scholarly journals Asymmetry and Cell Fate in Stem Cells and Cancer

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-45-SCI-45
Author(s):  
Tannishtha Reya

Abstract Our research focuses on the signals that control stem cell self-renewal and how these signals are hijacked in cancer. Using genetic models, we have shown that classic developmental signaling pathways such as Wnt and Hedgehog play key roles in stem cell growth and regeneration and are dysregulated during leukemia development. In addition, we have used real-time imaging strategies to show that stem cells have the capacity to undergo both symmetric and asymmetric division, and that shifts in the balance between these modes of division are controlled by the microenvironment and subverted by oncogenes. This work led to the discovery that regulators of asymmetric division, such as the cell fate determinant Musashi, can promote aggressive leukemias and may serve as critical targets for diagnostics and therapy in hematologic malignancies. Most recently, we have developed a high resolution in vivo imaging system that has allowed us to begin to map the behavior and interactions of stem cells with the microenvironment within living animals and to define how these change during cancer formation. Disclosures No relevant conflicts of interest to declare.

2020 ◽  
Author(s):  
Elizabeth W. Kahney ◽  
Lydia Sohn ◽  
Kayla Viets-Layng ◽  
Robert Johnston ◽  
Xin Chen

ABSTRACTStem cells have the unique ability to undergo asymmetric division which produces two daughter cells that are genetically identical, but commit to different cell fates. The loss of this balanced asymmetric outcome can lead to many diseases, including cancer and tissue dystrophy. Understanding this tightly regulated process is crucial in developing methods to treat these abnormalities. Here, we report that produced from a Drosophila female germline stem cell asymmetric division, the two daughter cells differentially inherit histones at key genes related to either maintaining the stem cell state or promoting differentiation, but not at constitutively active or silenced genes. We combined histone labeling with DNA Oligopaints to distinguish old versus new histone distribution and visualize their inheritance patterns at single-gene resolution in asymmetrically dividing cells in vivo. This strategy can be widely applied to other biological contexts involving cell fate establishment during development or tissue homeostasis in multicellular organisms.


Science ◽  
2019 ◽  
Vol 366 (6466) ◽  
pp. 734-738 ◽  
Author(s):  
Antoine de Morree ◽  
Julian D. D. Klein ◽  
Qiang Gan ◽  
Jean Farup ◽  
Andoni Urtasun ◽  
...  

Adult stem cells are essential for tissue homeostasis. In skeletal muscle, muscle stem cells (MuSCs) reside in a quiescent state, but little is known about the mechanisms that control homeostatic turnover. Here we show that, in mice, the variation in MuSC activation rate among different muscles (for example, limb versus diaphragm muscles) is determined by the levels of the transcription factor Pax3. We further show that Pax3 levels are controlled by alternative polyadenylation of its transcript, which is regulated by the small nucleolar RNA U1. Isoforms of the Pax3 messenger RNA that differ in their 3′ untranslated regions are differentially susceptible to regulation by microRNA miR206, which results in varying levels of the Pax3 protein in vivo. These findings highlight a previously unrecognized mechanism of the homeostatic regulation of stem cell fate by multiple RNA species.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1873 ◽  
Author(s):  
Andrea Remuzzi ◽  
Barbara Bonandrini ◽  
Matteo Tironi ◽  
Lorena Longaretti ◽  
Marina Figliuzzi ◽  
...  

Stem cell fate and behavior are affected by the bidirectional communication of cells and their local microenvironment (the stem cell niche), which includes biochemical cues, as well as physical and mechanical factors. Stem cells are normally cultured in conventional two-dimensional monolayer, with a mechanical environment very different from the physiological one. Here, we compare culture of rat mesenchymal stem cells on flat culture supports and in the “Nichoid”, an innovative three-dimensional substrate micro-engineered to recapitulate the architecture of the physiological niche in vitro. Two versions of the culture substrates Nichoid (single-layered or “2D Nichoid” and multi-layered or “3D Nichoid”) were fabricated via two-photon laser polymerization in a biocompatible hybrid organic-inorganic photoresist (SZ2080). Mesenchymal stem cells, isolated from rat bone marrow, were seeded on flat substrates and on 2D and 3D Nichoid substrates and maintained in culture up to 2 weeks. During cell culture, we evaluated cell morphology, proliferation, cell motility and the expression of a panel of 89 mesenchymal stem cells’ specific genes, as well as intracellular structures organization. Our results show that mesenchymal stem cells adhered and grew in the 3D Nichoid with a comparable proliferation rate as compared to flat substrates. After seeding on flat substrates, cells displayed large and spread nucleus and cytoplasm, while cells cultured in the 3D Nichoid were spatially organized in three dimensions, with smaller and spherical nuclei. Gene expression analysis revealed the upregulation of genes related to stemness and to mesenchymal stem cells’ features in Nichoid-cultured cells, as compared to flat substrates. The observed changes in cytoskeletal organization of cells cultured on 3D Nichoids were also responsible for a different localization of the mechanotransducer transcription factor YAP, with an increase of the cytoplasmic retention in cells cultured in the 3D Nichoid. This difference could be explained by alterations in the import of transcription factors inside the nucleus due to the observed decrease of mean nuclear pore diameter, by transmission electron microscopy. Our data show that 3D distribution of cell volume has a profound effect on mesenchymal stem cells structure and on their mechanobiological response, and highlight the potential use of the 3D Nichoid substrate to strengthen the potential effects of MSC in vitro and in vivo.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3980-3980 ◽  
Author(s):  
Claudia Oancea ◽  
Brigitte Rüster ◽  
Jessica Roos ◽  
Afsar Ali Mian ◽  
Tatjana Micheilis ◽  
...  

Abstract Abstract 3980 Poster Board III-916 Stem cells have been shown to play an important role in the pathogenesis and maintenance of a significant number of malignancies, including leukemias. Similar to normal hematopoiesis the AML cell population is thought to be hierarchically organized. According to this model, only a few stem cells (LSC) are able to initiate and maintain the disease. The inefficient targeting of the leukemic stem cells (LSC) is considered responsible for relapse after the induction of complete hematologic remission (CR) in AML. Acute promyelocytic leukemia (APL) is a subtype of AML characterized by the t(15;17) translocation and expression of the PML/RARα fusion protein. Treatment of APL with all-trans retinoic acid (t-RA) as monotherapy induces CR, but not molecular remission (CMR), followed by relapse within a few months. In contrast arsenic as monotherapy induces high rates of CR and CMR followed by a long relapse-free survival. We recently have shown that in contrast to t-RA, arsenic efficiently targets PML/RAR-positive stem cells, whereas t-RA increases their proliferation. For a better characterization of LSC in APL which has to be targeted for an efficient eradication of the disease we wanted to characterize the leukemia-initiating cell and the cell population able to maintain the disease in vivo. The model was based on a classical transduction/transplantation system of murine Sca1+/lin- HSC combined with a novel approach for the enrichment of transformed cells with long-term stem cell properties. We found that PML/RAR induced leukemia from the Sca1+/lin- HSC with a frequency of 40% and a long latency of 8-12 months independently of its capacity to increase dramatically replating efficiency and CFU-S12 potential as expression of the differentiation block and proliferation potential of derived committed progenitors. Based on the hypothesis that PML/RAR exerts its leukemogenic effects on only a small proportion of the Sca1+1/lin- population, we proceeded to select and to amplify rare PML/RAR-positive cells with the leukemia-initiating potential, by a negative selection of cell populations with proliferation potential without long term stem cell-capacity (LT). Therefore we expressed PML/RAR in Sca1+/lin- cells and enriched this population for LT- (lin-/Sca1+/c-Kit+/Flk2-) and ST-HSC (lin-/Sca1+/c-Kit+/Flk2+). After a passage first in semi-solid medium for 7 days and subsequent transplantation into lethally irradiated mice, cells from the ensuing CFU-S day12 were again transplanted into sublethally recipient mice. After 12 to 36 weeks, 6/6 mice developed acute myeloid leukemia without signs of differentiation in the group transplanted with the lin-/Sca1+/c-Kit+/Flk2- population but not from that transplanted with lin-/Sca1+/c-Kit+/Flk2+ cells. This leukemia was efficiently transplanted into secondary recipients. The primary leukemic cell population gave origin to 6 clearly distinct subpopulations defined by surface marker pattern as an expression of populations with distinct differentiation status, able - after sorting - to give leukemia in sublethally irradiated recipients: Sca1+/c-Kit+/CD34- (LT-HSC), Sca1+/c-Kit+/CD34+ (ST-HSC), Sca1-/c-Kit+, B220lo/GR1+/Mac1+, B220hi/GR1+/Mac1+, B220-/Gr1-/Mac1-. Interestingly, all leukemias from the different population presented an identical phenotype. These findings strongly suggest that there is a difference between a leukemia-initiating (L-IC) and leukemia-maintaining (L-MC) cell population in the murine PML/RAR leukemia model. In contrast to the L-IC, represented by a very rare subpopulation of primitive HSC, recalling a hierarchical stem cell model, the L-MC is represented by a larger cell population with a certain grade of phenotypical heterogeneity, but a high grade of functional homogeneity recalling a stochastic cancer induction model. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 30 (5) ◽  
pp. 403-408 ◽  
Author(s):  
Hyo-Jung Park ◽  
Jun-Kyum Kim ◽  
Hye-Min Jeon ◽  
Se-Yeong Oh ◽  
Sung-Hak Kim ◽  
...  

2013 ◽  
Vol 45 (23) ◽  
pp. 1123-1135 ◽  
Author(s):  
David A. Brafman

Within the adult organism, stem cells reside in defined anatomical microenvironments called niches. These architecturally diverse microenvironments serve to balance stem cell self-renewal and differentiation. Proper regulation of this balance is instrumental to tissue repair and homeostasis, and any imbalance can potentially lead to diseases such as cancer. Within each of these microenvironments, a myriad of chemical and physical stimuli interact in a complex (synergistic or antagonistic) manner to tightly regulate stem cell fate. The in vitro replication of these in vivo microenvironments will be necessary for the application of stem cells for disease modeling, drug discovery, and regenerative medicine purposes. However, traditional reductionist approaches have only led to the generation of cell culture methods that poorly recapitulate the in vivo microenvironment. To that end, novel engineering and systems biology approaches have allowed for the investigation of the biological and mechanical stimuli that govern stem cell fate. In this review, the application of these technologies for the dissection of stem cell microenvironments will be analyzed. Moreover, the use of these engineering approaches to construct in vitro stem cell microenvironments that precisely control stem cell fate and function will be reviewed. Finally, the emerging trend of using high-throughput, combinatorial methods for the stepwise engineering of stem cell microenvironments will be explored.


2021 ◽  
Author(s):  
Aidan E Gilchrist ◽  
Julio F. Serrano ◽  
Mai T. Ngo ◽  
Zona Hrnjak ◽  
Sanha Kim ◽  
...  

Biomaterial platforms are an integral part of stem cell biomanufacturing protocols. The collective biophysical, biochemical, and cellular cues of the stem cell niche microenvironment play an important role in regulating stem cell fate decisions. Three-dimensional (3D) culture of stem cells within biomaterials provides a route to present biophysical and biochemical stimuli such as cell-matrix interactions and cell-cell interactions via secreted biomolecules. Herein, we describe a maleimide-functionalized gelatin (GelMAL) hydrogel that can be crosslinked via thiol-Michael addition click reaction for the encapsulation of sensitive stem cell populations. The maleimide functional units along the gelatin backbone enables gelation via the addition of a dithiol crosslinker without requiring external stimuli (e.g., UV light, photoinitiator), reducing reactive oxide species generation. Additionally, the versatility of crosslinker selection enables easy insertion of thiol-containing bioactive or bioinert motifs. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) were encapsulated in GelMAL, with mechanical properties tuned to mimic the in vivo bone marrow niche. We report insertion of a cleavable peptide crosslinker that can be degraded by the proteolytic action of SortaseA, a mammalian-inert enzyme. Notably, SortaseA exposure preserves stem cell surface markers, an essential metric of hematopoietic activity used in immunophenotyping. This novel GelMAL system enables a route to producing artificial stem cell niches with tunable biophysical properties with intrinsic cell-interaction motifs and orthogonal addition of bioactive crosslinks.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 837-837
Author(s):  
Cyrus Khandanpour ◽  
Lothar Vassen ◽  
Marie-Claude Gaudreau ◽  
Christian Kosan ◽  
Tarik Moroy

Abstract Abstract 837 Donor matched transplantation of bone marrow or hematopoietic stem cells (HSCs) are widely used to treat hematological malignancies, but are associated with high mortality. Methods for expansion of HSC numbers and their mobilization into the bloodstream of a donor could significantly improve therapy. We show here that the zinc finger transcriptional repressor Gfi1b is highly expressed in hematopoietic stem cells (defined as CD 150+, CD 48-, Lin-, Sca1+ and c-kit+) cells and is down-regulated more than 10 fold upon differentiation into multipotential progenitors (defined as CD 150+ or CD150-, CD 48+, Lin-, Sca1+ and c-kit+). Constitutive germline deletion of Gfi1b is lethal at midgestation due to impaired development of erythrocytes and megakaryocytes. We have therefore developed a conditional knock-out of Gfi1b to study its role specifically in the adult hematopoietic system. Deletion of Gfi1b leads to a 30-fold increase of HSC numbers in bone marrow and around a100 fold increase in spleen and peripheral blood. This was due to a higher rate of HSCs undergoing cell cycling. Concomitantly, the number of quiescent HSCs was reduced 5–6 times. We then performed an gene expression array of wt and Gfi1b deficient HSCs and observed that loss of Gfi1b leads to an altered RNA expression of integrins and adhesion molecules, for instance CXCR4, VCAM-1 and Tenascin C, which usually retain HSCs in a dormant state in the endosteal niche. These changes were also confirmed on protein level. Finally, we could observe a higher levels of Reactive Oxygen Species (ROS) in the Gfi1b deficient HSCs compared to wt HSCs. We verified whether elevated level of ROS are causative for the expansion of HSCs and noticed that application of N-Acetyl-Cystein, which counteracts the effects of ROS, limits significantly the expansion of HSCs, underscoring the important role of ROS in the expansion of Gfi1b deficient HSCs. Despite markedly increased proliferation, Gfi1b-/- HSCs can reconstitute lymphoid and myeloid lineages to the same extent as wt HSCs when transplanted in competition with wt HSCs. Furthermore, Gfi1b deficient HSCs also feature an expansion after transplantation and expand 5–10 fold more than wt HSC when transplanted initially in equal numbers with wt HSCs. It is possible that lower expression of CXCR4, VCAM-1 and other surface proteins leads to release and egression of Gfi1b deficient HSCs from the hypoxic endosteal stem cell niche and exposes the HSCs to more oxygen which in turn increases ROS levels. Elevated ROS could promote entry of Gfi1b-/- HSCs into cell cycle. In conclusion Gfi1b regulates HSC dormancy, pool size and potentially also the egress and mobilization of HSCs and might offer a new therapeutic approach to improve human HSC transplantation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3484-3484 ◽  
Author(s):  
Harald Herrmann ◽  
Katharina Blatt ◽  
Junwei Shi ◽  
Amy R. Rappaport ◽  
Karoline V. Gleixner ◽  
...  

Abstract Abstract 3484 Acute myeloid leukemia (AML) is a stem cell-derived malignancy characterized by uncontrolled proliferation and accumulation of myeloblasts in hematopoietic tissues. The clinical course and prognosis in AML vary depending on deregulated genes, cell type(s) involved, and the biological properties of the clone. In most variants of AML, the complexity and heterogeneity of oncogenomes pose a challenge for the development of effective targeted therapeutics. However, diverse genetic aberrations in AML typically converge functionally to dysregulate the same cellular core processes. One key event is the corruption of myeloid cell-fate programs resulting in the generation of aberrantly self-renewing leukemia stem cells (LSC), which maintain and propagate the disease and are often resistant to conventional chemotherapy. Hence, strategies aimed at terminating aberrant self-renewal and eradicating LSC are considered as key for the development of more effective AML therapies. In an effort to systematically probe genes involved in chromatin regulation as potential therapeutic targets, we recently employed an unbiased screening approach combining AML mouse models and new in-vivo RNAi technologies, through which we identified the epigenetic ‘reader' BRD4 as new candidate drug target in AML (Zuber et al., Nature, in press). Inhibition of BRD4 using RNAi or a new small-molecule inhibitor (JQ1) blocking BRD4 binding to acetylated histones, showed profound antileukemic effects in AML mouse models, in all human AML cell lines tested (n=8) as well as in primary AML cells. In all models tested, BRD4 suppression was found to trigger apoptosis as well as terminal myeloid differentiation, and potently suppressed expression programs previously associated with LSC. As one key target, we observed a dramatic transcriptional repression of MYC, which recently has been discussed as core component of an LSC associated transcriptional module. To further evaluate suppression of BRD4 as a potential therapeutic approach to eradicate LSC in human AML, we analyzed the effects of JQ1 in primary AML cells obtained from 17 patients with freshly diagnosed or relapsed/refractory AML (females, n=5, males, n=12, median age: 54 years; range: 21–80 years). In unfractionated primary AML cells, submicromolar doses of JQ1 were found to induce major growth-inhibitory effects (IC50 between 0.05 and 0.5 μM) in a broad spectrum of AML subtypes. No differences in IC50 values were seen when comparing drug effects in AML cells kept in the presence or absence of growth-stimulating cytokines (G-CSF, IL-3, SCF). In addition, JQ1 treatment effectively triggered apoptosis in all patients tested, with similar anti-leukemic activities observed in newly diagnosed pts and refractory/relapsed AML. To further evaluate the clinical value of BRD4 as a clinically relevant target in AML, we analyzed the effect of JQ1 on AML LSC. In these experiments, JQ1 effectively induced apoptosis in CD34+/CD38+ progenitor cells as well as in CD34+/CD38− AML stem cells in all donors examined as evidenced by combined surface/Annexin-V staining. Furthermore, JQ1 was found to induce morphologic signs of maturation in 6 of 7 patients examined, thereby confirming our previous data obtained in mouse AML cells. Finally, we were able to show that JQ1 synergizes with Ara-C in inducing growth inhibition in HL60 cells and KG-1 cells. In summary, our data show that small-molecule inhibition of BRD4 has strong anti-leukemic effects in a broad range of AML subtypes. Furthermore, our results support the notion that JQ1's ability to suppress LSC specific transcriptional modules may translate into a therapeutic entry point for eradicating LSC in primary AML. While a more extensive in vivo evaluation of these effects, as well as the development of pharmacologically improved compounds will be required, all existing data unambiguously highlight small-molecule inhibition of BRD4 as a new promising concept in AML therapy. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 31 (2) ◽  
pp. 199-199 ◽  
Author(s):  
Hyo-Jung Park ◽  
Jun-Kyum Kim ◽  
Hye-Min Jeon ◽  
Se-Yeong Oh ◽  
Sung-Hak Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document