The Novel Leukemia Stem Cell Marker GPR56 Discriminates Leukemic Subclones with Divergent Stem Cell Properties in Human Acute Myeloid Leukemia

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1859-1859
Author(s):  
Caroline Pabst ◽  
Anne Bergeron ◽  
Vincent-Philippe Lavallée ◽  
Jonathan Yeh ◽  
Patrick Gendron ◽  
...  

Abstract Insights into the complex clonal architecture of acute myeloid leukemia (AML) unravelled by deep sequencing technologies have challenged the concept of AML as a hierarchically organised disease initiated and driven by rare self-renewing leukemic stem cells (LSCs). In contrast to normal human hematopoietic stem cells (HSCs), which are highly enriched in the CD34+ CD38- population, LSCs have also been found in the CD34- and the CD38+ fractions questioning the existence of a consistent LSC surface marker profile for AML. Besides, low LSC frequencies in primary samples, rapid onset of differentiation upon ex vivo culture, and genetic inter-specimen heterogeneity hamper the dissection of the molecular machinery that drives LSC self-renewal. We performed RNA-Sequencing of primary human AML samples and assessed LSC frequencies by limiting dilution analyses for 56 of these in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. By comparing gene expression profiles between high vs low LSC frequency leukemias, we identified the G-protein coupled receptor 56 (GPR56) has significantly more expressed in high LSC frequency leukemias. We validated the RNA-seq data with protein expression by FACS and found an excellent correlation. To determine whether GPR56 positive cells overlapped with the known LSC-associated phenotype CD34+ CD38-, we stained 45 AML samples with CD34, CD38, GPR56, and antibodies against other described LSC markers. Although CD34+ GPR56+ and CD34+ CD38- compartments identified the same population in some samples, we found in the majority of samples that GPR56 further subdivided the CD34+ CD38- compartment. Accordingly, not only the proportions of total GPR56+ and CD34+ GPR56+ cells were significantly higher in LSChigh versus LSClow samples, but also the proportion of GPR56+ cells within the CD34+ CD38- compartment was significantly different between the groups indicating that GPR56 might be of additional value to what is currently considered the best described LSC phenotype. The percentage of total CD34 positive cells did not correlate with LSC frequency clearly distinguishing GPR56 from CD34 or CD38, which are only suitable LSC markers when used in combination. We analysed other potential LSC markers (TIM3, CD96, CD44, CD123, CLL1 and CD47) in our RNA-Seq dataset and by FACS analysis in combination with CD34 as we did for GPR56 and none of them correlated with LSC frequency in our sample collection. To determine whether GPR56 discriminates engrafting LSCs from non-LSCs, we sorted GPR56+ and GPR56- cells within the CD34-positive and -negative compartments from selected specimens with known engraftment potential. We found that GPR56 identified the engrafting fraction in CD34positive AML samples, with a >50 fold enrichment in LSC in the CD34+GRP56+ fraction vs the CD34+GPR56- fraction within the same sample, demonstrating that GPR56 is a good LSC marker. Specimens with high molecular or cytogenetic risk such as chromosome 5 or 7 anomalies and EVI1- rearrangementexpressed high levels of both, GPR56 and CD34, while samples with coexistent FLT3 -ITD, DNMT3A, and NPM1 mutations displayed a unique CD34low GPR56high profile. Moreover, we found a divergent distribution of variant allele frequencies in GPR56+ versus GPR56- fractions identifying GPR56 as a discriminator of leukemic sub-clones with high and low NSG engrafting capacity. Analysis of engrafted cells re-sorted based on GPR56 after being harvested from mouse bone marrow revealed reduced complexity of the clonal composition. Most importantly, GPR56 positive cells differentiated to GPR56 negative cells in mice, which did not happen in the human niche, in which GPR56 positive and negative fractions represented two independently evolved subclones. In summary our work identifies GPR56 as a novel LSC marker in AML and also shows that GPR56 readily identifies a functionally distinct LSC-rich subclone in the majority of human AML patients and reveals hitherto unforeseen complexity in the interaction between human LSCs and the NSG mouse environment. Disclosures No relevant conflicts of interest to declare.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongliang Liu ◽  
Guiqin Wang ◽  
Jiasi Zhang ◽  
Xue Chen ◽  
Huailong Xu ◽  
...  

Abstract Background Leukemia stem cells (LSCs) are responsible for the initiation, progression, and relapse of acute myeloid leukemia (AML). Therefore, a therapeutic strategy targeting LSCs is a potential approach to eradicate AML. In this study, we aimed to identify LSC-specific surface markers and uncover the underlying mechanism of AML LSCs. Methods Microarray gene expression data were used to investigate candidate AML-LSC-specific markers. CD9 expression in AML cell lines, patients with AML, and normal donors was evaluated by flow cytometry (FC). The biological characteristics of CD9-positive (CD9+) cells were analyzed by in vitro proliferation, chemotherapeutic drug resistance, migration, and in vivo xenotransplantation assays. The molecular mechanism involved in CD9+ cell function was investigated by gene expression profiling. The effects of alpha-2-macroglobulin (A2M) on CD9+ cells were analyzed with regard to proliferation, drug resistance, and migration. Results CD9, a cell surface protein, was specifically expressed on AML LSCs but barely detected on normal hematopoietic stem cells (HSCs). CD9+ cells exhibit more resistance to chemotherapy drugs and higher migration potential than do CD9-negative (CD9−) cells. More importantly, CD9+ cells possess the ability to reconstitute human AML in immunocompromised mice and promote leukemia growth, suggesting that CD9+ cells define the LSC population. Furthermore, we identified that A2M plays a crucial role in maintaining CD9+ LSC stemness. Knockdown of A2M impairs drug resistance and migration of CD9+ cells. Conclusion Our findings suggest that CD9 is a new biomarker of AML LSCs and is a promising therapeutic target.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 91-91
Author(s):  
Nicolas Goardon ◽  
Emmanuele Marchi ◽  
Lynn Quek ◽  
Anna Schuh ◽  
Petter Woll ◽  
...  

Abstract Abstract 91 In normal and leukemic hemopoiesis, stem cells differentiate through intermediate progenitors into terminal cells. In human Acute Myeloid Leukemia (AML), there is uncertainty about: (i) whether there is more than one leukemic stem cell (LSC) population in any one individual patient; (ii) how homogeneous AML LSCs populations are at a molecular and cellular level and (iii) the relationship between AML LSCs and normal stem/progenitor populations. Answers to these questions will clarify the molecular pathways important in the stepwise transformation of normal HSCs/progenitors. We have studied 82 primary human CD34+ AML samples (spanning a range of FAB subtypes, cytogenetic categories and FLT3 and NPM1 mutation states) and 8 age-matched control marrow samples. In ∼80% of AML cases, two expanded populations with hemopoietic progenitor immunophenotype coexist in most patients. One population is CD34+CD38-CD90-CD45RA+ (CD38-CD45RA+) and the other CD34+CD38+CD110-CD45RA+ (GMP-like). Both populations from 7/8 patients have leukemic stem cell (LSC) activity in primary and secondary xenograft assays with no LSC activity in CD34- compartment. The two CD34+ LSC populations are hierarchically ordered, with CD38-CD45RA+ LSC giving rise to CD38+CD45RA+ LSC in vivo and in vitro. Limit dilution analysis shows that CD38-CD45RA+LSCs are more potent by 8–10 fold. From 18 patients, we isolated both CD38-CD45RA+ and GMP-like LSC populations. Global mRNA expression profiles of FACS-sorted CD38-CD45RA+ and GMP-like populations from the same patient allowed comparison of the two populations within each patient (negating the effect of genetic/epigenetic changes between patients). Using a paired t-test, 748 genes were differentially expressed between CD38-CD45RA+ and GMP-like LSCs and separated the two populations in most patients in 3D PCA. This was confirmed by independent quantitative measures of difference in gene expression using a non-parametric rank product analysis with a false discovery rate of 0.01. Thus, the two AML LSC populations are molecularly distinct. We then compared LSC profiles with those from 4 different adult marrow normal stem/progenitor cells to identify the normal stem/progenitor cell populations which the two AML LSC populations are most similar to at a molecular level. We first obtained a 2626 gene set by ANOVA, that maximally distinguished normal stem and progenitor populations. Next, the expression profiles of 22 CD38-CD45RA+ and 21 GMP-like AML LSC populations were distributed by 3D PCA using this ANOVA gene set. This showed that AML LSCs were most closely related to their normal counterpart progenitor population and not normal HSC. This data was confirmed quantitatively by a classifier analysis and hierarchical clustering. Taken together, the two LSC populations are hierarchically ordered, molecularly distinct and their gene expression profiles do not map most closely to normal HSCs but rather to their counterpart normal progenitor populations. Finally, as global expression profiles of CD38-CD45RA+ AML LSC resemble normal CD38-CD45RA+ cells, we defined the functional potential of these normal cells. This had not been previously determined. Using colony and limiting dilution liquid culture assays, we showed that single normal CD38-CD45RA+ cells have granulocyte and macrophage (GM), lymphoid (T and B cell) but not megakaryocyte-erythroid (MK-E) potential. Furthermore, gene expression studies on 10 cells showed that CD38-CD45RA+ cells express lymphoid and GM but not Mk-E genes. Taken together, normal CD38-CD45RA+ cells are most similar to mouse lymphoid primed multi-potential progenitor cells (LMPP) cells and distinct from the recently identified human Macrophage Lymphoid progenitor (MLP) population. In summary, for the first time, we show the co-existence of LMPP-like and GMP-like LSCs in CD34+ AML. Thus, CD34+ AML is a progenitor disease where LSCs have acquired abnormal self-renewal potential (Figure 1). Going forward, this work provides a platform for determining pathological LSCs self-renewal and tracking LSCs post treatment, both of which will impact on leukemia biology and therapy. Disclosures: No relevant conflicts of interest to declare.


Biology ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 31 ◽  
Author(s):  
Vashendriya V.V. Hira ◽  
Cornelis J.F. Van Noorden ◽  
Remco J. Molenaar

Glioblastoma is the most aggressive and malignant primary brain tumor in adults and has a poor patient survival of only 20 months after diagnosis. This poor patient survival is at least partly caused by glioblastoma stem cells (GSCs), which are slowly-dividing and therefore therapy-resistant. GSCs are localized in protective hypoxic peri-arteriolar niches where these aforementioned stemness properties are maintained. We previously showed that hypoxic peri-arteriolar GSC niches in human glioblastoma are functionally similar to hypoxic peri-arteriolar hematopoietic stem cell (HSC) niches in human bone marrow. GSCs and HSCs express the receptor C-X-C receptor type 4 (CXCR4), which binds to the chemoattractant stromal-derived factor-1α (SDF-1α), which is highly expressed in GSC niches in glioblastoma and HSC niches in bone marrow. This receptor–ligand interaction retains the GSCs/HSCs in their niches and thereby maintains their slowly-dividing state. In acute myeloid leukemia (AML), leukemic cells use the SDF-1α–CXCR4 interaction to migrate to HSC niches and become slowly-dividing and therapy-resistant leukemic stem cells (LSCs). In this communication, we aim to elucidate how disruption of the SDF-1α–CXCR4 interaction using the FDA-approved CXCR4 inhibitor plerixafor (AMD3100) may be used to force slowly-dividing cancer stem cells out of their niches in glioblastoma and AML. Ultimately, this strategy aims to induce GSC and LSC differentiation and their sensitization to therapy.


Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6304-6314 ◽  
Author(s):  
Shunya Arai ◽  
Akihide Yoshimi ◽  
Munetake Shimabe ◽  
Motoshi Ichikawa ◽  
Masahiro Nakagawa ◽  
...  

Abstract Ecotropic viral integration site-1 (Evi-1) is a nuclear transcription factor that plays an essential role in the regulation of hematopoietic stem cells. Aberrant expression of Evi-1 has been reported in up to 10% of patients with acute myeloid leukemia and is a diagnostic marker that predicts a poor outcome. Although chromosomal rearrangement involving the Evi-1 gene is one of the major causes of Evi-1 activation, overexpression of Evi-1 is detected in a subgroup of acute myeloid leukemia patients without any chromosomal abnormalities, which indicates the presence of other mechanisms for Evi-1 activation. In this study, we found that Evi-1 is frequently up-regulated in bone marrow cells transformed by the mixed-lineage leukemia (MLL) chimeric genes MLL-ENL or MLL-AF9. Analysis of the Evi-1 gene promoter region revealed that MLL-ENL activates transcription of Evi-1. MLL-ENL–mediated up-regulation of Evi-1 occurs exclusively in the undifferentiated hematopoietic population, in which Evi-1 particularly contributes to the propagation of MLL-ENL–immortalized cells. Furthermore, gene-expression analysis of human acute myeloid leukemia cases demonstrated the stem cell–like gene-expression signature of MLL-rearranged leukemia with high levels of Evi-1. Our findings indicate that Evi-1 is one of the targets of MLL oncoproteins and is selectively activated in hematopoietic stem cell–derived MLL leukemic cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Federico Mosna ◽  
Michele Gottardi

Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficientper seto induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5131-5131
Author(s):  
Andree-Laure Herr ◽  
Myriam Labopin ◽  
Rosy Reiffers ◽  
Donald Bunjes ◽  
Didier Blaise ◽  
...  

Abstract Hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment for patients with acute myeloid leukemia (AML). AML of the FAB M0 subtype is rare, often associated with a complex karyotype and a poor prognosis. Results of HSCT for this AML subtype have never been reported separately from other subtypes. We did a survey of the results of 274 HSCT in adults with M0 AML in first complete remission (CR1), performed in EBMT centres since January 1990 until 2002. One hundred fifty patients were transplanted with an HLA identical donor (HLA-id), 30 with an HLA-matched unrelated donor (MUD) and 94 received an autologous transplant (auto). The median age was 45 years (16–71), the median interval from diagnosis to HSCT was 4 months for HLA-id, 6 months for MUD and 5 months for auto HSCT. The median follow-up time (range) was 20 months (1–109), 12 (2–53) and 10 months (1–96) for HLA-id, MUD and auto-HSCT respectively. The source of stem cells was peripheral blood stem cells for 67% of cases, and bone marrow for the remaining. The majority of grafts were non-T-cell depleted. Acute GVHD (grade I–IV) occurred in 56% of HLA-id and in 64% of MUD cases. The table shows the outcomes at two years according to the type of transplant. In conclusion, outcomes after HLA identical HSCT and MUD in adult patients with AML FAB subtype M0 in CR1 are encouraging. In comparison to allogeneic transplant cases, LFS is decreased in patients receiving an autologous transplant due to a high relapse incidence, reflecting the probable role of a graft-versus-leukemia effect in this FAB subtype. Results of HSCT in AML M0 CR1 patients Outcomes HLA-id n=150 MUD n= 30 Auto n=94 LFS: leukemia free survival; OS: overall survival; RI: relapse incidence; TRM: treatment-related mortality 2y LFS 50% 45% 33% 2y OS 58% 50% 49% 2y RI 25% 40% 57% 2y TRM 24% 14% 9%


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 399-399 ◽  
Author(s):  
Monique Terwijn ◽  
Angèle Kelder ◽  
Arjo P Rutten ◽  
Alexander N Snel ◽  
Willemijn Scholten ◽  
...  

Abstract Abstract 399 In acute myeloid leukemia (AML), relapses originate from the outgrowth of therapy surviving leukemic blasts know as minimal residual disease (MRD). Accumulating evidence shows that leukemia initiating cells or leukemic stem cells (LSCs) are responsible for persistence and outgrowth of AML. Monitoring LSCs during and after therapy might thus offer accurate prognostic information. However, as LSCs and hematopoietic stem cells (HSCs) both reside within the immunophenotypically defined CD34+CD38- compartment, accurate discrimination between LSCs and HSCs is required. We previously showed that within the CD34+CD38- stem cell compartment, LSCs can be discriminated from HSC by aberrant expression of markers (leukemia associated phenotype, LAP), including lineage markers like CD7, CD19 and CD56 and the novel LSC marker CLL-1 (van Rhenen, Leukemia 2007, Blood 2007). In addition, we reported that flowcytometer light scatter properties add to even better detection of LSCs, allowing LSCs detection in AML cases lacking LAP (ASH abstract 1353, 2008). Using this gating strategy, we determined LSC frequency in 64 remission bone marrow samples of CD34+ AML patients. A stem cell compartment was defined as a minimum of 5 clustered CD34+CD38- events with a minimal analyzed number of 500,000 white blood cells. After first cycle of chemotherapy, high LSC frequency (>1 × 10-3) clearly predicted adverse relapse free survival (RFS, figure 1a). LSC frequency above cut-off led to a median RFS of 5 months (n=9), while patients with LSC frequency below cut-off (n=22) showed a significantly longer median RFS of >56 months (p=0.00003). In spite of the relatively low number of patients, again a high LSC frequency (>2 × 10-4) after the second cycle and after consolidation therapy predicted worse RFS: after second cycle, median RFS was 6 months (n=9) vs. >43 months for patients with LSC frequency below cut-off (p=0.004). After consolidation, these figures were 6 months (n=7) vs. >32 months (n=6, p=0.03). Although total blast MRD (leukemic blasts as % of WBC) is known to predict survival (N.Feller et al. Leukemia 2004), monitoring LSCs as compared to total blast MRD has two major advantages: the specificity is higher (van Rhenen et al. Leukemia 2007) and well-known LSC makers like CLL-1, CD96 and CD123 can in principle be used for LSC monitoring, but not for total blast MRD detection since these markers are also expressed on normal progenitor cells. On the other hand, LSCs constitute only a small fraction of all leukemic blasts and therefore monitoring total blast MRD may have the advantage of a higher sensitivity. We thus tested the hypothesis that even more accurate prognostic information could be obtained by combining LSC frequency with total blast MRD. Total blast MRD after first cycle was predictive for survival with borderline significance (p=0.08): a cut-off of 0.3% resulted in two patient groups with median RFS of 9 months vs. >56 months. Figure 1b shows the result of the combined data of LSC and MRD frequency after first cycle therapy. We used the terms LSC+ and MRD+ for cell frequencies above cut-off and LSC- and MRD- for those below cut-off. We could clearly identify that apart from LSC+/MRD+ patients, LSC+/MRD- patients too have very poor prognosis, while MRD+/LSC- patients show an adverse prognosis as compared to LSC-/MRD- patients. These results from the first study on the in vivo fate of LSCs during and after therapy, strongly support the hypothesis that in CD34+ AML the leukemia initiating capacity originates from the CD34+CD38- population and is important for tumor survival and outgrowth. These results show that LSC frequency might be superior in predicting prognosis of AML patients in CR as compared to MRD total blast frequency, while the combination of both may offer the most optimal parameter to guide future intervention therapies. This work was supported by Netherlands Cancer Foundation KWF. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 20 (23) ◽  
pp. 5826 ◽  
Author(s):  
Tobias Gluexam ◽  
Alexander M. Grandits ◽  
Angela Schlerka ◽  
Chi Huu Nguyen ◽  
Julia Etzler ◽  
...  

The neuropeptide CGRP, acting through the G-protein coupled receptor CALCRL and its coreceptor RAMP1, plays a key role in migraines, which has led to the clinical development of several inhibitory compounds. Recently, high CALCRL expression has been shown to be associated with a poor prognosis in acute myeloid leukemia (AML). We investigate, therefore, the functional role of the CGRP-CALCRL axis in AML. To this end, in silico analyses, human AML cell lines, primary patient samples, and a C57BL/6-based mouse model of AML are used. We find that CALCRL is up-regulated at relapse of AML, in leukemic stem cells (LSCs) versus bulk leukemic cells, and in LSCs versus normal hematopoietic stem cells. CGRP protects receptor-positive AML cell lines and primary AML samples from apoptosis induced by cytostatic drugs used in AML therapy, and this effect is inhibited by specific antagonists. Furthermore, the CGRP antagonist olcegepant increases differentiation and reduces the leukemic burden as well as key stem cell properties in a mouse model of AML. These data provide a basis for further investigations into a possible role of CGRP-CALCRL inhibition in the therapy of AML.


Sign in / Sign up

Export Citation Format

Share Document