TGF-β Pathway Inhibition Rescues the Function of Hematopoietic Stem and Progenitor Cells Derived from Patients with Fanconi Anemia

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 297-297
Author(s):  
Haojian Zhang ◽  
David Kozono ◽  
Kevin O'Connor ◽  
Alix Rousseau ◽  
Lisa Moreau ◽  
...  

Abstract Introduction: Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. FA patients develop bone marrow failure during the first decade of life, and frequently require an allogeneic or unrelated donor bone marrow transplant. FA patients also develop other hematologic manifestations, including myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) due to clonal evolution. FA is caused by biallelic mutation in one of eighteen FANC genes, the products of which cooperate in the FA/BRCA DNA repair pathway and regulate cellular resistance to DNA cross-linking agents. Bone marrow failure in FA is attributable to an impaired hematopoietic stem and progenitor cell (HSPC) pool. HSPCs in FA patients and FA mice exhibit reduced cell number and compromised stem cell function. Recent studies suggest that bone marrow failure in FA and impaired HSPC function result from the genotoxicity of endogenous cross-linking agents or from physiological stress. A greater understanding of the mechanisms of impairment of HSPC function could improve the therapeutic options for FA patients. Using a whole genome-wide shRNA screen, we have recently identified that the canonical transforming growth factor-β (TGF-β) pathway plays an important growth suppressive role in FA and targeting this pathway can reduce the genotoxic stress-induced growth inhibition of FA cells. Here, we investigated the possible suppressive function of the TGF-β pathway in HSPCs derived from patients with FA. Methods: We performed in vitro colony-forming assays using primary FA patient- derived bone marrow CD34+ cells which were either transduced with shRNA targeting SMAD3 or treated with the anti-human TGF-β neutralizing antibody GC1008. FA-like HSPCs were generated by stably knocking down FANCD2 with lentivirus encoded shRNA in primary human cord blood CD34+ cells. An in vivo engraftment assay was performed by transplanting the FA-like HSPCs into irradiated NSG mice. Results: The primary human FA bone marrow cells displayed elevated mRNA expression of multiple TGF-β pathway components. The TGF-β pathway inhibition, by knockdown of SMAD3 or anti-human TGF-β neutralizing antibody GC1008, rescued the in vitro clonogenic defects of primary CD34+ cells from bone marrow of five different FA patients. Similarly, the TGF-β pathway disruption by depletion of SMAD3 or GC1008 antibody in primary FA-like HSPCs, also rescued their clonogenic defect, and partially restored genotoxic stress-induced growth inhibition. Further, as the very low number of CD34+ cells in FA patients did not allow efficient xenograft assay to analyze in vivo clonogenicity, we performed a surrogate in vivo xenograft assay using FA-like primary CD34+ cells. Importantly, blockade of the TGF-β pathway by GC1008 antibody treatment enhanced the engraftment potential of primary FA-like CD34+ cells in vivo. Collectively, these results demonstrated that increased TGF-β pathway signaling impairs the hematopoietic function of primary human FA HSPCs. Conclusions: The TGF-β pathway signaling is increased in primary FA patient-derived hematopoietic cells and blockade of this pathway can restore the function of human FA-deficient primary HSPCs. The TGF-β signaling pathway-mediated growth suppression may account, at least in part, for bone marrow failure in FA. This work suggests that the TGF-β signaling pathway provides a novel therapeutic target for the treatment of bone marrow failure in FA. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4235-4235
Author(s):  
W. Clark Lambert ◽  
Santiago A. Centurion

Abstract We have previously shown that the primary cell cycle defect in the inherited, cancer-prone, bone marrow failure associated disease, Fanconi anemia (FA), is not in the G2 phase of the cell cycle, as had been thought for many years, but rather in the S phase. FA cells challenged with the DNA cross-linking agent, psoralen coupled with long wavelength, ultraviolet (UVA) radiation (PUVA), fail to slow their progression through the S phase of the subsequent cell cycle, as do normal cells. FA cells are extremely sensitive to the cytotoxic and clastogenic effects of DNA cross-linkers, such as PUVA, so much so that the diagnosis of FA is based on an assay, the “DEB test”, in which cells are examined for clastogenic and cytotoxic effects of diepoxybutane (DEB), a DNA cross-linking agent. More recently, we have shown that artificially slowing the cell cycle of FA cells exposed to PUVA by subsequent treatment with agents which slow their progression through S phase leads to markedly increased viability and reduced chromosome breakage in vitro. We now show that similar results can be obtained in vivo in patients with another DNA repair deficiency disease, xeroderma pigmentosum (XP), a recessively inherited disorder associated with defective repair of sunlight induced adducts in the DNA of sun-exposed tissues followed by development of numerous mutations causing large numbers of cancers in these same tissues. We treated two patients with XP, a light complected black male and a white female, both 14 years of age, in sun-exposed areas with 5-fluorouracil, an inhibitor of DNA synthesis, daily for three months. In contrast to normal patients, who only show clinical results if an inflammatory response is invoked, marked improvement in the clinical appearance of the skin was seen with no inflammation observed. This effect was confirmed histologically by examining epidermis adjacent to excised lesions in sun-exposed areas and further verified by computerized image analysis. Treatment with agents that slow progression through S phase, such as hydroxyurea, may similarly improve clinical outcomes in patients with FA or others who are developing bone marrow failure.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1192-1192
Author(s):  
Hirotaka Kawano ◽  
Tomotoshi Marumoto ◽  
Takafumi Hiramoto ◽  
Michiyo Okada ◽  
Tomoko Inoue ◽  
...  

Abstract Hematopoietic stem cell (HSC) transplantation is the most successful cellular therapy for the malignant hematopoietic diseases such as leukemia, and early recovery of host’s hematopoiesis after HSC transplantation has eagerly been expected to reduce the regimen related toxicity for many years. For the establishment of the safer and more efficient cell source for allogeneic or autologous HSC transplantation, HSCs differentiated from embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) that show indefinite proliferation in an undifferentiated state and pluripotency, are considered to be one of the best candidates. Unfortunately, despite many recent efforts, the HSC-specific differentiation from ESCs and iPSCs remains poor [Kaufman, DS et al., 2001][Ledran MH et al., 2008]. In this study, we developed the new method to differentiate HSC from non-human primate ESC/iPSC. It has been reported that common marmoset (CM), a non-human primate, is a suitable experimental animal for the preclinical studies of HSC therapy [Hibino H et al., 1999]. We have been investigated the hematopoietic differentiation of CM ESCs into HSCs, and previously reported that the induction of CD34+ cells having a blood colony forming capacity from CM ESCs were promoted by lentiviral transduction of TAL1 cDNA [Kurita R et al., 2006]. However, those CD34+ cells did not have a bone marrow reconstituting ability in irradiated NOG (NOD/Shi-scid/IL-2Rγnull) mice, suggesting that transduction of TAL1 gene was not sufficient to induce functional HSCs which have self-renewal capability and multipotency. Thus, we tried to find other hematopoietic genes being able to promote hematopoietic differetiation more efficiently than TAL1. We selected 6 genes (LYL1, HOXB4, BMI1, GATA2, c-MYB and LMO2) as candidates for factors that induce the differentiation of ESCs into HSCs, based on the previous study of hematopoietic differentiation from human and mouse ESCs. And CM ESCs (Cj11) lentivirally transduced with the respective candidate gene were processed for embryoid body (EB) formation to induce their differentiation into HSCs for 9 days. We found that lentiviral transduction of LYL1 (lymphoblastic leukemia 1), a basic helix-loop-helix transcription factor, in EBs markedly increased the proportion of cells positive for CD34 (approximately 20% of LYL1-transduced cells). RT-PCR showed that LYL1-transduced EBs expressed various hematopoietic genes, such as TAL1, RUNX1 and c-KIT. To examine whether these CD34+ cells have the ability to differentiate into hematopoietic cells in vitro, we performed colony-forming unit (CFU) assay, and found that CD34+ cells in LYL1-transduced EBs could form multi-lineage blood colonies. Furthermore the number of blood colonies originated from CD34+CD45+ cells in LYL1-transduced EBs was almost the same as that from CD34+CD45+ cells derived from CM bone marrow. These results suggested that enforced expression of LYL1 in CM ESCs promoted the emergence of HSCs by EB formation in vitro. The LYL1 was originally identified as the factor of a chromosomal translocation, resulting in T cell acute lymphoblastic leukemia [Mellentin JD et al., 1989]. The Lyl1-deficient mice display the reduction of B cells and impaired long-term hematopoietic reconstitution capacity [Capron C et al., 2006]. And, transduction of Lyl1 in mouse bone marrow cells induced the increase of HSCs and lymphocytes in vitro and in vivo [Lukov GL et al., 2011]. Therefore we hypothesized that LYL1 may play essential roles in bone marrow reconstitution by HSCs differentiated from CM ESCs. To examine this, we transplanted CD34+ cells derived from LYL1-transduced CM ESCs into bone marrow of sublethally irradiated NOG mice, and found that about 7% of CD45+ cells derived from CM ESCs were detected in peripheral blood (PB) of recipient mice at 8 weeks after transplant (n=4). Although CM CD45+ cells disappeared at 12 weeks after transplant, CD34+ cells (about 3%) were still found in bone marrow at the same time point. Given that TAL1-transduced EBs derived from CM ESCs could not reconstitute bone marrow of irradiated mice at all, LYL1 rather than TAL1 might be a more appropriate transcription factor that can give rise to CD34+ HSCs having the enhanced capability of bone marrow reconstitution from CM ESCs. We are planning to do in vivo study to prove this hypothesis in CM. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 113 (52) ◽  
pp. 15024-15029 ◽  
Author(s):  
Michael I. Carr ◽  
Justine E. Roderick ◽  
Hong Zhang ◽  
Bruce A. Woda ◽  
Michelle A. Kelliher ◽  
...  

The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2Y393F) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2Y393F/S394A mice and Mdm2S394A mice display similar phenotypes.


Blood ◽  
2006 ◽  
Vol 107 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Weihua Zeng ◽  
Akira Miyazato ◽  
Guibin Chen ◽  
Sachiko Kajigaya ◽  
Neal S. Young ◽  
...  

Abstract Hematopoietic effects of interferon-γ (IFN-γ) may be responsible for certain aspects of the pathology seen in bone marrow failure syndromes, including aplastic anemia (AA), paroxysmal nocturnal hemoglobinuria (PNH), and some forms of myelodysplasia (MDS). Overexpression of and hematopoietic inhibition by IFN-γ has been observed in all of these conditions. In vitro, IFN-γ exhibits strong inhibitory effects on hematopoietic progenitor and stem cells. Previously, we have studied the transcriptome of CD34 cells derived from patients with bone marrow failure syndromes and identified characteristic molecular signatures common to some of these conditions. In this report, we have investigated genome-wide expression patterns after exposure of CD34 and bone marrow stroma cells derived from normal bone marrow to IFN-γ in vitro and have detected profound changes in the transcription profile. Some of these changes were concordant in both stroma and CD34 cells, whereas others were specific to CD34 cells. In general, our results were in agreement with the previously described function of IFN-γ in CD34 cells involving activation of apoptotic pathways and immune response genes. Comparison between the IFN-γ transcriptome in normal CD34 cells and changes previously detected in CD34 cells from AA and PNH patients reveals the presence of many similarities that may reflect molecular signature of in vivo IFN-γ exposure.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3237-3237 ◽  
Author(s):  
Kam Tong Leung ◽  
Karen Li ◽  
Kam Sze Kent Tsang ◽  
Kathy Yuen Yee Chan ◽  
Pak Cheung Ng ◽  
...  

Abstract The stromal cell-derived factor-1 (SDF-1)/chemokine C-X-C receptor 4 (CXCR4) axis plays a critical role in homing, engraftment and retention of hematopoietic stem/progenitor cells. We previously demonstrated that expression of CD9 is a downstream signal of the SDF-1/CXCR4 axis, and that CD9 regulates short-term (20 hours) homing of cord blood (CB) CD34+ cells in the NOD/SCID mouse xenotransplantation model (Leung et al, Blood, 2011). Here, we provided further evidence that pretreatment of CB CD34+ cells with a CD9-neutralizing antibody significantly reduced their long-term (6 weeks) engraftment, as indicated by the presence of human CD45+ cells, in the recipient bone marrow and spleen by 70.9% (P = .0089) and 87.8% (P = .0179), respectively (n = 6). However, CD9 blockade did not bias specific lineage commitment, including the CD14+ monocytic, CD33+ myeloid, CD19+ B-lymphoid and CD34+ stem/progenitor cells (n = 4). We also observed an increase of the CD34+CD9+ subsets in the bone marrow (9.6-fold; P < .0001) and spleens (9.8-fold; P = .0014) of engrafted animals (n = 3-4). These data indicate that CD9 possesses important functions in regulating stem cell engraftment and its expression level on CD34+ cells is up-regulated in the target hematopoietic organs. Analysis of paired bone marrow (BM) and peripheral blood (PB) samples from healthy donors revealed a higher CD9 expression in BM-resident CD34+ cells (57.3% ± 8.1% CD9+ cells in BM vs. 29.3% ± 5.8% in PB; n = 5, P = 0.0478). Consistently, CD34+ cells in granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood (MPB) expressed lower levels of CD9 (33.8% ± 3.0% CD9+ cells, n = 24), when compared with those in BM (56.4% ± 4.9% CD9+ cells, n = 8, P = 0.0025). In vitro exposure of MPB CD34+ cells to SDF-1 significantly enhanced CD9 expression (1.55-fold increase, n = 4, P = 0.0103), concomitant with a 75.2% reduction in the CD34+CXCR4+ subsets (P = 0.0118). Treatment of NOD/SCID chimeric mice with G-CSF increased the frequency of circulating CD45+ cells (3.4-fold) and CD34+ cells (3.3-fold), and substantially decreased the CD34+CD9+ subsets in the BM from 75.8% to 30.8%. Importantly, the decline in CD9 levels during G-CSF mobilization was also observed in the CD34+CD38-/low primitive stem cell subpopulation. Interestingly, in vitro treatment of BM CD34+ cells with G-CSF did not affect CD9 expression (n = 3), suggesting that a signaling intermediate is required for G-CSF-mediated CD9 down-regulation in vivo. Transwell migration assay revealed a significant enrichment of CD9- cells that were migrated towards a SDF-1 gradient (n = 4 for BM CD34+ cells, P = 0.0074; n = 7 for CB CD34+ cells, P = 0.0258), implicating that CD9 might negatively regulate stem cell motility. In contrast, pretreatment with the CD9-neutralizing antibody inhibited adhesion of CD34+ cells to the osteoblastic cell line Saos-2 by 33.5% (n = 2). Our results collectively suggest a previously unrecognized role of CD9 in stem cell retention by dual regulation of cell motility and adhesion, and reveal a dynamic regulation of CD9 expression in the BM microenvironment, which might represent an important event in controlling stem cell homing and mobilization. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 434-434
Author(s):  
Andreas Reik ◽  
Kai-Hsin Chang ◽  
Sandra Stehling-Sun ◽  
Yuanyue Zhou ◽  
Gary K Lee ◽  
...  

Abstract Beta-thalassemia (β-thal) and sickle cell disease (SCD) are monogenic diseases caused by mutations in the adult β-globin gene. A bone marrow transplant (BMT) is the only curative treatment, but its application is limited since (i) HLA-matched donors can be found for <20% of cases, and (ii) the allogeneic nature of the transplant involves the significant risk of graft vs host disease (GvHD). Elevated levels of fetal γ-globin proteins observed in a subset of individuals carrying β-thal and SCD mutations ameliorate the clinical picture or prevent the development of disease complications. Thus, strategies for the selective and persistent upregulation of γ-globin represent an attractive therapeutic approach. Recent insights into the regulation of γ-globin transcription by a network of transcription factors and regulatory elements both inside and outside the β-globin locus have revealed a set of new molecular targets, the modulation of which is expected to elevate γ-globin levels for potential therapeutic intervention. To this end, we and others have established that designed zinc finger nucleases (ZFNs) transiently introduced into stem cells ex vivo provide a safe and efficient way to permanently ablate the expression of a specific target gene in hematopoietic stem cells (HSC) by introduction of mutations following target site cleavage and error-prone DNA repair. Here we report the development and comparison of different ZFNs that target various regulators of γ-globin gene transcription in human HSCs: Bcl11a, Klf1, and specific positions in the γ-globin promoters that result in hereditary persistence of fetal hemoglobin (HPFH). In all cases these target sites / transcription factors have previously been identified as crucial repressors of γ-globin expression in humans, as well as by in vitro and in vivo experiments using human erythroid cells and mouse models. ZFN pairs with very high genome editing activity in CD34+ HSCs were identified for all targeted sites (>75% of alleles modified). In vitro differentiation of these ZFN-treated CD34+ HSCs into erythroid cells resulted in potent elevation of γ-globin mRNA and protein levels without significant effects on erythroid development. Importantly, a similar and specific elevation of γ-globin levels was observed with RBC progeny of genome-edited CD34+ cells obtained from SCD and β-thal patients. Notably, in the latter case a normalization of the β-like to α-globin ratio to ∼1.0 was observed in RBCs obtained from genome-edited CD34s from two individuals with β-thalassemia major. To deploy this strategy in a clinical setting, we developed protocols that yielded comparably high levels of target gene editing in mobilized adult CD34+ cells at large scale (>108 cells) using a clinical-grade electroporation device to deliver mRNA encoding the ZFN pair. Analysis of modification at the most likely off-target sites based on ZFN binding properties, combined with the maintenance of target genome editing observed throughout erythroid differentiation (and in isolated erythroid colonies) demonstrated that the ZFNs were both highly specific and well-tolerated when deployed at clinical scale. Finally, to assess the stemness of the genome-edited CD34+ HSCs we performed transplantation experiments in immunodeficient mice which revealed long term engraftment of the modified cells (>16 weeks, ∼25% human chimerism in mouse bone marrow) with maintenance of differentiation in vivo. Moreover, ex vivo erythroid differentiation of human precursor cells isolated from the bone marrow of transplanted animals confirmed the expected elevation of γ-globin. Taken together, these data suggest that a therapeutic level of γ-globin elevation can be obtained by the selective disruption, at the genome level, of specific regulators of the fetal to adult globin developmental switch. The ability to perform this modification at scale, with full retention of HSC engraftment and differentiation in vivo, provides a foundation for advancing this approach to a clinical trial for the hemoglobinopathies. Disclosures: Reik: Sangamo BioSciences: Employment. Zhou:Sangamo BioSciences: Employment. Lee:Sangamo BioSciences: Employment. Truong:Sangamo BioSciences: Employment. Wood:Sangamo BioSciences: Employment. Zhang:Sangamo BioSciences: Employment. Luong:Sangamo BioSciences: Employment. Chan:Sangamo BioSciences: Employment. Liu:Sangamo BioSciences: Employment. Miller:Sangamo BioSciences: Employment. Paschon:Sangamo BioSciences: Employment. Guschin:Sangamo BioSciences: Employment. Zhang:Sangamo BioSciences: Employment. Giedlin:Sangamo BioSciences: Employment. Rebar:Sangamo BioSciences: Employment. Gregory:Sangamo BioSciences: Employment. Urnov:Sangamo BioSciences: Employment.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 605-605
Author(s):  
Roman Galeev ◽  
Aurelie Baudet ◽  
Anders Kvist ◽  
Therese Törngren ◽  
Shamit Soneji ◽  
...  

Abstract The molecular principles regulating hematopoietic stem cells (HSCs) remain incompletely defined. To gain deeper insights into the mechanisms underlying renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs), we have developed global RNAi screens targeted to human cord blood derived CD34+ cells. In previous work such screens have allowed us to identify novel druggable targets to facilitate ex vivo expansion of HSPCs. Recently, we employed a near genome-wide screen (targeting 15 000 genes) to identify genes with an impact on renewal/differentiation of HSPCs, in a completely unbiased manner. Among the most prominent hits from this screen were many transcription factors and epigenetic modifiers and we found a strong enrichment of genes known to be recurrently mutated in hematopoietic neoplasms. A striking finding, was the identification of several members of the cohesin complex (STAG2, RAD21, STAG1 and SMC3) among our top hits (top 0.5%). Cohesin is a multimeric protein complex that mediates adhesion of sister chromatids as well as long-range interactions of chromosomal elements to regulate transcription. Recent large-scale sequencing studies have identified recurrent mutations in the cohesin genes in myeloid malignancies. Upon individual validation and targeting of the cohesin genes by lentiviral shRNA in human CD34+ cells, we found that their knockdown by independent shRNAs led to an immediate and profound expansion of primitive hematopoietic CD34+CD90+ cells in vitro. A similar expansion phenotype was observed in vivo following transplantation to primary and secondary immundeficient mice. Transplantation of CD34+CD38lowCD90+CD45RA- cells transduced with shRNA targeting STAG2 (the cohesin component with the strongest in vitro phenotype) into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice resulted in a significant increase in human reconstitution in the bone marrow 16 weeks post-transplantation compared to controls (31.3±4.4% vs 11.6±2.8% p=0.001). The engrafted mice showed a marked skewing towards the myeloid lineage as analyzed by CD33/CD15 expression in bone marrow (27.0±5.0% vs 13.0±2.6% p=0.013), as well as an increase in the more primitive CD34+CD38- population (2.8±0.6% vs 1.3±0.4% p=0.036). In secondary transplanted mice, 3/6 recipients in the STAG2 group maintained detectable levels of human chimerism while no engraftment was detected in the control group, indicating an increased expansion of HSPCs in vivo upon knockdown of STAG2. Global transcriptome analysis of cohesin deficient CD34+ cells 36 hours post shRNA transduction showed a distinct up-regulation of HSC specific genes coupled with down-regulation of genes specific for more downstream progenitors, demonstrating an immediate shift towards a more stem-like gene expression signature upon cohesin deficiency. This observation was consistent for all cohesin genes tested (STAG2, RAD21, STAG1 and SMC3). Our findings implicate cohesin as a novel major player in regulation of human HSPCs and, together with the recent discovery of recurrent mutations in myeloid malignancies, point toward a direct role of perturbed cohesin function as a true driver event in myeloid leukemogenesis. Our findings illustrate how global RNAi screens targeted to primary human HSPCs can identify novel modifiers of cell fate and may complement genome-wide sequencing approaches to guide the identification of functionally relevant disease-related genes in hematopoietic malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 98-98 ◽  
Author(s):  
Jolanta Libura ◽  
Marueen Ward ◽  
Grzegorz Przybylski ◽  
Christine Richardson

Abstract Rearrangements involving the MLL gene locus at chromosome band 11q23 are observed in therapy-related acute myeloid leukemia and myelodysplastic syndromes following treatment with topoisomerase II (topoII) inhibitors including etoposide. We have shown that one hour of etoposide exposure (20–50 μM) stimulates stable MLL rearrangements in primary human CD34+ cells and that the spectrum of repair products within MLL gene is broader than so far described (Libura et al, Blood, 2005). Clinical data suggest that MLL-associated malignant leukemias originate within primitive hematopietic stem cells capable of differentiation into all hematopoietic lineages and repopulation of myelo-ablated hosts. These cells can be analyzed using the in vivo NOD-SCID mouse model as well as the in vitro long-term culture initiating cell (LTC-IC) assay. We adopted our in vitro CD34+ cell culture model to investigate the impact of etoposide exposure on the most primitive hematopoietic stem cells using parallel assays for LTC-IC and NOD-SCID Repopulating Cells (SRC). Following etoposide exposure (20–50 μM for 1 hour), and 48–96 hours recovery in vitro, untreated control and etoposide-treated CD34+ cells were either seeded in LTC-IC with a supportive feeder layer (Stem Cell Technologies, Inc.), or injected into NOD-SCID mice (0.1–1.5x106 cells per mouse). After 12 weeks, both LTC-IC cultures and bone marrow cells from NOD-SCID mice were seeded in methylcellulose media supplemented with growth factors that promote only human cell colony formation. An increased number of colonies in etoposide-treated samples was obtained from LTC-IC cultures in 3 out of 5 experiments (p value&lt;0.05). This increase in colony number was more dramatic in etoposide-treated samples from NOD-SCID bone marrow (57 versus 0, 8 versus 0). These data demonstrate that etoposide exposure can significantly alter the potential of early hematopoietic stem cells to survive and proliferate both in vitro and in vivo. Injection of as few as 3x105 CD34+ cells into a NOD-SCID mouse was sufficient to obtain methylcellulose colonies, suggesting that this method can be used for the analysis of cells obtained from a single patient sample. Mutation analysis of human methylcellulose colonies derived from both LTC-IC and NOD-SCID was performed by inverse PCR and ligation-mediated PCR followed by sequencing. This analysis revealed that rearrangements originating within the MLL breakpoint cluster region (bcr) were present in 12 out of 29 colonies from etoposide-treated samples versus 5 out of 39 colonies from control samples (p value &lt;0.01), demonstrating that etoposide exposure promotes stable rearrangements within a hematopoietic stem cell compartment with significant proliferative potential. Eight of the 17 events were sequenced, and showed 6 MLL tandem duplications within intron 8, one complex translocation between MLL and chr.15 and tandem duplication, and one event with foreign sequence of unknown origin. Our data are the first report of the spectrum and frequency of MLL rearrangements following topo II inhibitor exposure in a cell population thought to be the target for recombinogenic events leading to therapy-related leukemias.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2306-2306 ◽  
Author(s):  
Naomi J. Anderson ◽  
Ravi Bhatia

Abstract Interaction of the chemokine receptor CXCR4 with its ligand SDF-1α (SDF) has been reported to play an important role in engraftment of hematopoietic stem cells (HSC) in the bone marrow (BM). However a critical requirement for CXCR4 in HSC engraftment is still controversial. It also remains unclear whether the effects that CXCR4 has on hematopoietic cell engraftment are related to enhanced homing of HSC to the bone marrow cavity, increased retention in marrow microenvironment or direct and indirect effects of CXCR4 stimulation on stem and progenitor cell proliferation, self-renewal and survival. To address these questions we have overexpressed CXCR4 in human cord blood CD34+ cells by transduction with an MSCV retroviral vector containing CXCR4 and eGFP (MIG-CXCR4). CXCR4 overexpressing cells were compared with control cells transduced with vectors expressing eGFP alone (MIG). CD34+eGFP+ cells were selected after transduction by flow cytometry sorting. We confirmed that CD34+ cells transduced with the MIG-CXCR4 vector demonstrated increased CXCR4 expression compared with MIG vector transduced controls (mean channel fluorescence for CXCR4 was 340±77.8 for MIG-CXCR4 transduced CD34+ cells compared with 142±37.1 for MIG transduced cells, n=8). MIG-CXCR4 transduced CD34+ cells demonstrated significantly enhanced chemotaxis to SDF in transwell migration assays (36±2% migration for MIG-CXCR4 vs. 20±4% migration for MIG transduced CD34+ cells to 100nM SDF-1, n=4, p=0.05). CD34+ cells transduced with MIG-CXCR4 demonstrated a 1.52±0.4 fold increase in expansion of total cell number compared with controls after 1 week of in vitro culture with growth factors (GF) [SCF (50ng/ml), TPO (100ng/ml), FL (100ng/ml), SDF (60ng/ml), n=3]. However, enhanced cellular expansion was not sustained on further GF culture. To evaluate the effect of CXCR4 overexpression on in vivo engraftment, CD34+ cells transduced with MIG-CXCR4 and MIG vectors were injected intravenously into sublethally irradiated NOD/SCID mice and human hematopoietic cell engraftment was evaluated after 6–8 weeks. MIG-CXCR4 transduced cells demonstrated significantly higher levels of engraftment with human CD45+ cells compared with MIG transduced cells (8±4.8% vs. 0.22±0.07% CD45+ cells in bone marrow, 1.3±0.9% vs. 0.2±0.09% CD45+ cells in spleen, and 1.8±1.0% vs. 0.3±0.25% CD45+ cells in peripheral blood for MIG-CXCR4 vs. MIG transduced cells, respectively, n=5). In addition, markedly higher levels of CD34+ cell engraftment was observed in the bone marrow of animals receiving MIG-CXCR4 vs. MIG transduced cells (1.7±1.0% vs. 0.06±0.03% CD34+ cells respectively, n=5). Consistent with this, the human CFC frequency in bone marrow of mice receiving MIG-CXCR4 transduced CD34+ cells was increased compared to mice receiving MIG transduced cells (31±0.5 CFC/100,000 cells vs. 5±3.2 CFC/100,000 cells, n=2,3, respectively). In conclusion, our results indicate that ectopic expression of CXCR4 in CD34+ cells results in enhanced engraftment of human hematopoietic cells and increased maintenance of hematopoietic stem and progenitor cells in the NOD/SCID mouse model. The effects of CXCR4 overexpression are considerably more prominent in vivo than in direct in vitro assays. It therefore appears that altered stem and progenitor cell homing and microenvironmental interaction, rather than direct signaling to HSC, may be responsible for enhanced CD34+ cell engraftment and maintenance following CXCR4 receptor overexpression.


Sign in / Sign up

Export Citation Format

Share Document