RIG-I-Induced Type I IFNs Promote Regeneration of the Intestinal Stem Cell Compartment during Acute Tissue Damage

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3072-3072 ◽  
Author(s):  
Julius C Fischer ◽  
Michael Bscheider ◽  
Gabriel Eisenkolb ◽  
Alexander Wintges ◽  
Caroline A Lindemans ◽  
...  

Abstract Introduction: Although the role of Type I IFNs in initiating host defense against pathogens is well established, recent work highlights the regenerative function of this cytokine family. Yet, despite its involvement in tissue repair, the cellular targets and mechanisms of action by which Type I IFNs act during tissue regeneration are poorly understood. Results: Here, we describe a hitherto unrecognized regenerative function for the RIG-I/MAVS/IFN-I pathway through direct effects on epithelial regeneration. Mice deficient in the RIG-I adaptor MAVS were more sensitive to intestinal barrier damage after total body irradiation (TBI) and, like RIG-I deficient mice, developed worse graft-versus-host disease (GVHD) in a preclinical model for allogeneic hematopoietic stem cell transplantation (allo-HSCT). This phenotype was not associated with changes in the intestinal microbiota, but with a defect in epithelial regeneration. Moreover, in contrast to previous reports in steady-state conditions and after viral challenge, we found that interferon-α/β receptor (IFNAR) signaling in non-hematopoietic epithelial cells was crucial for tissue regeneration after acute damage. Importantly, we could demonstrate that this pathway could be therapeutically targeted with RIG-I agonists, which promoted barrier integrity and prevented GVHD. Mechanistically, Type I IFNs (either RIG-I-induced or recombinant) could promote intestinal stem cell (ISC) growth in crypt organoid cultures, suggesting that stimulation of the ISC compartment led to epithelial regeneration. Conclusion: Our findings suggest that activation of RIG-I and IFN-I can promote regeneration of intestinal epithelial cells and thus offers an innovative therapeutic strategy for the management of acute intestinal injury. Disclosures van den Brink: Merck: Honoraria; Boehringer Ingelheim: Consultancy, Other: Advisory board attendee; Regeneron: Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Tobira Therapeutics: Other: Advisory board attendee.

2010 ◽  
Vol 21 (21) ◽  
pp. 3654-3668 ◽  
Author(s):  
Jose V. Moyano ◽  
Patricia G. Greciano ◽  
Mary M. Buschmann ◽  
Manuel Koch ◽  
Karl S. Matlin

Laminin (LM)-332 is an extracellular matrix protein that plays a structural role in normal tissues and is also important in facilitating recovery of epithelia from injury. We have shown that expression of LM-332 is up-regulated during renal epithelial regeneration after ischemic injury, but the molecular signals that control expression are unknown. Here, we demonstrate that in Madin-Darby canine kidney (MDCK) epithelial cells LM-332 expression occurs only in subconfluent cultures and is turned-off after a polarized epithelium has formed. Addition of active transforming growth factor (TGF)-β1 to confluent MDCK monolayers is sufficient to induce transcription of the LM α3 gene and LM-332 protein expression via the TGF-β type I receptor (TβR-I) and the Smad2–Smad4 complex. Significantly, we show that expression of LM-332 in MDCK cells is an autocrine response to endogenous TGF-β1 secretion and activation mediated by integrin αVβ3 because neutralizing antibodies block LM-332 production in subconfluent cells. In confluent cells, latent TGF-β1 is secreted apically, whereas TβR-I and integrin αVβ3 are localized basolaterally. Disruption of the epithelial barrier by mechanical injury activates TGF-β1, leading to LM-332 expression. Together, our data suggest a novel mechanism for triggering the production of LM-332 after epithelial injury.


2021 ◽  
Vol 69 (36) ◽  
pp. 10581-10591
Author(s):  
Duoduo Zhang ◽  
Xingtao Zhou ◽  
Linyuan Liu ◽  
Mi Guo ◽  
Tongwen Huang ◽  
...  

1999 ◽  
Vol 189 (7) ◽  
pp. 1139-1148 ◽  
Author(s):  
Mickie Bhatia ◽  
Dominique Bonnet ◽  
Dongmei Wu ◽  
Barbara Murdoch ◽  
Jeff Wrana ◽  
...  

The identification of molecules that regulate human hematopoietic stem cells has focused mainly on cytokines, of which very few are known to act directly on stem cells. Recent studies in lower organisms and the mouse have suggested that bone morphogenetic proteins (BMPs) may play a critical role in the specification of hematopoietic tissue from the mesodermal germ layer. Here we report that BMPs regulate the proliferation and differentiation of highly purified primitive human hematopoietic cells from adult and neonatal sources. Populations of rare CD34+CD38−Lin− stem cells were isolated from human hematopoietic tissue and were found to express the BMP type I receptors activin-like kinase (ALK)-3 and ALK-6, and their downstream transducers SMAD-1, -4, and -5. Treatment of isolated stem cell populations with soluble BMP-2, -4, and -7 induced dose-dependent changes in proliferation, clonogenicity, cell surface phenotype, and multilineage repopulation capacity after transplantation in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Similar to transforming growth factor β, treatment of purified cells with BMP-2 or -7 at high concentrations inhibited proliferation yet maintained the primitive CD34+CD38− phenotype and repopulation capacity. In contrast, low concentrations of BMP-4 induced proliferation and differentiation of CD34+ CD38−Lin− cells, whereas at higher concentrations BMP-4 extended the length of time that repopulation capacity could be maintained in ex vivo culture, indicating a direct effect on stem cell survival. The discovery that BMPs are capable of regulating repopulating cells provides a new pathway for controlling human stem cell development and a powerful model system for studying the biological mechanism of BMP action using primary human cells.


Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 626-634 ◽  
Author(s):  
Mathias M. Hauri-Hohl ◽  
Saulius Zuklys ◽  
Marcel P. Keller ◽  
Lukas T. Jeker ◽  
Thomas Barthlott ◽  
...  

Abstract The thymus constitutes the primary lymphoid organ responsible for the generation of naive T cells. Its stromal compartment is largely composed of a scaffold of different subsets of epithelial cells that provide soluble and membrane-bound molecules essential for thymocyte maturation and selection. With senescence, a steady decline in the thymic output of T cells has been observed. Numeric and qualitative changes in the stromal compartment of the thymus resulting in reduced thymopoietic capacity have been suggested to account for this physiologic process. The precise cellular and molecular mechanisms underlying thymic senescence are, however, only incompletely understood. Here, we demonstrate that TGF-β signaling in thymic epithelial cells exerts a direct influence on the cell's capacity to support thymopoiesis in the aged mouse as the physiologic process of thymic senescence is mitigated in mice deficient for the expression of TGF-βRII on thymic epithelial cells. Moreover, TGF-β signaling in these stromal cells transiently hinders the early phase of thymic reconstitution after myeloablative conditioning and hematopoietic stem cell transplantation. Hence, inhibition of TGF-β signaling decelerates the process of age-related thymic involution and may hasten the reconstitution of regular thymopoiesis after hematopoietic stem cell transplantation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 744-744 ◽  
Author(s):  
Jonathan Peled ◽  
Eric R. Littman ◽  
Lilan Ling ◽  
Satyajit Kosuri ◽  
Molly Maloy ◽  
...  

Abstract The major causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are relapse, graft-versus-host disease (GVHD), and infection. We have previously reported that changes in the intestinal flora can affect GVHD, bacteremia, and overall survival. As intestinal bacteria are potent modulators of systemic immune responses, and since GVHD is correlated with graft-versus-tumor activity, we hypothesized that components of the intestinal flora could be associated with relapse after allo-HSCT. We applied a biomarker-discovery approach and performed a retrospective observational analysis of 160 adults who received an unmodified (T-cell-replete) allograft. Patients were prospectively enrolled in a fecal biospecimen-collection protocol. For this analysis, we selected patients who had at least one specimen during the first 3 weeks following allo-HSCT. The primary diseases in this cohort were AML (37%), Non-Hodgkin's Lymphoma (33%), ALL (8%), MDS (7%), CLL (6%), Hodgkin's Lymphoma (6%), CML (2%), and myeloproliferative neoplasm (2%). The mean age of the patients was 52 years (range 21-75). They were conditioned with ablative (17%), reduced-intensity (64%), and nonmyeloablative (19%) regimens. They received grafts from cord blood (46%), unrelated adults (33%), or related adults (22%). Among adult grafts, 92% were from peripheral blood and 8% were from bone marrow. A census of the bacterial species in each stool sample was generated by 16S rRNA deep-sequencing as previously described (Jenq et al., BiolBone Marrow Transplant 2015). The area under the curve of bacterial abundance over time was used as a measure of each patient's cumulative exposure to each bacterial taxon. Bacterial taxa of each patient present at a frequency >1% were evaluated for association with the outcome of relapse or progression of disease within the first year after allo-HSCT using linear discriminant analysis of effect size (LEfSe), a common approach in microbiota studies (Segata et al., Genome Biology, 2011). Among the taxons most significantly associated with freedom from relapse were members of the human oral flora including Streptococcus anginosus. After stratifying the patients by median abundance, we found that those with higher abundance of this bacterium had less relapse after transplantation (Left figure, p = 0.0014). We also identified bacteria associated with increased risk of relapse, such as Enterococcus faecium (Right figure, p = 0.0103). We evaluated these bacteria as biomarkers in multivariate Cox models adjusted for three factors that were associated with relapse in this cohort: Refined Disease Risk Index (RDRI, Armand et al., Blood 2014), conditioning intensity, and graft source (cord blood vs. adult donor). Streptococcus anginosus predicted relapse in a multivariate model adjusted for all three factors (HR 0.39, 95% CI 0.16-0.96, p = 0.041). Enterococcus faecium predicted relapse in a model adjusted for RDRI and conditioning intensity but failed to do so in a model additionally adjusted for graft source. In this analysis there was no formal adjustment for multiple comparisons; these data are now being validated in an additional cohort of patients whose samples are being sequenced. Finally, although we have previously reported that low bacterial diversity is associated with decreased overall survival after allo-HSCT (Taur et al., Blood 2014), we did not find an association between bacterial diversity and relapse as assessed by reciprocal Simpson diversity index (p > 0.1). Thus, the results of this retrospective analysis have identified an association between relapse after allo-HSCT and the abundance of two bacteria in the intestinal flora. These might serve as potential novel diagnostics or therapeutic targets to prevent relapse and improve overall survival after allo-HSCT. Figure 1. Figure 1. Disclosures Peled: Merck: Research Funding. Giralt:SANOFI: Consultancy, Honoraria, Research Funding; TAKEDA: Consultancy, Honoraria, Research Funding; AMGEN: Consultancy, Research Funding; JAZZ: Consultancy, Honoraria, Research Funding, Speakers Bureau; CELGENE: Consultancy, Honoraria, Research Funding. Perales:Merck: Honoraria; Takeda: Honoraria; Amgen: Honoraria; Astellas: Honoraria; NMDP: Membership on an entity's Board of Directors or advisory committees. van den Brink:Boehringer Ingelheim: Consultancy, Other: Advisory board attendee; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Tobira Therapeutics: Other: Advisory board attendee; Regeneron: Honoraria; Merck: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document