Impact of Cytogenetic Abnormalities and Cytogenetic Response to Hypomethylating Agents (HMAs) in Patients (pts) with Lower Risk Myelodysplastic Syndromes (MDS)

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2877-2877 ◽  
Author(s):  
Guillermo Montalban-Bravo ◽  
Guillermo Garcia-Manero ◽  
Nicholas J. Short ◽  
Koji Sasaki ◽  
Mikkael A. Sekeres ◽  
...  

Abstract Introduction: Although pts with lower risk MDS have longer OS and transformation free survival than pts with higher risk disease, a subset of pts with lower risk MDS have higher risk cytogenetics. There is scarce data on the impact of cytogenetic abnormalities on response to HMAs in this patient population, the ability of these agents to induce cytogenetic responses along with the prognostic relevance of clonal evolution in this subset of pts. Methods: Pts with lower risk MDS treated with HMAs between 2012 and 2015 were evaluated. Information regarding baseline cytopenias, prior malignancy or chemotherapy, initial and on therapy bone marrow cytogenetic findings and response to therapy by IWG criteria were collected. Pts were stratified according to IPSS/IPSS-R cytogenetic groups and MDACC Lower risk model. Data regarding time to cytogenetic response, clonal evolution and clinical evolution was also reviewed. Statistical analysis included Chi-squared for categorical variables, T-student for continuous variables and Kaplan-Meier for OS and EFS. Results: A total of 83 pts were evaluated. Pt characteristics are in Table 1. Overall response rate was 61% with 39% CR, 10% CRn, 2% CRp, 1% CRi and 10% pts showing hematological improvement only. No significant difference in response rates (68% vs 61%, p=0.51) to HMAs was observed between pts with or without cytogenetic abnormalities. In pts with abnormal karyotype, 10 (26%) had complete cytogenetic response (CCyR) and 12 (31%) had partial cytogenetic response (PCyR) after a median of 7 months of therapy (range 2-18). Clonal evolution during therapy was observed in 12 (14%) pts after a median time of 8 months, and was associated with loss of response in 6 (50%) pts. There was no correlation between the achievement of a CR and cytogenetic response (p=0.36).The median follow-up was 13 months (2-30 months). Stratification of pts by IPSS or IPSS-R cytogenetic scores did not significantly predict differences for EFS (p=0.31 and p=0.47) nor OS (p=0,52 and p=0.18). By applying the MDACC low-risk scoring system, the 13-month survival rate was 100%, 83%, and 73%, for pts with categories 1, 2, and 3 respectively (p=0.35). No differences in EFS were observed between these groups. The 1-year EFS and OS rates were 79% vs 24% (p<0.001), and 83% vs 67% (p=0.3) for pts with and without any response (Figure 1). Pts achieving CR had 1-year EFS and OS rates of 83% and 92%, respectively. The 1-year EFS and OS rates were 89% vs 50% (p=0.26) and 77% vs 74% (p=0.84), for pts with or without a cytogenetic response. Among pts with morphologic CR, achieving a cytogenetic response did not confer a significant benefit in EFS (100% vs 75%; p=0.69) or OS (88% vs 75%, p=0.91). Acquisition of clonal evolution did not significantly impact EFS (56% vs 31%; p=0.37) nor OS (59% vs 57%, p=0,5). Presence of complex cytogenetics was associated with a trend for a shorter OS (67% vs 80%, p=0,072) and EFS (42% vs 66%, p=0.36). Conclusions: Achieving response to HMA therapy in pts with low-risk MDS is associated with improvement of outcome. Current IPSS or IPSS-R cytogenetic scores do not predict for outcome with HMA therapy. MDACC Lower risk model showed a tendency to better stratify OS of pts with low risk MDS treated with HMA. Cytogenetic evolution does not appear to impact outcome in patient with low-risk MDS treated with HMAs. Table 1. Studied factor Normal Karyotype Abnormal Karyotype Age 68 (44-85) 72 (55-84) SexMaleFemale 33 (70%)14 (30%) 21 (58%)15 (42%) IPSS CategoryLowIntermediate-1 10 (21%)37 (79%) 3 (8%)33 (92%) MDACC Lower risk modelLow (category 1)Intermediate (category 2)High (category 3) 6 (13%)25 (53%)16 (34%) 1 (3%)13 (36%)22 (61%) Mean blood counts at baselineHemoglobinPlateletsWBCANC 10.2g/dL (7.3-14.4)103 x109/L (4-404)6.8 x109/L (0.7-35.2)4.5 x109/L (0.2-23-2) 10.5 g/dL (7.8-15.5)96.x109/L (7-325)5.6 x109/L (1.2-32.2)2.7 x109/L (0.2-16.9) Number of clones at baseline 1 2 (1-4) Baseline % of blasts 5 (0-10) 2 (0-8) Baseline Cytogenetic abnormalities-Ydel(20q)del(11q)del(5q)del(7q) or -7+8OtherComplex Cytogenetics - 2 (6%)2 (6%)2 (6%)5 (14%)5 (14%)6 (17%)14 (39%)6 (17%) Cytogenetics at baseline by IPSSGoodIntermediatePoor 47 (100%) 8 (22%)20 (56%)8 (22%) Cytogenetics at baseline by IPSS-RVery goodGoodIntermediatePoorVery poor 47 (100%) 3 (8%)7 (19%)18 (50%)3 (8%)5 (14%) Prior malignancy 19 (40%) 13 (36%) Therapy related 7 (15%) 9 (25%) Number of Cycles of HMA 9 (2-25) 11 (2-29) Figure 1. Figure 1. Disclosures Sekeres: Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; TetraLogic: Membership on an entity's Board of Directors or advisory committees. Komrokji:Incyte: Consultancy; Celgene: Consultancy, Research Funding; Novartis: Research Funding, Speakers Bureau; Pharmacylics: Speakers Bureau. Steensma:Celgene: Consultancy; Amgen: Consultancy; Incyte: Consultancy; Onconova: Consultancy. DiNardo:Novartis: Research Funding. Pemmaraju:Stemline: Research Funding; Incyte: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; LFB: Consultancy, Honoraria. Daver:ImmunoGen: Other: clinical trial, Research Funding. Konopleva:Novartis: Research Funding; AbbVie: Research Funding; Stemline: Research Funding; Calithera: Research Funding; Threshold: Research Funding. Cortes:Teva: Research Funding; BMS: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; BerGenBio AS: Research Funding; Pfizer: Consultancy, Research Funding; Ariad: Consultancy, Research Funding; Astellas: Consultancy, Research Funding; Ambit: Consultancy, Research Funding; Arog: Research Funding; Celator: Research Funding; Jenssen: Consultancy.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 49-51
Author(s):  
Rami S. Komrokji ◽  
Brady L. Stein ◽  
Robyn M. Scherber ◽  
Patricia Kalafut ◽  
Haobo Ren ◽  
...  

Background: Myelofibrosis (MF) is a chronic Philadelphia chromosome-negative myeloproliferative neoplasm (MPN) characterized by extramedullary hematopoiesis, bone marrow fibrosis, splenomegaly, constitutional symptoms, and diminished quality of life. Treatment decisions may involve a variety of factors including prognosis and symptomatology. Data regarding real-world disease and demographic factors that contribute to therapy initiation and choice in pts with lower risk MF are limited. This analysis of data from the ongoing Myelofibrosis and Essential Thrombocythemia Observational STudy (MOST; NCT02953704) assessed whether these factors differ for lower risk pts who were treated vs untreated at enrollment. Methods: MOST is a longitudinal, noninterventional, prospective, observational study in pts with MF or essential thrombocythemia enrolled at clinical practices within the US. Pts included in the analysis (≥18 y), had low risk MF by the Dynamic International Prognostic Scoring System (DIPSS; Blood. 2010;115:1703), or intermediate-1 (INT-1) risk by age &gt;65 y alone. Pt data were entered into an electronic case report form during usual-care visits over a planned 36-month observation period. Pt-reported symptom burden was assessed using the MPN-Symptom Assessment Form (MPN-SAF); Total Symptom Score (TSS) was calculated (0 [absent] to 100 [worst imaginable]; J Clin Oncol. 2012;30:4098). Data were analyzed with basic descriptive and inferential statistics. Results: Of 233 pts with MF enrolled at 124 sites between 11/29/2016 and 03/29/2019, 205 were included in this analysis; 28 were excluded for being INT-1 risk for reasons other than age. Of the 205 pts, 85 (41.5%) were low- and 120 (58.5%) were INT-1 risk; 56.5% (48/85) and 59.2% (71/120), respectively, were being treated at enrollment. Pt characteristics are listed in Table 1A. Fewer low- vs INT-1 risk pts were JAK2 V617F or MPL positive, and more were CALR positive. The proportion of pts with palpable splenomegaly was similar for treated low- and INT-1 risk pts. In low risk pts, the proportion of pts with palpable splenomegaly was higher in untreated vs treated pts; whereas, in INT-1 risk pts, the opposite was observed (ie, lower proportion in untreated vs treated pts). Blood counts were generally similar across cohorts, except median leukocytes were lower for low risk treated pts and platelet counts were elevated in low- vs INT-1 risk pts. The proportion of pts with comorbidities was similar across cohorts, except for fewer cardiovascular comorbidities in low- vs INT-1 risk pts. Mean TSS was lower in low- vs INT-1 risk pts, but the proportion of pts with TSS ≥20 was greater in treated vs untreated pts in both low- and INT-1 risk groups. Fatigue was the most severe pt-reported symptom in all cohorts. Differences in mean TSS and individual symptom scores between risk groups were not significant (P &gt; 0.05), except itching was worse among INT-1 risk pts (P=0.03). Physician-reported signs and symptoms were generally more frequent for untreated vs treated pts, irrespective of risk (all P &gt; 0.05). Most low risk (69.4%) and INT-1 risk pts (61.2%) who were currently untreated at enrollment had not received any prior MF-directed treatment (Table 1B); the most common prior treatment among currently untreated pts was hydroxyurea (HU) in both risk groups. Of currently treated pts, HU was the most common MF-directed monotherapy at enrollment in low-risk pts, and ruxolitinib was most common in INT-1 risk pts. No low risk pts and few INT-1 risk pts were currently receiving &gt;1 MF-directed therapy at enrollment. Conclusion: These real-world data from pts with MF enrolled in MOST show that a substantial proportion of both low- and INT-1 risk pts who had received treatment before enrollment were not being treated at the time of enrollment. Although watch-and-wait is a therapeutic option, the finding that many of these lower risk pts had in fact received prior therapies suggests an unmet need for effective and tolerable second-line treatment options. Treated pts had greater pt-reported symptom burden vs untreated pts, which suggests that high symptom burden may contribute to the decision for treatment. Prospective studies are needed to evaluate symptom burden change with therapy initiation. In this regard, future analyses of data from MOST are planned to assess the longitudinal evolution of the clinical characteristics, treatment patterns, and management of pts with MF. Disclosures Komrokji: Geron: Honoraria; Agios: Honoraria, Speakers Bureau; AbbVie: Honoraria; Incyte: Honoraria; Novartis: Honoraria; BMS: Honoraria, Speakers Bureau; JAZZ: Honoraria, Speakers Bureau; Acceleron: Honoraria. Stein:Incyte: Research Funding; Kartos: Other: educational content presented; Constellation Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Pharmaessentia: Membership on an entity's Board of Directors or advisory committees. Scherber:Incyte Corporation: Current Employment, Current equity holder in publicly-traded company. Kalafut:Incyte: Current Employment, Current equity holder in publicly-traded company. Ren:Incyte: Current Employment, Current equity holder in publicly-traded company. Verstovsek:Incyte Corporation: Consultancy, Research Funding; Roche: Research Funding; Genentech: Research Funding; Blueprint Medicines Corp: Research Funding; CTI Biopharma Corp: Research Funding; NS Pharma: Research Funding; ItalPharma: Research Funding; Celgene: Consultancy, Research Funding; Gilead: Research Funding; Protagonist Therapeutics: Research Funding; Novartis: Consultancy, Research Funding; Sierra Oncology: Consultancy, Research Funding; PharmaEssentia: Research Funding; AstraZeneca: Research Funding; Promedior: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1797-1797 ◽  
Author(s):  
Yazan F. Madanat ◽  
Mikkael A. Sekeres ◽  
Sudipto Mukherjee ◽  
Cassandra M. Hirsch ◽  
Yihong Guan ◽  
...  

Abstract Lenalidomide (Len) is FDA approved for the treatment of patients (pts) with lower-risk, transfusion-dependent myelodysplastic syndromes (MDS) with deletion(5q). It is frequently used in lower-risk pts with non-del(5q) MDS, with a transfusion independence response rate of 27%. Identification of pts who may or may not respond to Len can prevent prolonged exposure to ineffective therapy, avoid toxicities, and decrease unnecessary costs. Clinical or genomic data have limited utility in predicting response/resistance to Len. We developed an unbiased framework to study the association of several mutations/cytogenetic abnormalities in predicting response/resistance to Len in non-del(5q) pts, analogous to Netflix or Amazon's recommender system, in which customers who bought products A and B are likely to buy C: pts who have a molecular/cytogenetic abnormalities in gene A, and B are likely to respond or not respond to Len. Clinical and genomic data from pts with MDS or other myeloid malignancies diagnosed according to 2008 WHO criteria between 02/2004 and 06/2015 were analyzed. Next generation targeted deep sequencing panel of 50 genes that are commonly mutated in MDS and myeloid malignancies was included. Association rules using an apriori algorithm were used to study the relationships among multiple genes/cytogenetic abnormalities and response/resistance to Len. Responses included complete and partial remission and hematologic improvement (CR, PR, HI) per IWG 2006 criteria. Pts with stable disease or progressive disease were considered resistant. Association rules are a machine learning algorithm used to identify the association of variables based on their relationships. Rules with the highest confidence (that an association exists) and highest lift (measuring the strength of the association) were chosen. Of 139 pts treated with Len as monotherapy or in combination for at least 2 cycles included, 118 (85%) had MDS and 21 (15%) had other myeloid malignancies. Median age at diagnosis was 69 years (range 20-90 yrs) and 45% were female. Risk stratification by IPSS-R for MDS pts; 51.5 % had very low/low risk, 19.5% intermediate, and 29% high and very high risk disease. Most pts 100 (73%) had non-del(5q) abnormalities, others (39) had del(5q). Cytogenetic abnormalities for the non-del(5q) cohort included 58 pts with normal karyotype (NK), 19 pts with complex karyotype (CK), 4 pts with trisomy 8, 3 pts with del(7q) abnormalities, and 15 pts with other abnormalities. A total of 108 (79%) pts were treated with Len monotherapy. The median duration of treatment was 6 months (range 2- 66 m). Response rates were 46% (n=46) in the non-del(5q) cohort and 74% (n=29) in del(5q). Association rules identified the following combinations of genomic/cytogenetic abnormalities to predict response to Len in non-del(5q): (DDX41, NK) and (MECOM, KDM6A/KDM6B). The combination of the following abnormalities predicted resistance (ASXL1, TET2, NK), (DNMT3A, SF3B1), (TP53, del(5q)+CK), (STAG2, IDH 1/2, NK), (EZH2, NK), (BCOR/ BCORL1, NK), (JAK2, TET2, NK), (U2AF1, +/- ETV6, NK). [Table 1] Only TP53/CK mutations predicted resistance to Len in del(5q) pts. These associations are present in 39% of pts with non-del(5q), and have a specificity of 77%, with a negative predictive value and sensitivity=100%. The algorithm predicted response/resistance to Len with 82% accuracy. The median OS for non-del(5q) pts was 33.2m [95% CI: 19.9, 40.5]. The median OS for responders was 54.8 compared to 24.7 m for non-responders p=.017. The median OS for rules that predicted response was 70.3 m (95% CI: 70.3-NA). The median OS for pts with del(5q) + CK with a TP53 mutation was 9.8m. Several genomic combinations predicted very poor overall survival, including: (ETV6, U2AF1, NK), (BCOR/ BCORL1, NK), (EZH2, NK) , (JAK2, TET2, NK), with median OS of 10.7 m, 7.6 m, 10.8 m and 7.6 m, respectively. [Figure 1] Genomic biomarkers can identify 39% of non-del(5q) MDS pts who may or may not respond to treatment with very high accuracy. Although these abnormalities are only present in a subset of pts, treatment options for these pts can be tailored, by offering alternative therapies to pts with lower-risk disease who may not respond to Len, and preferentially offering Len to those who are more likely to respond. This study highlights how advanced analytic technologies such as machine learning can translate genomic/clinic data into useful clinical tools. Disclosures Sekeres: Opsona: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Gerds:Celgene: Consultancy; Apexx Oncology: Consultancy; CTI Biopharma: Consultancy; Incyte: Consultancy. Carraway:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Novartis: Speakers Bureau; Balaxa: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; FibroGen: Consultancy; Jazz: Speakers Bureau; Agios: Consultancy, Speakers Bureau. Santini:Novartis: Honoraria; Amgen: Membership on an entity's Board of Directors or advisory committees; Otsuka: Consultancy; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Research Funding; AbbVie: Membership on an entity's Board of Directors or advisory committees. Maciejewski:Ra Pharmaceuticals, Inc: Consultancy; Ra Pharmaceuticals, Inc: Consultancy; Apellis Pharmaceuticals: Consultancy; Apellis Pharmaceuticals: Consultancy; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Nazha:MEI: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 226-226 ◽  
Author(s):  
Elias J. Jabbour ◽  
Nicholas J. Short ◽  
Xuelin Huang ◽  
Abhishek Maiti ◽  
Tapan M. Kadia ◽  
...  

Abstract Background: The outcome of patients (pts) with lower-risk myelodysplastic syndrome (MDS) is heterogeneous, with some pts having a particularly poor prognosis. Low doses of hypomethylating agents (HMAs) have been shown to be active in lower-risk MDS. We evaluated the relative safety and efficacy of low-dose decitabine (DAC) and azacitidine (AZA) in pts with lower-risk MDS. Methods: Adult pts with de novo or secondary low- or intermediate-1-risk MDS, CMML or MDS/MPN were eligible for this study. Pts with prior HMA exposure were excluded. Pts were randomized in a Bayesian adaptive design to receive either AZA 75 mg/m2 IV/SC daily or DAC 20 mg/m2 IV daily for 3 consecutive days on a 28-day cycle; pts were more likely to be assigned to the better performing treatment arm. The primary efficacy outcome was the overall improvement rate (OIR) defined as the composite of complete remission (CR), marrow CR, and hematologic improvement. Secondary outcomes included safety profile, cytogenetic response, conversion to transfusion independence, event-free survival (EFS), and overall survival (OS). EFS was defined as the time to HMA failure, progressive disease, transformation to acute myeloid leukemia (AML) or death from any cause. Results: Between 11/2012 and 2/2016, 113 pts with lower-risk MDS have been treated, 40 (39%) with AZA and 73 (71%) with DAC. The median age of the entire cohort was 70 years (range, 44-88 years), and the majority of pts (81%) were intermediate-1-risk by IPSS. Baseline characteristics of the 2 treatment groups were well-balanced and are summarized in Table 1. The median number of cycles received was 9 (range 1-41 cycles). Of the 39 pts in the AZA arm and 70 pts in the DAC arm who have received at least 2 cycles of therapy and were evaluable for response, the OIR was 53% in both groups. The CR rate with AZA and DAC was 38% and 29%, respectively (P=0.29). Among pts with abnormal karyotype at baseline, complete or partial cytogenetic response was observed in 24% of pts in the AZA arm and in 63% of pts in the DAC arm (P=0.01); the rate of complete cytogenetic response was 6% and 26% in the two groups, respectively (P=0.09). Of the 18 pts in the AZA arm and the 38 pts in the DAC arm who were transfusion dependent at baseline and evaluable for response, 17% and 32% achieved transfusion independence, respectively (P=0.24) The median duration of follow-up for the entire cohort was 20 months (range, 2-42 months). Twenty four pts in the AZA arm (60%) and 23 pts in the DAC arm (32%) have come off study due to lack of response or progressive disease. There was a trend toward prolonged EFS with DAC compared to AZA (median EFS: 19.6 months vs. 13.7 months; 1-year EFS rate: 73% vs. 57, respectively; P=0.15; Figure 1A). Twelve pts in the AZA arm (30%) and 17 pts in DAC arm (23%) have died. The median OS was similar between DAC and AZA (median OS not reached for both; 1-year OS rate: 87% vs. 84%, respectively; P=0.80; Figure 1B). Progression to AML occurred in 5 pts (13%) in the AZA arm and 6 pts (8%) in the DAC arm. Both agents were overall well-tolerated. Cycle delays were required in 23% and 37% of pts and dose reductions were required in 5% and 12% of pts treated with AZA and DAC, respectively. Infection or neutropenic fever occurred 2 pts (5%) treated with AZA and in 5 pts treated with DAC (7%). No grade 4 adverse events were observed in either treatment arm. Conclusions: Low-dose AZA and DAC are effective and well-tolerated in pts with lower-risk MDS. Early results suggest that low-dose DAC may result in superior EFS compared to low-dose AZA. A randomized trial comparing low-dose AZA, low-dose DAC, AZA x 5 days, and best supportive care in lower-risk MDS is ongoing. Disclosures Jabbour: ARIAD: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Novartis: Research Funding; BMS: Consultancy. Daver:Otsuka: Consultancy, Honoraria; Sunesis: Consultancy, Research Funding; BMS: Research Funding; Ariad: Research Funding; Pfizer: Consultancy, Research Funding; Kiromic: Research Funding; Karyopharm: Honoraria, Research Funding. DiNardo:Daiichi Sankyo: Other: advisory board, Research Funding; Abbvie: Research Funding; Novartis: Other: advisory board, Research Funding; Celgene: Research Funding; Agios: Other: advisory board, Research Funding. Sekeres:Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium/Takeda: Membership on an entity's Board of Directors or advisory committees. Komrokji:Novartis: Consultancy, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Roboz:Agios, Amgen, Amphivena, Astex, AstraZeneca, Boehringer Ingelheim, Celator, Celgene, Genoptix, Janssen, Juno, MEI Pharma, MedImmune, Novartis, Onconova, Pfizer, Roche/Genentech, Sunesis, Teva: Consultancy; Cellectis: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 468-468 ◽  
Author(s):  
Félix López Cadenas ◽  
Eva Lumbreras ◽  
Blanca Xicoy ◽  
Joaquin Sanchez-Garcia ◽  
Pierre Fenaux ◽  
...  

Abstract Background: Lenalidomide (LEN) is a reference treatment in IPSS low and in1 (lower) risk MDS patients with isolated de(5q) (MDS-del(5q)) and RBC - TD. Most low risk MDS-del(5q) patients with anemia and independent of transfusions develop TD or need of treatment for symptomatic anemia very early after diagnosis (median time to transfusion/treatment of 20 months, López Cadenas et al abstract 3180 ASH, 2016). LEN directly targets the del(5q) clone improving anemia, quality of life and survival in this subset of patients. Limited data also suggest a role of LEN in non-TD patients with del(5q) (Oliva et al Cancer Med 2015). However no prospective randomized study of LEN has been performed in this group of patients. Material: The Sintra-Rev clinical trial is a phase III European multicenter study, in low-risk MDS-del(5q) patients, with anemia (Hb<12g/dL) without TD. Patients were randomized in a double-blind design to LEN (5mg/day) vs placebo (2:1 randomization) for 2 years of treatment and 2y of FU. The primary endpoint was the time to TD, the secondary endpoints included erythroid and cytogenetic response (HI-E -IWG 2006 criteria-; minor HI-ER was defined as Hb increase 1 to 1.5 g/dL), overall survival (OS), event free survival (EFS), time to AML and mutational analysis (TP53 and other myeloid genes). Preliminary blinded results of efficacy of the entire cohort after 12 weeks of treatment are reported. Results: Main clinical characteristics of the 58 patients included are summarized in Table 1: 81% were females, median age was 72 years (37-89), median Hb at inclusion 9.8 g/dL(7.1 - 11.7) g/dL and most patients (86%) had isolated del(5q) cytogenetic abnormality. Three patients were excluded due to screening failures and 58 were finally included in the trial. Seven patients discontinued before 12 weeks: Three developed disease progression (defined as TD), two withdrew consent, one due to changes in patient's status and it was not specified in the remaining patient. Therefore, fifty-four patients were finally evaluable for efficacy and 58 for safety at w12. HI-E was observed in 20/54 patients (37%), minor HI-ER in 6/54 (11%), stable disease in 25/54 (46%) and TD (transfusion dependency) in 3 (6%). In the 26 patients achieving HI-E or minor HI-E, the median Hb level rise was 2.2 g/dL (range 1-4.4) and median Hb level was 12.5 g/dL (9.8-14.2). Cytogenetic response (CyR) was available in 41/54 patients: complete in 16 (30%), partial in 9 (17%), no CyR in 16 (30%) and no available in 13 (23%) patients. 54 patients developed adverse events (AE) in the first 12w, most of them hematological and probably related to the treatment. Hematological toxicity occurred in 74% of patients (neutropenia or thrombocytopenia) and only one third was grade 3/4 (neutropenia 35% or thrombocytopenia 3%). Non-hematological adverse events potentially related to the investigational drug were described in 19 patients (35%) but only 2/19 (11%) were grade 3. Nine serious AE were reported in 7 patients: congestive heart failure (2), vestibular neuritis, polyarthritis, arterial hypertensive crisis, carpal arthritis, respiratory infection, chronic obstructive pulmonary disease exacerbation and blurred vision. Only the last one (blurred vision) was potentially related with the study drug Conclusions: In this preliminary and blinded analysis we confirm a high rate of erythroid and cytogenetic responses early (w12) after study treatment with an adequate safety profile. Unblinded data will be presented at the meeting. Disclosures Platzbecker: Celgene: Research Funding. Götze:JAZZ Pharmaceuticals: Honoraria; Takeda: Honoraria, Other: Travel aid ASH 2017; Novartis: Honoraria; Celgene: Honoraria, Research Funding. Díez-Campelo:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4309-4309
Author(s):  
María Abáigar ◽  
Jesús M Hernández-Sánchez ◽  
David Tamborero ◽  
Marta Martín-Izquierdo ◽  
María Díez-Campelo ◽  
...  

Abstract Introduction: Myelodysplastic syndromes (MDS) are hematological disorders at high risk of progression to acute myeloid leukemia (AML). Although, next-generation sequencing has increased our understanding of the pathogenesis of these disorders, the dynamics of these changes and clonal evolution during progression have just begun to be understood. This study aimed to identify the genetic abnormalities and study the clonal evolution during the progression from MDS to AML. Methods: A combination of whole exome (WES) and targeted-deep sequencing was performed on 40 serial samples (20 MDS/CMML patients evolving to AML) collected at two time-points: at diagnosis (disease presentation) and at AML transformation (disease evolution). Patients were divided in two different groups: those who received no disease modifying treatment before they transformed into AML (n=13), and those treated with lenalidomide (Lena, n=2) and azacytidine (AZA, n=5) and then progressed. Initially, WES was performed on the whole cohort at the MDS stage and at the leukemic phase (after AML progression). Driver mutations were identified, after variant calling by a standardized bioinformatics pipeline, by using the novel tool "Cancer Genome Interpreter" (https://www.cancergenomeinterpreter.org). Secondly, to validate WES results, 30 paired samples of the initial cohort were analyzed with a custom capture enrichment panel of 117 genes, previously related to myeloid neoplasms. Results: A total of 121 mutations in 70 different genes were identified at the AML stage, with mostly all of them (120 mutations) already present at the MDS stage. Only 5 mutations were only detected at the MDS phase and disappeared during progression (JAK2, KRAS, RUNX1, WT1, PARN). These results suggested that the majority of the molecular lesions occurring in MDS were already present at initial presentation of the disease, at clonal or subclonal levels, and were retained during AML evolution. To study the dynamics of these mutations during the evolution from MDS/CMML to AML, we compared the variant allele frequencies (VAFs) detected at the AML stage to that at the MDS stage in each patient. We identified different dynamics: mutations that were initially present but increased (clonal expansion; STAG2) or decreased (clonal reduction; TP53) during clinical course; mutations that were newly acquired (BCOR) or disappearing (JAK2, KRAS) over time; and mutations that remained stable (SRSF2, SF3B1) during the evolution of the disease. It should be noted that mutational burden of STAG2 were found frequently increased (3/4 patients), with clonal sizes increasing more than three times at the AML transformation (26>80%, 12>93%, 23>86%). Similarly, in 4/8 patients with TET2 mutations, their VAFs were double increased (22>42%, 15>61%, 50>96%, 17>100%), in 2/8 were decreased (60>37%, 51>31%), while in the remaining 2 stayed stable (53>48%, 47>48%) at the AML stage. On the other hand, mutations in SRSF2 (n=3/4), IDH2 (n=2/3), ASXL1 (n=2/3), and SF3B1 (n=3/3) showed no changes during progression to AML. This could be explained somehow because, in leukemic phase, disappearing clones could be suppressed by the clonal expansion of other clones with other mutations. Furthermore we analyzed clonal dynamics in patients who received treatment with Lena or AZA and after that evolved to AML, and compared to non-treated patients. We observed that disappearing clones, initially present at diagnosis, were more frequent in the "evolved after AZA" group vs. non-treated (80% vs. 38%). By contrast, increasing mutations were similar between "evolved after AZA" and non-treated patients (60% vs. 61%). These mutations involved KRAS, DNMT1, SMC3, TP53 and TET2among others. Therefore AZA treatment could remove some mutated clones. However, eventual transformation to AML would occur through persistent clones that acquire a growth advantage and expand during the course of the disease. By contrast, lenalidomide did not reduce the mutational burden in the two patients studied. Conclusions: Our study showed that the progression to AML could be explained by different mutational processes, as well as by the occurrence of unique and complex changes in the clonal architecture of the disease during the evolution. Mutations in STAG2, a gene of the cohesin complex, could play an important role in the progression of the disease. [FP7/2007-2013] nº306242-NGS-PTL; BIO/SA52/14; FEHH 2015-16 (MA) Disclosures Del Cañizo: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Jansen-Cilag: Membership on an entity's Board of Directors or advisory committees, Research Funding; Arry: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4396-4396
Author(s):  
Patrick Mellors ◽  
Moritz Binder ◽  
Rhett P. Ketterling ◽  
Patricia Griepp ◽  
Linda B Baughn ◽  
...  

Introduction: Abnormal metaphase cytogenetics are associated with inferior survival in newly diagnosed multiple myeloma (MM). These abnormalities are only detected in one third of cases due to the low proliferative rate of plasma cells. It is unknown if metaphase cytogenetics improve risk stratification when using contemporary prognostic models such as the revised international staging system (R-ISS), which incorporates interphase fluorescence in situ hybridization (FISH). Aims: The aims of this study were to 1) characterize the association between abnormalities on metaphase cytogenetics and overall survival (OS) in newly diagnosed MM treated with novel agents and 2) evaluate whether the addition of metaphase cytogenetics to R-ISS, age, and plasma cell labeling index (PCLI) improves model discrimination with respect to OS. Methods: We analyzed a retrospective cohort of 483 newly diagnosed MM patients treated with proteasome inhibitors (PI) and/or immunomodulators (IMID) who had metaphase cytogenetics performed prior to initiation of therapy. Abnormal metaphase cytogenetics were defined as MM specific abnormalities, while normal metaphase cytogenetics included constitutional cytogenetic variants, age-related Y chromosome loss, and normal metaphase karyotypes. Multivariable adjusted proportional hazards regression models were fit for the association between known prognostic factors and OS. Covariates associated with inferior OS on multivariable analysis included R-ISS stage, age ≥ 70, PCLI ≥ 2, and abnormal metaphase cytogenetics. We devised a risk scoring system weighted by their respective hazard ratios (R-ISS II +1, R-ISS III + 2, age ≥ 70 +2, PCLI ≥ 2 +1, metaphase cytogenetic abnormalities + 1). Low (LR), intermediate (IR), and high risk (HR) groups were established based on risk scores of 0-1, 2-3, and 4-5 in modeling without metaphase cytogenetics, and scores of 0-1, 2-3, and 4-6 in modeling incorporating metaphase cytogenetics, respectively. Survival estimates were calculated using the Kaplan-Meier method. Survival analysis was stratified by LR, IR, and HR groups in models 1) excluding metaphase cytogenetics 2) including metaphase cytogenetics and 3) including metaphase cytogenetics, with IR stratified by presence and absence of metaphase cytogenetic abnormalities. Survival estimates were compared between groups using the log-rank test. Harrell's C was used to compare the predictive power of risk modeling with and without metaphase cytogenetics. Results: Median age at diagnosis was 66 (31-95), 281 patients (58%) were men, median follow up was 5.5 years (0.04-14.4), and median OS was 6.4 years (95% CI 5.7-6.8). Ninety-seven patients (20%) were R-ISS stage I, 318 (66%) stage II, and 68 (14%) stage III. One-hundred and fourteen patients (24%) had high-risk abnormalities by FISH, and 115 (24%) had abnormal metaphase cytogenetics. Three-hundred and thirteen patients (65%) received an IMID, 119 (25%) a PI, 51 (10%) received IMID and PI, and 137 (28%) underwent upfront autologous hematopoietic stem cell transplantation (ASCT). On multivariable analysis, R-ISS (HR 1.59, 95% CI 1.29-1.97, p < 0.001), age ≥ 70 (HR 2.32, 95% CI 1.83-2.93, p < 0.001), PCLI ≥ 2, (HR 1.52, 95% CI 1.16-2.00, p=0.002) and abnormalities on metaphase cytogenetics (HR 1.35, 95% CI 1.05-1.75, p=0.019) were associated with inferior OS. IR and HR groups experienced significantly worse survival compared to LR groups in models excluding (Figure 1A) and including (Figure 1B) the effect of metaphase cytogenetics (p < 0.001 for all comparisons). However, the inclusion of metaphase cytogenetics did not improve discrimination. Likewise, subgroup analysis of IR patients by the presence or absence of metaphase cytogenetic abnormalities did not improve risk stratification (Figure 1C) (p < 0.001). The addition of metaphase cytogenetics to risk modeling with R-ISS stage, age ≥ 70, and PCLI ≥ 2 did not improve prognostic performance when evaluated by Harrell's C (c=0.636 without cytogenetics, c=0.642 with cytogenetics, absolute difference 0.005, 95% CI 0.002-0.012, p=0.142). Conclusions: Abnormalities on metaphase cytogenetics at diagnosis are associated with inferior OS in MM when accounting for the effects of R-ISS, age, and PCLI. However, the addition of metaphase cytogenetics to prognostic modeling incorporating these covariates did not significantly improve risk stratification. Disclosures Lacy: Celgene: Research Funding. Dispenzieri:Akcea: Consultancy; Intellia: Consultancy; Alnylam: Research Funding; Celgene: Research Funding; Janssen: Consultancy; Pfizer: Research Funding; Takeda: Research Funding. Kapoor:Celgene: Honoraria; Sanofi: Consultancy, Research Funding; Janssen: Research Funding; Cellectar: Consultancy; Takeda: Honoraria, Research Funding; Amgen: Research Funding; Glaxo Smith Kline: Research Funding. Leung:Prothena: Membership on an entity's Board of Directors or advisory committees; Takeda: Research Funding; Omeros: Research Funding; Aduro: Membership on an entity's Board of Directors or advisory committees. Kumar:Celgene: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Takeda: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Rafael Renatino-Canevarolo ◽  
Mark B. Meads ◽  
Maria Silva ◽  
Praneeth Reddy Sudalagunta ◽  
Christopher Cubitt ◽  
...  

Multiple myeloma (MM) is an incurable cancer of bone marrow-resident plasma cells, which evolves from a premalignant state, MGUS, to a form of active disease characterized by an initial response to therapy, followed by cycles of therapeutic successes and failures, culminating in a fatal multi-drug resistant cancer. The molecular mechanisms leading to disease progression and refractory disease in MM remain poorly understood. To address this question, we have generated a new database, consisting of 1,123 MM biopsies from patients treated at the H. Lee Moffitt Cancer Center. These samples ranged from MGUS to late relapsed/refractory (LR) disease, and were comprehensively characterized genetically (844 RNAseq, 870 WES, 7 scRNAseq), epigenetically (10 single-cell chromatin accessibility, scATAC-seq) and phenotypically (537 samples assessed for ex vivo drug resistance). Mutational analysis identified putative driver genes (e.g. NRAS, KRAS) among the highest frequent mutations, as well as a steady increase in mutational load across progression from MGUS to LR samples. However, with the exception of KRAS, these genes did not reach statistical significance according to FISHER's exact test between different disease stages, suggesting that no single mutation is necessary or sufficient to drive MM progression or refractory disease, but rather a common "driver" biology is critical. Pathway analysis of differentially expressed genes identified cell adhesion, inflammatory cytokines and hematopoietic cell identify as under-expressed in active MM vs. MGUS, while cell cycle, metabolism, DNA repair, protein/RNA synthesis and degradation were over-expressed in LR. Using an unsupervised systems biology approach, we reconstructed a gene expression map to identify transcriptomic reprogramming events associated with disease progression and evolution of drug resistance. At an epigenetic regulatory level, these genes were enriched for histone modifications (e.g. H3k27me3 and H3k27ac). Furthermore, scATAC-seq confirmed genome-wide alterations in chromatin accessibility across MM progression, involving shifts in chromatin accessibility of the binding motifs of epigenetic regulator complexes, known to mediate formation of 3D structures (CTCF/YY1) of super enhancers (SE) and cell identity reprograming (POU5F1/SOX2). Additionally, we have identified SE-regulated genes under- (EBF1, RB1, SPI1, KLF6) and over-expressed (PRDM1, IRF4) in MM progression, as well as over-expressed in LR (RFX5, YY1, NBN, CTCF, BCOR). We have found a correlation between cytogenetic abnormalities and mutations with differential gene expression observed in MM progression, suggesting groups of genetic events with equivalent transcriptomic effect: e.g. NRAS, KRAS, DIS3 and del13q are associated with transcriptomic changes observed during MGUS/SMOL=&gt;active MM transition (Figure 1). Taken together, our preliminary data suggests that multiple independent combinations of genetic and epigenetic events (e.g. mutations, cytogenetics, SE dysregulation) alter the balance of master epigenetic regulatory circuitry, leading to genome-wide transcriptional reprogramming, facilitating disease progression and emergence of drug resistance. Figure 1: Topology of transcriptional regulation in MM depicts 16,738 genes whose expression is increased (red) or decreased (green) in presence of genetic abnormality. Differential expression associated with (A) hotspot mutations and (B) cytogenetic abnormalities confirms equivalence of expected pairs (e.g. NRAS and KRAS, BRAF and RAF1), but also proposes novel transcriptomic dysregulation effect of clinically relevant cytogenetic abnormalities, with yet uncharacterized molecular role in MM. Figure 1 Disclosures Kulkarni: M2GEN: Current Employment. Zhang:M2GEN: Current Employment. Hampton:M2GEN: Current Employment. Shain:GlaxoSmithKline: Speakers Bureau; Amgen: Speakers Bureau; Karyopharm: Research Funding, Speakers Bureau; AbbVie: Research Funding; Takeda: Honoraria, Speakers Bureau; Sanofi/Genzyme: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Honoraria, Speakers Bureau; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Adaptive: Consultancy, Honoraria; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Siqueira Silva:AbbVie: Research Funding; Karyopharm: Research Funding; NIH/NCI: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1130-1130 ◽  
Author(s):  
Jerald P. Radich ◽  
Giovanni Martinelli ◽  
Andreas Hochhaus ◽  
Enrico Gottardi ◽  
Simona Soverini ◽  
...  

Abstract Abstract 1130 Poster Board I-152 Background Nilotinib is a selective and potent BCR-ABL inhibitor, with in vitro activity against most BCR-ABL mutants (excluding T315I) indicated for the treatment of patients with Philadelphia chromosome positive (Ph+) CML in CPor AP resistant or -intolerant to prior therapy, including imatinib. In a previous analysis of nilotinib in patients with BCR-ABL mutations, mutations occurring at three specific amino acid residues (E255K/V, Y253H, and F359C/V) were shown to be associated with less favorable response to nilotinib. The current analysis is based on mature data with a minimum follow-up of 24-months for all patients. Outcomes of patients at 24 months were analyzed by mutation type. Methods Imatinib-resistant CML-CP (n = 200) and CML-AP (n = 93) patients were subdivided into the following mutational subsets: no mutation, sensitive mutations (including mutations with unknown in vitro IC50). or E255K/V, Y253H, or F359C/V mutations at baseline. Patients with mutations of unknown in vitro sensitivity were classified as sensitive in this analysis based on a previous finding that patients with these mutations responded similarly to nilotinib as patients with sensitive mutation. Patients with baseline T315I mutations were excluded from this analysis. Patient groups were analyzed for kinetics and durability of cytogenetic and molecular response to nilotinib, as well as event-free survival (EFS), defined as loss of hematologic or cytogenetic response, progression to AP/BC, discontinuation due to disease progression, or death, and overall survival (OS). Results In CML-CP and -AP patients with no mutation, sensitive mutations, or E255K/V, Y253H, or F359C/V mutations, hematologic, cytogenetic and molecular responses are provided in the Table. Overall, patients with no mutations responded similarly to patients with sensitive mutations, whereas patients with E255K/V, Y253H, or F359C/V mutations had less favorable responses. This correlation was observed in both CML-CP and CML-AP patients, respectively. Median time to CCyR was 3.3 months (range, 1.0–26.7) for CML-CP patients with no mutations, and 5.6 months (range, 0.9–22.1) for patients with sensitive mutations. At 24 months, CCyR was maintained in 74% of CML-CP patients with no mutation and in 84% of patients with sensitive mutations. One patient with CML-CP and an E255K mutation achieved CCyR at 25 months and maintained until last assessment at 30 months. Median time to MMR was similar at 5.6 months (range, 0.9–25.8) for CML-CP patients with no mutations and 5.6 months (range, 2.7–22.1) for patients with sensitive mutations. No patient with a less sensitive mutation achieved MMR. Median EFS and 24-month estimated OS rate are provided in the Table. Conclusions Imatinib-resistant CML-CP and CML-AP patients treated with nilotinib therapy with BCR-ABL mutations (excluding E255K/V, Y253H, or F359C/V) achieved rapid and durable cytogenetic responses, and estimated EFS and OS at 24 months similar to that of patients with no mutations, respectively. Patients with E255K/V, Y253H, or F359C/V mutations had lower and less-durable responses and shorter EFS than patients with sensitive mutations. Alternative therapies may be considered for patients with these uncommon mutations (E255K/V, Y253H, and F359C/V). Disclosures Radich: Novartis: Consultancy, Honoraria, Research Funding. Hochhaus:Novartis: Research Funding. Branford:Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. Shou:Novartis: Employment. Haque:Novartis: Employment. Woodman:Novartis: Employment. Kantarjian:Novartis: Research Funding. Hughes:Bristol-Myers Squibb: Advisor, Honoraria, Research Funding; Novartis: Advisor, Honoraria, Research Funding. Kim:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Wyeth: Research Funding. Saglio:Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1125-1125 ◽  
Author(s):  
Michael P Osborn ◽  
Susan Branford ◽  
Deborah L White ◽  
John F Seymour ◽  
Ruth Columbus ◽  
...  

Abstract Abstract 1125 Poster Board I-147 The Australasian Leukaemia and Lymphoma Group conducted a trial (TIDEL I) in 103 patients with newly diagnosed chronic phase CML, using imatinib 600 mg/day with dose escalation to 800 mg/day for suboptimal response. This was defined as failure to achieve (1) complete haematological response (CHR) at 3 months, (2) major cytogenetic response (MCR) at 6 months, (3) complete cytogenetic response (CCR) or molecular equivalent at 9 months, or (4) less than 0.01% (IS) BCR-ABL by RQ-PCR at 12 months. Here we report the outcomes with all surviving patients having been treated for at least 60 months. We aimed to determine whether the patient outcome at 60 months was predicted by the molecular response within the first 18 months of imatinib therapy. The outcomes for patients maintaining a dose of imatinib of ≥600 mg/day in the first 12 months was compared to those who were on a reduced dose for at least part of this time. Event-free survival (EFS) was defined as death from any cause, accelerated phase/blast crisis (AP/BC), and loss of CHR, MCR or CCR. The 103 patients included 66 males and 37 females with a median (±SD) age of 49 (±14) years. All patients had an ECOG performance status of 0-2 at enrolment. The 5-year EFS was 71%, transformation (AP/BC) free survival (TFS) was 95%, and overall survival was 87%. Of the 14 patients who died, 3 died in blast crisis, 2 from transplant-related complications, 8 from CML-unrelated causes, and the cause of death of 1 patient was unavailable. The annual rates of progression to AP/BC over 5 years were 3%, 1%, 0%, 1%, and 0%, while annual event rates were 13%, 8%, 8%, 1%, and 4%. CCR was achieved by 89% of patients by 60 months, while 72% achieved a major molecular response (MMR) by this time. In the first 12 months of treatment, 55% of patients maintained an imatinib dose of ≥600 mg/day (mean ±SD dose = 604 ±10 mg/day), while 45% were on <600 mg/day for at least part of this time (mean ±SD dose = 511 ±100 mg/day). EFS at 60 months was significantly higher in patients taking ≥600 mg/day compared with those who had been dose-reduced to <600 mg/day (89% vs 56%, P<0.001). Annual event rates for the ≥600 mg/day group were 6%, 2%, 2%, 0%, and 2%, while annual event rates for those on <600 mg/day were 14%, 16%, 16%, 8%, and 4%. By 60 months, 96% of patients who had been on ≥600 mg/day within the first 12 months had achieved CCR, while only 80% of those who had been on <600 mg/day had achieved this milestone (P<0.001). Log rank analysis of the achievement of MMR was also significant (P=0.03). Overall survival and TFS after 12 months were both similar between the dosing groups. There was no difference between the dosing groups' median age (50 vs 48 years, P=0.36) or Sokal score (1.04 vs 0.94, P=0.33) that may otherwise account for these results. The outcome was also determined for all patients dependent on the BCR-ABL levels at various assessment timepoints. Patients with a BCR-ABL level of <10% (IS) at 6 months (n=92) had an EFS of 78% at 60 months, while all of those with a level >10% (IS) (n=8) had an event (P<0.001). Patients with a level of ≤1% (IS) at 12 months (equivalent to CCR) (n=81) had an EFS of 75% compared with 25% (n=13) for those with levels >1% (IS) (P<0.001). At 18 months, a level ≤0.1% (IS) (n=58) conferred an EFS of 88%, while those who had failed to attain this depth of response (n=30) had an EFS of 60%. There was a significant difference in EFS between those who had achieved an MMR at 18 months and those who had achieved a CCR, but no MMR (88% vs 67%, P=0.03). In conclusion, our data suggest that patients maintaining a dose of ≥600mg in the first 12 months of imatinib therapy are more likely to achieve CCR and MMR, and superior EFS compared to those with a lower dose. This study also confirms that achieving an MMR by 18 months is associated with improved EFS. This emphasises the value of achieving a molecular response early in the treatment course, as well as adding weight to the evidence supporting the role of molecular monitoring in CML. Disclosures Branford: Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. White:Novartis and Britol-Myers Squibb: Research Funding. Seymour:Bayer Schering: Consultancy, Membership on an entity's Board of Directors or advisory committees, Travel grants; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Travel Grants. Catalano:Roche: Honoraria, Research Funding, Travel grants. Mills:Celgene Pty Ltd: Honoraria, Membership on an entity's Board of Directors or advisory committees. Hughes:Bristol-Myers Squibb: Advisor, Honoraria, Research Funding; Novartis: Advisor, Honoraria, Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3286-3286 ◽  
Author(s):  
Philipp D. le Coutre ◽  
Anna Turkina ◽  
Dong-Wook Kim ◽  
Bernadeta Ceglarek ◽  
Giuliana Alimena ◽  
...  

Abstract Abstract 3286 Poster Board III-1 Introduction: Nilotinib, a potent and highly selective BCR-ABL kinase inhibitor, is approved for the treatment of patients (pts) with Philadelphia chromosome-positive chronic myelogeneous leukemia (Ph+ CML) in chronic phase (CML-CP) and accelerated phase (CML-AP) who are resistant or intolerant to prior therapy including imatinib. The ENACT study is a Phase IIIb, open-label, multicenter study that evaluated the efficacy and safety of nilotinib in adult pts with imatinib-resistant or intolerant CML in a clinical practice setting outside of a registration program. It is the largest single source of efficacy and safety information of any available tyrosine kinase inhibitor (TKI) in CML, particularly among the elderly. Methods: The present is a sub-analysis of the ENACT study on the efficacy and safety of 400 mg twice daily nilotinib in elderly (aged =60 years) pts initiating treatment in CML-CP who were resistant and/or intolerant to imatinib. Results: Of the 1,422 CML-CP pts enrolled in the ENACT study between January 2006 and October 2008, 452 (32%) were elderly (=60 years) at study initiation and 165 (37%) of these pts were =70 years [10 (2%) were =80 years]. Countries that enrolled =20 elderly pts include France, Italy, USA, Germany, UK, Spain, Canada, and Brazil. At study initiation, elderly pts had longer median durations of CML (<60: 51.1 months; =60: 69.3; =70: 66.6) and higher proportions with CML duration >5 years (<60: 43%; =60: 56%; =70: 52%). Besides imatinib, prior CML treatments received by elderly pts included dasatinib (=60: 20%; =70: 19%), cytarabine (=60: 23%; =70: 19%), busulfan (=60: 10%; =70: 7%), and interferons (=60: 50%; =70: 42%). Elderly pts were previously treated with imatinib for longer median durations (<60: 27.4 months; =60: 32.7; =70: 29.9), with higher proportions treated for >5 years (<60: 12%; =60: 19%; =70: 18%). The proportion of imatinib-intolerant to resistant elderly pts was about 1:1, which was higher than the proportion among <60 pts at about 0.6:1, such that relatively few elderly pts had prior highest imatinib dose >800 mg (<60: 34%; =60: 26%; =70: 21%). While response rates to prior imatinib were similar, among pts who required therapy after failing imatinib, elderly pts had lower cytogenetic response rates (<60: 22%; =60: 17%; =70: 19%) to prior dasatinib. During ENACT, less than 50% of elderly pts experienced nilotinib dose interruptions (=60: 46%; =70: 41%) and reductions (=60: 7%; =70: 6%) lasting >5 days, which was consistent with the overall ENACT dataset. The median duration of dose interruptions and reductions was 15 (=70: also 15) and 41 (=70: 32) days, respectively. The main reason for dose interruptions and reductions was adverse events (AEs). The median duration of nilotinib exposure was 227 days (=70: 219) and the median dose intensity was 749 mg/day (=70: 775). Efficacy was similar among elderly pts, with 39% (=70: 35%) of pts achieving complete hematologic response (CHR), 41% (=70: 39%) achieving major cytogenetic response (MCyR) and 31% (=70: 33%) achieving complete cytogenetic response (CCyR). MCyR rate was also similar among elderly hematologic responders (=60: 64%; =70: 65%). Among elderly pts requiring nilotinib therapy after both imatinib and dasatinib, and therefore have more resistant CML, CHR rate was 39% (=70: 32%), MCyR rate was 28% (=70: 29%) and CCyR rate was 20% (=70: 16%). Safety was likewise similar among elderly pts, with grade 3/4 study drug-related AEs occurring in 56% of pts (=70: 53%). The most frequent of these AEs were thrombocytopenia (=60: 24%; =70: 21%) and neutropenia (=60: 14%; =70: 11%). The most common method of managing these AEs was brief dose interruptions and/or reductions [thrombocytopenia (=60:86/108 pts; =70: 30/35), neutropenia (=60: 42/62 pts; =70: 9/18)]. Among elderly pts with prior dasatinib, 53% (=70: 58%) experienced grade 3/4 study drug-related AEs, while 7 out of 8 pts with pleural effusion on dasatinib no longer had it on nilotinib. Conclusions: In ENACT, pts aged =60 years at study initiation appear to have longer durations of CML, be more heavily pre-treated and more intolerant to imatinib than the younger cohort. Nonetheless, nilotinib induced comparable clinical responses in CML-CP pts regardless of age. Importantly, the safety profile of nilotinib is maintained in elderly pts. Disclosures: le Coutre: Novartis: Honoraria, Research Funding; BMS: Honoraria. Turkina:Novartis Pharmaceuticals: Honoraria. Kim:Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Wyeth: Research Funding. Ceglarek:Novartis Pharmaceuticals: Honoraria. Shen:Novartis Pharmaceuticals: Honoraria. Smith:Novartis Pharmaceuticals: Honoraria. Rizzieri:Novartis Pharma: Honoraria, Research Funding, Speakers Bureau. Szczudlo:Novartis: Employment. Berton:Novartis Pharmaceuticals: Employment. Wang:Novartis Pharmaceuticals: Employment. Wang:Novartis Pharmaceuticals: Research Funding. Nicolini:Novartis Pharma: Consultancy, Honoraria, Research Funding, Speakers Bureau; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding, Speakers Bureau; Chemgenex: Honoraria, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document