitro. HCV-infected cell lines show significantly enhanced apoptosis. These B-cell lines provide a reproducible cell culture system for studying the complete replication cycle and biology of HCV infections.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2417-2417
Author(s):  
Olga Ritz ◽  
Jochen K Lennerz ◽  
Karolin Rommel ◽  
Karola Dorsch ◽  
Elena Kelsch ◽  
...  

Abstract Abstract 2417 Primary mediastinal B-cell lymphoma (PMBL) is a subtype of diffuse large B-cell lymphoma (DLBCL) that affects predominantly young women (Swerdlow et al. 2008). Despite improvements due to addition of rituximab, which has become state of the art treatment, 20% of PMBL patients succumb to disease progression or relapse. Notably, here are currently no registered trials that are actively recruiting PMBL-patients and a better understanding of the underlying pathobiology may identify novel therapeutic targets and provide an alternative to dose escalation (Steidl and Gascoyne 2011). BCL6 is a key germinal center B-cell transcription factor that suppresses genes involved in lymphocyte activation, differentiation, cell cycle arrest and DNA damage response gene. BCL6 is aberrantly expressed in certain DLBCL subgroups and BCL6 overexpression is sufficient for lymphomagenesis in mice (Cattoretti et al. 2005). In cellular- and murine DLBCL models, targeting of BCL6 via retroinverted BCL6 peptid inhibitor (RI-BPI) appears effective (Polo et al. 2004; Cerchietti et al. 2010). In conjunction with the relatively restricted expression pattern of BCL6, these data collectively suggest BCL6 as a candidate for targeted therapy in BCL6-positive lymphomas. Despite substantial work on BCL6 in lymphomas, the function of BCL6 in PMBL is unknown. To address the BCL6 function in PMBL, we performed BCL6 depletion by siRNA in all three available PMBL cell lines: K1106, U-2940 and MedB-1. We found that BCL6 acts pro-proliferative and anti-apoptotic; however, PMBL models were only partially dependent on and not addicted to BCL6. Given that BCL6 expression in all PMBL cell lines is variable with a notable fraction of BCL6-negative cells, we argued that increasing the fraction of BCL6-positive cells might increase the level of BCL6-dependence. Since IL-4/STAT6 signaling upregulates BCL6 in mouse lymphocytes (Schroder et al. 2002), we treated PMBL cell lines with IL-4 (or IL-13) and, as expected, observed increased phosphorylated (p)STAT6 levels. Surprisingly, the pSTAT6 increase was not associated with higher – but with drastically lower BCL6 protein levels. Moreover, in untreated cells, co-localization studies for pSTAT6- and BCL6 demonstrated staining in mutually exclusive subsets of cells (Figure 1A), suggesting negative interaction between BCL6 and pSTAT6. Other STAT family members were already shown to participate in the transcriptional regulation of BCL6. Thus, we examined binding of STAT6 to the proximal promoter of BCL6 in all PMBL cell lines using shift assay and chromatin immunoprecipitation. We found that STAT6 can bind all five GAS binding sites within the BCL6 promoter in vitro and in all PMBL cell lines STAT6 was bound to proximal BCL6 promoter in vivo. Furthermore, transient STAT6 depletion by siRNA and/or ectopic expression of constitutively active STAT6 confirms that pSTAT6 is sufficient for transcriptional repression of BCL6. Co-localization studies in primary patient samples demonstrated mutually exclusive BCL6/pSTAT6 distribution as a visual hallmark of the repression mechanism (Figure 1B, C). Thus, our data demonstrate for the first time that constitutively active STAT6 transcriptionally represses BCL6 in PMBL. In conjunction with functional data, the delineated repression mechanism may prevent addiction to one single oncogenic pathway (i.e. BCL6) in PMBL. Figure 1. Mutually exclusive distribution of BCL6 and pSTAT6 in PMBL Figure 1. Mutually exclusive distribution of BCL6 and pSTAT6 in PMBL Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 29 (1) ◽  
pp. 244-252
Author(s):  
YUCHUN LIU ◽  
YONGMEI SHEN ◽  
CHENHAO QIN ◽  
YIZHEN SHI ◽  
GUANG RONG ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 711-711
Author(s):  
Anagh Anant Sahasrabuddhe ◽  
Xiaofei Chen ◽  
Kaiyu Ma ◽  
Rui Wu ◽  
Richa Kapoor ◽  
...  

Abstract Introduction: Diffuse large B cell lymphoma (DLBCL) is the most common form of malignant lymphoma and may arise de novo, or through transformation from a pre-existing low-grade B cell lymphoma such as follicular lymphoma (FL). However, the post-translational mechanisms and deregulated pathways underlying the pathogenesis of disease evolution are not fully understood. Methods: We employed integrated functional and structural genomics and mass spectrometry (MS)-driven proteomics which implicated a possible novel tumor suppressor role for a conserved E3 ubiquitin ligase FBXO45 in DLBCL pathogenesis. We generated conditional knockout mice targeting loss of Fbxo45 in germinal center (GC) B-cells using the Cg1-Cre-loxP system and an assortment of CRISPR-mediated knockouts of FBXO45 in B cell lymphoma cells (FL518, BJAB, U2932). We engineered B cell lines (BJAB, U2932) to inducibly express FLAG-tagged FBXO45 to identify candidate substrates of FBXO45 using liquid chromatography-tandem MS. In vitro biochemical and in vivo studies using a variety of genetically-modified lines in xenograft studies in immunodeficient mice were performed to validate observations from proteogenomic studies. Whole genome sequencing (WGS) and genomic copy number studies were interrogated to investigate structural alterations targeting FBXO45 in primary human lymphoma samples. Results: Conditional targeting of Fbxo45 in GCB-cells in transgenic mice resulted in abnormal germinal center formation with increased number and size of germinal centers. Strikingly, targeted deletion of Fbxo45 in GCB-cells resulted in spontaneous B cell lymphomas with (22/22);100%) penetrance and none of the wild-type (WT) littermates (0/20; 0%) developed lymphoma at 24 months. Macroscopic examination revealed large tumor masses, splenomegaly, and lymphadenopathy at different anatomic locations including ileocecal junction, mesenteric, retroperitoneal and cervical lymph nodes and thymus. Next generation sequencing of immunoglobulin heavy chain genes revealed monoclonal or oligoclonal B cell populations. Using proteomic analysis of affinity-purified FBXO45-immunocomplexes and differential whole proteome analysis from GCB-cells of Fbxo45 wt/wt vs Fbxo45 fl/fl mice, we discovered that FBXO45 targets the RHO guanine exchange factor GEF-H1 for ubiquitin-mediated proteasomal degradation. FBXO45 exclusively interacts with GEF H1 among 8 F-box proteins investigated and silencing of FBXO45 using three independent shRNA and CRISPR-Cas9-mediated knockouts in B-cell lymphoma cell lines promotes RHOA and MAPK activation, B cell growth and enhances proliferation. GEF-H1 is stabilized by FBXO45 depletion and GEF-H1 ubiquitination by FBXO45 requires phosphorylation of GEF-H1. Importantly, FBXO45 depletion and expression of a GEF-H1 mutant that is unable to bind FBXO45 results in GEF-H1 stabilization, promotes hyperactivated RHO and MAPK signaling and B-cell oncogenicity in vitro and in vivo. Notably, this phenotype is reverted by co-silencing of GEF-H1. Inducible ectopic expression of FBXO45 triggers accelerated turnover of GEF H1 and decreased RHOA signaling. Genomic analyses revealed recurrent loss targeting FBXO45 in transformed DLBCL (25%), de novo DLBCL (6.6%) and FL (2.3%). In keeping with our observation of prolonged hyperactivation of pERK1/2 consequent to FBXO45 ablation, in vitro and in vivo studies using B-cell lymphoma cell lines and xenografts demonstrated increased sensitivity to pharmacologic blockade with the MAP2K1/2 (ERK1/2) inhibitor Trametinib. Conclusions: Our findings define a novel FBXO45-GEF-H1-MAPK signalling axis, which plays an important role in DLBCL pathogenesis. Our studies carry implications for potential exploitation of this pathway for targeted therapies. Disclosures Siebert: AstraZeneca: Speakers Bureau. Lim: EUSA Pharma: Honoraria.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3010-3010
Author(s):  
Raphael Koch ◽  
Martin Demant ◽  
Thiha Aung ◽  
Annemarie Guentsch ◽  
Nina Diering ◽  
...  

Abstract Introduction Patients with aggressive B-cell lymphoma are treated in curative intention. However, some patients experience fatal relapse, originating from refractory lymphoma cells with the capacity for clonogenic regrowth. We here addressed repopulation capacity of lymphoma cell subpopulations and the mechanisms regulating the populational composition in the growing tumor. Material & Methods We identified side population (SP) cells in diffuse large B-cell lymphoma cell lines and patient samples with the DNA-binding dye Hoechst33342, analyzed clonogenicity in vitro and in vivo and screened for differentially expressed genes and DNA-methylation patterns. A GFP-containing lentiviral vector construct was used to keep track of side population cells cultured among mixed cultures of SP and nonSP cells. Manipulation of canonical wnt-signaling was performed by lentiviral sh-RNA constructs as well as pharmacological tankyrase-inhibition by XAV-939. In vitro data were supported by in vivo experiments using a chorioallantoic membrane-assay. Results Colony assays and suspension cultures of sorted SP and nonSP cells revealed restriction of clonogenic potential to the SP cell population as well as resurgence of nonSP cells from purified SP cell progenitors, while mixed culture assays using a GFP-vector construct tracing the SP vs. nonSP-population revealed homeostasis between the two populations, showing both SP and nonSP cells contributing to either cell compartment. SP cells show enhanced canonical wnt-signaling and increased exosomal secretion of wnt3a. Suppression of canonical wnt-signaling resulted in reduced clonogenicity. Exosome stimulation of DLBCL cell lines resulted in increased clonogenicity, stabilization of beta catenin and enhanced TOP/FOP activity. Conclusion Here we show that tumor cells reversibly switch between states of autonomous and non-autonomous clonogenicity, and that such transitions are regulated by exosome-mediated wnt signaling. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Chiara Pighi ◽  
Taek-Chin Cheong ◽  
Mara Compagno ◽  
Enrico Patrucco ◽  
Maddalena Arigoni ◽  
...  

The expression of BCL6 in B cell lymphoma can be deregulated by chromosomal translocations, somatic mutations in the promoter regulatory regions or reduced proteasome-mediated degradation. FBXO11 was recently identified as a ubiquitin ligase involved in the degradation of BCL6 and is frequently inactivated in lymphoma or other tumors. Here, we show that FBXO11 mutations are found in 23% of Burkitt lymphoma (BL) patients. FBXO11 mutations impaired BCL6 degradation and the deletion of FBXO11 protein completely stabilized BCL6 levels in human BL cell lines. Conditional deletion of either one or two copies of the FBXO11 gene in mice cooperated with oncogenic MYC and accelerated B cell lymphoma onset, providing experimental evidence that FBXO11 is a haplo-insufficient oncosuppressor in B cell lymphoma. In WT and FBXO11-deficient BL mouse and human cell lines, targeting BCL6 via specific degrader or inhibitors partially impaired lymphoma growth in vitro and in vivo. Inhibition of MYC by the Omomyc mini-protein blocked cell proliferation and increased apoptosis, effects further increased by combined BCL6 targeting. Thus, by validating the functional role of FBXO11 mutations in BL we further highlight the key role of BCL6 in BL biology and provide evidence that innovative therapeutic approaches such as BCL6 degraders and direct MYC inhibition could be exploited as a targeted therapy for BL.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 468-468
Author(s):  
Hong Qin ◽  
Guowei Wei ◽  
Ippei Sakamaki ◽  
Zhenyuan Dong ◽  
Diane Lynne Smith ◽  
...  

Abstract Background: Targeted monoclonal antibodies (mAbs) such as the anti-CD20 rituximab, are proven therapies in lymphoma, yet these diseases remain incurable because of primary or acquired resistance. Using a eukaryotic expression system to produce antigen closely representing endogenous protein, we developed a new therapeutic antibody against an alternative lymphoma target. B cell activating factor receptor (BAFF-R/TNFRSF13C) is a tumor-necrosis factor receptor superfamily member specifically involved in B lymphocyte development and mature B cell survival. Although earlier attempts to target the BAFF/BAFF-R axis therapeutically for B cell tumors yielded limited success, BAFF-R remains an attractive target for B cell lymphoma therapeutic antibody development, particularly for rituximab-resistant tumors. Methods and Results: We generated 2 mAbs to human BAFF-R expressed as a natively folded, eukaryotically glycosylated cell-surface immunogen on engineered mouse fibroblast (L) cells. Both mAbs specifically bound BAFF-R-expressing L cells, but not the parental counterparts. Each of the complementarity determining regions (CDRs) of the 2 mAbs are unique, suggesting different binding epitopes. Both mAbs bound with high affinity to the human B cell lymphoma cell lines JeKo-1 (mantle cell lymphoma; MCL), SU-DHL6 (diffuse large B cell lymphoma; DLBCL), Raji (Burkitt's lymphoma) and RL (follicular lymphoma). Because our goal is to develop antibodies for clinical use, we substituted in human IgG1 Fc to generate the chimeric mAbs C55 and C90. The chimeric mAbs retained the binding specificity and affinity of the mouse antibodies to their target cells. By immunohistochemistry C55 and C90 staining was specific to the B cell-containing organs tonsil and spleen. No detectable staining was observed in heart, lung, brain, liver, and kidney. Using primary human natural killer (NK) cells as effectors, we demonstrated the chimeric antibodies induced potent antibody-dependent cellular cytotoxicity (ADCC) against BAFF-R-expressing L cells and the JeKo-1, SU-DHL6, Raji and RL human lymphoma cell lines. C55 and C90 were also able to elicit ADCC in primary human lymphomas; they efficiently killed tumor cells from patients with MCL, DLBCL, follicular lymphoma and chronic lymphocytic leukemia (CLL) (n=8). Notably, 5 of these primary lymphomas were from patients who had relapsed after rituximab treatment (2 MCL, 3 CLL). We next determined the activity of C55 and C90 in models of drug-resistant lymphoma. Both ibrutinib and rituximab are effective anti-lymphoma agents, however, primary or acquired resistance to these drugs is common. We derived a rituximab-resistant JeKo-1 variant (JeKo-1 CD20KO) using the CRISPR/HDR system to knock-out CD20 gene expression, and also used the naturally ibrutinib-resistant (Z-138) lymphoma cell line. We confirmed that the C55 and C90 anti-BAFF-R antibodies induced ADCC in both drug-resistant cell lines in vitro. Using xenogenic tumor models in NOD scid gamma (NSG) mice we observed remarkable in vivo anti-tumor effects of both the C55 and C90 chimeric antibodies. We found our antibodies significantly inhibited growth of implanted Z-138 and JeKo-1 CD20KO lymphomas (P<0.001; Figure). Conclusion: In contrast to previously reported BAFF-R antibodies, our in vitro and in vivo results strongly support the translational development of our novel BAFF-R-specific monoclonal antibodies, especially as an alternative immunotherapy against ribuximab- or ibrunitib-resisitant B cell maglinancies. Other preliminary data also suggest BAFF-R may be an effective target of CAR T cells. Figure Figure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3941-3941
Author(s):  
David M Goldenberg ◽  
Serengulam Govindan ◽  
Tom M Cardillo ◽  
Robert M Sharkey

Abstract Abstract 3941 Background: Monoclonal antibody (MAb) therapy has had a significant impact on the management of B-cell malignancies, but is most often used in combination with chemotherapy. We developed an ADC that combines SN-38, the active component of irinotecan, a topoisomerase I inhibitor, with the internalizing, humanized, anti-CD22 IgG, epratuzumab, and determined its activity alone and in combination with an anti-CD20 antibody therapy (veltuzumab). Methods: Epratuzumab was conjugated with SN-38 (E-SN-38) at a mole ratio of ∼6:1. The conjugate is designed specifically to be released slowly in the presence of serum (50% released over ∼1.5 days), allowing liberation of the drug when internalized, but also being released locally after being bound to the tumor. In vitro and in vivo studies were performed to assess the activity of the conjugate against several subcutaneously- or intravenously-inoculated B-cell lymphoma cell lines. In vivo studies also examined combination therapy using E-SN-38 and the veltuzumab (V). Results: In vitro studies in 4 B-cell lymphoma cells lines (Daudi, Raji, Ramos, WSU-FSCCL) and 4 acute lymphoblastic lymphoma cell lines (697, REH, MN-60, and RS4;11) expressing varying amounts of CD22 showed an IC50 for E-SN-38 in the nanomolar range, confirming potent activity. Nude mice bearing SC Ramos human lymphoma had significant selective anti-tumor activity compared to a control, non-targeting, IgG-SN-38 conjugate, at a dosing regimen of 75 to 250 μg of the conjugates given twice-weekly for 4 weeks. Significant anti-tumor activity was also found in several other cell lines. When combined with veltuzumab, significant improvement in therapeutic activity was observed. For example, median survival in a WSU-FSCCL human follicular B-cell lymphoma IV model with treatment initiated 5 days after implantation was 42 d (0/10 surviving at 160 d) and 91 d (2/10 surviving) for untreated and veltuzumab-treated animals, respectively; 63d (0/10 surviving after 160 d) and >160 d (with 6/10 surviving) for E-SN-38 and E-SN-38 + V, respectively; and 63 d (0/10) and 91 d (2/10) for non-targeting IgG-SN-38 conjugate alone and combined with V). The E-SN-38 conjugate combined with V was significantly better than all treatment or control groups (P ≤ 0.05). Conclusion: E-SN-38 ADC is a potent therapeutic, even at non-toxic dose levels, and shows significantly enhanced efficacy when combined with anti-CD20 immunotherapy, representing an important new ADC treatment regimen. Disclosures: Goldenberg: Immunomedics, Inc.: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Govindan:Immunomedics, Inc.: Employment. Cardillo:Immunomedics, Inc.: Employment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3719-3719
Author(s):  
Paul M. Barr ◽  
Francisco J. Hernandez-Ilizaliturri ◽  
Thomas Murante ◽  
Shannon P. Hilchey ◽  
Derick R Peterson ◽  
...  

Abstract Abstract 3719 The clinical efficacy of mTOR inhibition in MCL is limited by known resistance pathways mediated through IRS-1 and mTORC2. Simultaneous inhibition of other molecules downstream of the B cell receptor, such as PI3Kδ, may abrogate such negative feedback mechanisms. PI3Kδ inhibition using GS-1101 has demonstrated early efficacy in MCL. Taken together, the combination of mTORC1 and PI3Kδ inhibition may represent a rationale combination to test in MCL. To this end, we utilized a panel of B cell lymphoma lines including established MCL cell lines (Granta, Jeko, Mino, Rec-1, HBL-2, Z-138), cytarabine resistant MCL lines (MinoAraCR, JekoAraCR, Rec-1AraCR, HBL-2AraCR) and primary MCL cells isolated from patients. In all cell lines, dose-finding experiments using GS-1101 and the mTOR inhibitors temsirolimus and everolimus were performed in triplicates. Cell viability was determined using an Alamar Blue reduction assay. Proteins downstream of PI3K – mTOR signaling were evaluated by western blot analysis. Synergy between the agents was evaluated using Laska et al's model–free test. For in vivo studies, severe combined immunodeficiency mice were injected with 10×106 Z-138 cells on day 0. GS-9820, a PI3Kδ inhibitor optimized for murine studies, was used in lieu of GS-1101. Upon detection of tumor engraftment, animals were divided into 6 groups, each containing 5 mice; Control, GS-9820 at 10 and 20mg/kg/dose, temsirolimus at 10 and 20mg/kg/dose, and GS-9820 plus temsirolimus at 10mg/kg/dose each. GS-9820 was administered by gastric lavage twice daily on days +15 to +19 and +22 to +26. Temsirolimus was administered via tail vein injection on days +15, +17, +19, +22, +24, and +26. Tumor measurements were used to determine therapeutic activity. The initial screen of lymphoma histologic subtypes demonstrated that cell viability was reduced across Burkitt, diffuse large B cell and MCL lines exposed to GS-1101. In MCL lines, the cell viabilities observed after 48 h treatments with GS-1101 (5uM) were 80% ± 6.9, 66% ± 2.2 and 68% ± 4.7 in Granta, Jeko and Rec-1 cells respectively. No difference was observed in cytarabine resistant cells suggesting non-cross resistance with cytarabine. The activity in primary MCL cells was similar using GS-1101 (5uM) [viability range 55%-65%] while peripheral blood mononuclear cells (PBMCs) appeared less sensitive to GS-1101 [78% ± 2.4]. Both mTOR inhibitors provided moderate reductions in viability after 48 h exposures. Compared to untreated controls, the viabilities of Granta, Jeko and Rec-1 cell lines after 48 h exposures to temsirolimus (5nM) were 73% ± 1.3, 53% % ± 6.9 and 54% ± 2.0 respectively as well as 68% ± 2.9, 50% ± 7.4 and 55% ± 2.0 respectively after everolimus (5nM). Similar results were observed in primary MCL cells using temsirolimus (5nM) [range 80%-85%] while PBMCs were largely unaffected [90% ± 2.2]. The combination of GS-1101 and either mTOR inhibitor produced largely additive reductions in cell viability. Synergistic interactions were observed in Rec-1 cells for 8 dose combinations of GS-1101 (0.1–5.0uM) and either temsirolimus (1–5nM) or everolimus (1–5nM) (unadjusted p < 0.05 for all 8 combinations). Evidence of synergy was insufficient at any combination after adjustment for multiple comparisons over the 3 cell lines. Sequential administration using 24 h pretreatment with each agent was evaluated; no benefit over simultaneous administration was demonstrated. Consistent with known mechanisms of action, immunoblotting revealed decreased 4EBP1 and S6K phosphorylation with mTOR inhibition while PI3K inhibition consistently decreased Akt phosphorylation. In vivo, GS-9820 appears active in the Z-138 xenografts at early time points. Tumor size was reduced to 60% ± 5.5 of control at day 18 and 23 using either 10 or 20 mg/kg of GS-9820. Testing of GS-9820 in combination with temsirolimus in this model is ongoing. Our findings indicate that PI3Kδ inhibition using GS-1101 and GS-9820 is active in vitro and also in a MCL murine xenograft. GS-1101 in combination with mTORC1 inhibition largely produced additive in vitro anti-lymphoma effects in MCL. Ongoing work is aimed at understanding the differences in molecular events downstream of PI3K and mTOR inhibition comparing Rec-1 cells, where synergy was demonstrated, with other cell lines to provide insight into optimal therapeutic combinations and to determine in which molecularly defined subsets of MCL they may be most active. Disclosures: Johnson: Gilead Sciences: Employment. Lannutti:Gilead Sciences Inc: Employment.


Sign in / Sign up

Export Citation Format

Share Document