scholarly journals Functional Characterization of a T Cell Stimulation Reagent for the Production of Therapeutic Chimeric Antigen Receptor T Cells

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1901-1901 ◽  
Author(s):  
Keenan T Bashour ◽  
Ryan P Larson ◽  
Patricia Graef ◽  
Christian Stemberger ◽  
Germeroth Lothar ◽  
...  

Abstract Adoptive cell therapy using gene-modified T cells has demonstrated promising clinical outcomes in hematologic malignancies. Production of gene-modified T cells involves the selection of patient T cells, activation via stimulation through the endogenous T cell receptor (TCR) complex and a costimulatory domain, followed by introduction of a tumor antigen-specific TCR or chimeric antigen receptor (CAR) through gene modification. Here we characterize a soluble T cell stimulation reagent, known as an ExpamerTM reagent, in the production of therapeutic CAR T cells. The Expamer reagent used in these studies is designed to be a late-stage clinical and commercial manufacturing ancillary material with two important attributes that make it highly attractive from a manufacturing and regulatory standpoint; it is a soluble and dissociable reagent. These attributes increase the ease of both introduction and removal from the manufacturing process, giving products manufactured with this reagent consistent product quality and purity. This reagent activates T cells through the simultaneous engagement of the TCR-CD3 complex and the costimulatory receptor CD28 and is compatible with manufacturing of both current and next-generation therapeutics. Purified healthy donor T cells cultured in the presence of the Expamer reagent rapidly fluxed Ca2+, demonstrating the capacity to induce early TCR signaling. Activation through this reagent additionally promotes upregulation of the cell surface activation marker CD25 and proliferation as measured by CFSE dilution. Following stimulation with this reagent, T cells are readily transduced with a CD19-specific CAR construct. The function of CAR T cells generated with this reagent was measured by effector cytokine production, proliferation, and cytolytic activity in the presence of CD19 expressing and control target cells in vitro. CAR T cells robustly produced IFN-ɣ and IL-2 after activation with a CAR specific antigen. In addition, proliferation in the presence of CD19 expressing target cells was observed as measured by CFSE dilution. Finally, significant cytolytic activity against CD19-expressing target cells was observed. Collectively, these data provide evidence that functional engineered T cells can be manufactured using the Expamer reagent and support implementation into the production of both current and next-generation therapeutic gene-modified T cells. The first two authors contributed equally to this work. Disclosures Bashour: Juno Therapeutics: Employment. Larson:Juno Therapeutics: Employment. Graef:Juno Therapeutics: Employment. Stemberger:Juno Therapeutics: Employment. Lothar:Juno Therapeutics: Employment. Odegard:Juno Therapeutics: Employment. Ramsborg:Juno Therapeutics: Employment.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Fengzhen Mo ◽  
Siliang Duan ◽  
Xiaobing Jiang ◽  
Xiaomei Yang ◽  
Xiaoqiong Hou ◽  
...  

AbstractChimeric antigen receptor-based T-cell immunotherapy is a promising strategy for treatment of hematological malignant tumors; however, its efficacy towards solid cancer remains challenging. We therefore focused on developing nanobody-based CAR-T cells that treat the solid tumor. CD105 expression is upregulated on neoangiogenic endothelial and cancer cells. CD105 has been developed as a drug target. Here we show the generation of a CD105-specific nanobody, an anti-human CD105 CAR-T cells, by inserting the sequences for anti-CD105 nanobody-linked standard cassette genes into AAVS1 site using CRISPR/Cas9 technology. Co-culture with CD105+ target cells led to the activation of anti-CD105 CAR-T cells that displayed the typically activated cytotoxic T-cell characters, ability to proliferate, the production of pro-inflammatory cytokines, and the specific killing efficacy against CD105+ target cells in vitro. The in vivo treatment with anti-CD105 CAR-T cells significantly inhibited the growth of implanted CD105+ tumors, reduced tumor weight, and prolonged the survival time of tumor-bearing NOD/SCID mice. Nanobody-based CAR-T cells can therefore function as an antitumor agent in human tumor xenograft models. Our findings determined that the strategy of nanobody-based CAR-T cells engineered by CRISPR/Cas9 system has a certain potential to treat solid tumor through targeting CD105 antigen.


Author(s):  
Zhixiong Wang ◽  
Qian Liu ◽  
Na Risu ◽  
Jiayu Fu ◽  
Yan Zou ◽  
...  

Chimeric antigen receptor (CAR) T cell therapy still faces the challenge of immunosuppression when treating solid tumors. TGF-β is one of the critical factors in the tumor microenvironment to help tumors escape surveillance by the immune system. Here we tried using the combination of a small molecule inhibitor of TGF-β receptor I, Galunisertib, and CAR T cells to explore whether Galunisertib could enhance CAR T cell function against solid tumor cells. In vitro experiments showed Galunisertib could significantly enhance the specific cytotoxicity of both CD133- and HER2-specific CAR T cells. However, Galunisertib had no direct killing effect on target cells. Galunisertib significantly increased the cytokine secretion of CAR T cells and T cells that do not express CAR (Nontransfected T cells). Galunisertib did not affect the proliferation of T cells, the antigen expression on target cells and CD69 on CAR T cells. We found that TGF-β was secreted by T cells themselves upon activation, and Galunisertib could reduce TGF-β signaling in CAR T cells. Our findings can provide the basis for further preclinical and clinical studies of the combination of Galunisertib and CAR T cells in the treatment of solid tumors.


2018 ◽  
Vol 115 (9) ◽  
pp. E2068-E2076 ◽  
Author(s):  
A. J. Davenport ◽  
R. S. Cross ◽  
K. A. Watson ◽  
Y. Liao ◽  
W. Shi ◽  
...  

Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell.


2020 ◽  
Author(s):  
Zhitao Ying ◽  
Ting He ◽  
Xiaopei Wang ◽  
Wen Zheng ◽  
Ningjing Lin ◽  
...  

Abstract Backgroud: The unprecedented efficacy of chimeric antigen receptor (CAR) T-cell immunotherapy of CD19+ B-cell malignancies has opened a new and useful way for the treatment of malignant tumor. Nonetheless, there are still formidable challenges in the field of CAR-T cell therapy, such as the biodistribution of CAR-T cells in vivo.Methods: We demonstrated the distribution of CAR-T cells in the absence of target cells or with target cells in the mice and the dynamic changes in the patient blood over time after infusion were deteced by qPCR and FACS. Results: CAR-T cells still proliferated in the mice without target cells and peaked at 2 weeks. However, CAR-T cells did not increase significantly in the presence of target cells within 2 weeks after infusion, but expanded at 6 weeks. In the clinical trial, we found that CAR-T cells peaked at 7-21days after infusion and can last for as long as 510 days in the peripheral blood of patients. Simultaneously, mild side-effects were noted which can be effectively controlled within two months in these patients.Conclusions: CAR-T cells can expand themselves with or without target cells in mice. CAR-T cells can persistence for a long time in patients.


Antibodies ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 41 ◽  
Author(s):  
Strohl ◽  
Naso

The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4804-4804
Author(s):  
Eider F. Moreno Cortes ◽  
Juan Esteban Garcia Robledo ◽  
Natalie Booth ◽  
Jose V. Forero ◽  
Januario E Castro

Abstract Background: Chimeric Antigen Receptor (CAR) T cell therapy is arguably one of the most significant breakthroughs in cancer treatment. There are currently five FDA-approved products that are commercially available. However, despite their success, these CAR T-cell therapies cannot induce long-term durable responses in approximately 50% of leukemia or lymphoma-treated patients. Similarly, the results of CAR T-cells in solid tumors have been somewhat disappointing. Therefore, there is an urgent need to design and develop novel CAR T cells with improved efficacy in hematologic malignancies and solid tumors. ROR1 is a carcinoembryonic antigen expressed in different cancers and is associated with tumor stemness, proliferation, metastatic transformation, and treatment resistance. In this project, we optimize an anti-ROR1 CAR using a humanized single-chain variable fragment (scFv) with second (2G) or third-generation (3G) costimulatory domains. Methods: Several optimization steps in silico were performed using a selected scFv binding domain that targets ROR1. Those included codon optimizations, positional arrangement of heavy-light chains, evaluation of the ideal length of linkers based on tridimensional modeling of the docking between the antibody-like paratope with the target antigen (Figure 1A). After this initial scFv optimization process, we constructed a lentiviral vector that encodes CARs using the selected scFv linked to a transmembrane domain CD28 and different signaling endodomains for 2G and 3G variants (CD28, 41BB, ICOS, OX40), each linked to the T cell receptor CD3z domain. The cytotoxic activity of these constructs was evaluated using an in vitro rechallenge luciferase assay in ROR1 expressing JeKo-1 cells and ROR1(negative) controls. Results: The 2G 41BB-z construct with V H-V L scFv orientation and a long linker (V H-L-V L) showed optimal cytotoxicity with a CAR expression level in T cells of 36% (Range 28-49% for other constructs, Figure 1B-C). The V H-L-V L 41BB-z construct was evaluated comparatively using a rechallenge cytotoxic assay with 3G constructs that expressed CD28, ICOS, or OX40 signaling domains using JeKo-1 and ROR1(negative) target cells as controls. All the tested constructs showed specific ROR1 medicated cytotoxicity. CD28-41BB-z and ICOS-41BB-z showed the lowest cytotoxicity levels during the Day 1 of the repetitive rechallenge. However, the cytotoxicity levels of those constructs gradually increased during the 7 days of rechallenge and were closed to the levels induced by the 2G- 41BB-z construct (>80% of cytotoxicity). There were no significant differences in CAR T cells subsets generated by the different constructs during the 7 days of rechallenge with a predominance of effector memory phenotype (CCR7-, CD45RA-) and no difference in PD1 expression. Conclusions: Our results demonstrate that optimization of the CAR constructs enhances T-cell effector function and cytotoxicity against ROR1+ target cells. In previous studies, 3G CARs have shown longer persistence of the transduced T cells in peripheral blood, sustained and regulated cellular activation, improved solid tumor infiltration, and positive modulation of the tumor microenvironment. Our preclinical in vitro optimization demonstrates strategies to generate 3G constructs with a progressive and modulated cytotoxic profile that may confer benefits when tested in vivo in terms of enhanced persistence and lower adverse events profile. Additional experiments in vivo will be presented during the meeting to corroborate our findings. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1229
Author(s):  
Ali Hosseini Rad S. M. ◽  
Joshua Colin Halpin ◽  
Mojtaba Mollaei ◽  
Samuel W. J. Smith Bell ◽  
Nattiya Hirankarn ◽  
...  

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3921-3921 ◽  
Author(s):  
Cesar Sommer ◽  
Hsin-Yuan Cheng ◽  
Yik Andy Yeung ◽  
Duy Nguyen ◽  
Janette Sutton ◽  
...  

Autologous chimeric antigen receptor (CAR) T cells have achieved unprecedented clinical responses in patients with B-cell leukemias, lymphomas and multiple myeloma, raising interest in using CAR T cell therapies in AML. These therapies are produced using a patient's own T cells, an approach that has inherent challenges, including requiring significant time for production, complex supply chain logistics, separate GMP manufacturing for each patient, and variability in performance of patient-derived cells. Given the rapid pace of disease progression combined with limitations associated with the autologous approach and treatment-induced lymphopenia, many patients with AML may not receive treatment. Allogeneic CAR T (AlloCAR T) cell therapies, which utilize cells from healthy donors, may provide greater convenience with readily available off-the-shelf CAR T cells on-demand, reliable product consistency, and accessibility at greater scale for more patients. To create an allogeneic product, the TRAC and CD52 genes are inactivated in CAR T cells using Transcription Activator-Like Effector Nuclease (TALEN®) technology. These genetic modifications are intended to minimize the risk of graft-versus-host disease and to confer resistance to ALLO-647, an anti-CD52 antibody that can be used as part of the conditioning regimen to deplete host alloreactive immune cells potentially leading to increased persistence and efficacy of the infused allogeneic cells. We have previously described the functional screening of a library of anti-FLT3 single-chain variable fragments (scFvs) and the identification of a lead FLT3 CAR with optimal activity against AML cells and featuring an off-switch activated by rituximab. Here we characterize ALLO-819, an allogeneic FLT3 CAR T cell product, for its antitumor efficacy and expansion in orthotopic models of human AML, cytotoxicity in the presence of soluble FLT3 (sFLT3), performance compared with previously described anti-FLT3 CARs and potential for off-target binding of the scFv to normal human tissues. To produce ALLO-819, T cells derived from healthy donors were activated and transduced with a lentiviral construct for expression of the lead anti-FLT3 CAR followed by efficient knockout of TRAC and CD52. ALLO-819 manufactured from multiple donors was insensitive to ALLO-647 (100 µg/mL) in in vitro assays, suggesting that it would avoid elimination by the lymphodepletion regimen. In orthotopic models of AML (MV4-11 and EOL-1), ALLO-819 exhibited dose-dependent expansion and cytotoxic activity, with peak CAR T cell levels corresponding to maximal antitumor efficacy. Intriguingly, ALLO-819 showed earlier and more robust peak expansion in mice engrafted with MV4-11 target cells, which express lower levels of the antigen relative to EOL-1 cells (n=2 donors). To further assess the potency of ALLO-819, multiple anti-FLT3 scFvs that had been described in previous reports were cloned into lentiviral constructs that were used to generate CAR T cells following the standard protocol. In these comparative studies, the ALLO-819 CAR displayed high transduction efficiency and superior performance across different donors. Furthermore, the effector function of ALLO-819 was equivalent to that observed in FLT3 CAR T cells with normal expression of TCR and CD52, indicating no effects of TALEN® treatment on CAR T cell activity. Plasma levels of sFLT3 are frequently increased in patients with AML and correlate with tumor burden, raising the possibility that sFLT3 may act as a decoy for FLT3 CAR T cells. To rule out an inhibitory effect of sFLT3 on ALLO-819, effector and target cells were cultured overnight in the presence of increasing concentrations of recombinant sFLT3. We found that ALLO-819 retained its killing properties even in the presence of supraphysiological concentrations of sFLT3 (1 µg/mL). To investigate the potential for off-target binding of the ALLO-819 CAR to human tissues, tissue cross-reactivity studies were conducted using a recombinant protein consisting of the extracellular domain of the CAR fused to human IgG Fc. Consistent with the limited expression pattern of FLT3 and indicative of the high specificity of the lead scFv, no appreciable membrane staining was detected in any of the 36 normal tissues tested (n=3 donors). Taken together, our results support clinical development of ALLO-819 as a novel and effective CAR T cell therapy for the treatment of AML. Disclosures Sommer: Allogene Therapeutics, Inc.: Employment, Equity Ownership. Cheng:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Yeung:Pfizer Inc.: Employment, Equity Ownership. Nguyen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Sutton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Melton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Valton:Cellectis, Inc.: Employment, Equity Ownership. Poulsen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Djuretic:Pfizer, Inc.: Employment, Equity Ownership. Van Blarcom:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Chaparro-Riggers:Pfizer, Inc.: Employment, Equity Ownership. Sasu:Allogene Therapeutics, Inc.: Employment, Equity Ownership.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248973
Author(s):  
Nami Iwamoto ◽  
Bhavik Patel ◽  
Kaimei Song ◽  
Rosemarie Mason ◽  
Sara Bolivar-Wagers ◽  
...  

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


2020 ◽  
Vol 29 ◽  
pp. 096368972092082 ◽  
Author(s):  
Zhixiong Wang ◽  
Guomin Zhou ◽  
Na Risu ◽  
Jiayu Fu ◽  
Yan Zou ◽  
...  

Chimeric antigen receptor (CAR) T-cell immunotherapy still faces many challenges in the treatment of solid tumors, one of which is T-cell dysfunction or exhaustion. Immunomodulator lenalidomide may improve CAR T-cell function. In this study, the effects of lenalidomide on CAR T-cell functions (cytotoxicity, cytokine secretion, and cell proliferation) were investigated. Two different CAR T cells (CD133-specific CAR and HER2-specific CAR) were prepared, and the corresponding target cells including human glioma cell line U251 CD133-OE that overexpress CD133 and human breast cancer cell line MDA-MB-453 were used for functional assay. We found that lenalidomide promoted the killing of U251 CD133-OE by CD133-CAR T cells, the cytokine secretion, and the proliferation of CD133-CAR T cells. Lenalidomide also enhanced the cytotoxicity against MDA-MB-453 and the cytokine secretion of HER2-CAR T cells but did not affect their proliferation significantly. Furthermore, lenalidomide may regulate the function of CAR T cells by inducing the degradation of transcription factors Ikaros and Aiolos.


Sign in / Sign up

Export Citation Format

Share Document