Upregulation of Renal Iron Metabolism in Sickle Cell Disease Mice

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1276-1276
Author(s):  
Guelaguetza Vazquez-Meves ◽  
Namita Kumari ◽  
Nowah Afangbedji ◽  
Alfia Khaibullina ◽  
Zena Quezado ◽  
...  

Abstract BACKGROUND: Hemolysis and frequent blood transfusions lead to the iron overload and organ iron accumulation in patients with red blood cells disorders. The pattern of iron accumulation within different organs is disease specific. Abnormalities of renal iron metabolism and cortical iron deposition is characteristic for sickle cell disease (SCD) but not for β-thalassemia. Renal iron deposition does not correlate with iron overload and blood transfusion. Iron is reabsorbed from primary urine in the renal proximal epithelial cells and released into the renal intersitium by ferroportin. Iron-regulating hormone, hepcidin controls ferroportin expression. Binding of hepcidin to the ferroportin induces ferroportin degradation and intracellular iron accumulation. Low concentrations of circulating hepcidin are common in SCD patients and do not explain paradoxical renal iron accumulation. SCD mice accumulate iron in the epithelial cells of proximal tubules and may be a suitable model to study iron metabolism in SCD. OBJECTIVES: To characterize proteins of the renal iron metabolism in SCD mouse model. METHODS: The SCD (Townes) mice do not express mouse α- or β-globin alleles, but carry two copies of a human α1-globin gene and two copies of a human Aγ-globin and βS-globin genes. These animals synthesize approximately 94% human sickle (HbS) and 6% human fetal hemoglobin (HbF), and no murine hemoglobin. Control animals carry two copies of the human α1-globin gene and two copies of the human hemoglobin gamma (Aγ) gene and the human wildtype hemoglobin beta (βA) gene. Kidneys were collected from 5 months old SCD and control mice. Renal cortex was used for RNA and protein isolation. Levels of renal hepcidin, ferroportin, transferrin receptor (TFR1), divalent cation receptor (DMT1), ferritin and hepheastin were determined by q-RT-PCR, WB and ELISA. Paraffin-embedded sections were used for immunostaining. Perl's Prussian blue staining was used for detection of renal iron accumulation. RESULTS:We detected significant accumulation of iron in the epithelial cells of proximal tubules in SCD mice. Expression of renal hepcidin was increased in SCD mice compared to controls. Surprisingly mRNA levels of all other proteins involved in renal iron metabolism (ferroportin, TFR1, DMT1, ferritin and hephaestin) were decreased in SCD mice kidney. In contrast, we found increased protein levels of transferrin receptor (iron importer), ferritin (iron storage protein) and slightly increased level of ferroportin (iron exporter). We also observed significant renal macrophages infiltration in SCD mice. CONCLUSIONS: Increased levels of renal hepcidin expression in SCD mice may be associated with renal inflammation. Higher levels of locally expressed hepcidin may lead to the partial degradation of the iron exporter (ferroportin). Increased levels of iron importers (TFR1 and DMT1) and no significant change in ferroportin expression can cumulatively saturate iron storage in ferritin and lead to the accumulation of intracellular iron. ACKNOWLEDGMENTS: This work was supported by NIH Research Grants 1P50HL118006, 1R01HL125005 and 5G12MD007597. The content is solely the responsibility of the authors and does not necessarily represent the official view of NHLBI, NIMHD or NIH. Disclosures Quezado: IONIS Pharmaceuticals: Research Funding.

2011 ◽  
Vol 412 (13-14) ◽  
pp. 1257-1261 ◽  
Author(s):  
Philippe Joly ◽  
Philippe Lacan ◽  
Caroline Garcia ◽  
Angelique Delasaux ◽  
Alain Francina

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huiqiao Chen ◽  
Zixuan Wang ◽  
Shanhe Yu ◽  
Xiao Han ◽  
Yun Deng ◽  
...  

AbstractThe human ζ-globin gene (HBZ) is transcribed in primitive erythroid cells only during the embryonic stages of development. Reactivation of this embryonic globin synthesis would likely alleviate symptoms both in α-thalassemia and sickle-cell disease. However, the molecular mechanisms controlling ζ-globin expression have remained largely undefined. Moreover, the pharmacologic agent capable of inducing ζ-globin production is currently unavailable. Here, we show that TRIAC, a bioactive thyroid hormone metabolite, significantly induced ζ-globin gene expression during zebrafish embryogenesis. The induction of ζ-globin expression by TRIAC was also observed in human K562 erythroleukemia cell line and primary erythroid cells. Thyroid hormone receptor α (THRA) deficiency abolished the ζ-globin-inducing effect of TRIAC. Furthermore, THRA could directly bind to the distal enhancer regulatory element to regulate ζ-globin expression. Our study provides the first evidence that TRIAC acts as a potent inducer of ζ-globin expression, which might serve as a new potential therapeutic option for patients with severe α-thalassemia or sickle-cell disease.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 296
Author(s):  
Rosa Vona ◽  
Nadia Maria Sposi ◽  
Lorenza Mattia ◽  
Lucrezia Gambardella ◽  
Elisabetta Straface ◽  
...  

Sickle cell disease (SCD) is the most common hereditary disorder of hemoglobin (Hb), which affects approximately a million people worldwide. It is characterized by a single nucleotide substitution in the β-globin gene, leading to the production of abnormal sickle hemoglobin (HbS) with multi-system consequences. HbS polymerization is the primary event in SCD. Repeated polymerization and depolymerization of Hb causes oxidative stress that plays a key role in the pathophysiology of hemolysis, vessel occlusion and the following organ damage in sickle cell patients. For this reason, reactive oxidizing species and the (end)-products of their oxidative reactions have been proposed as markers of both tissue pro-oxidant status and disease severity. Although more studies are needed to clarify their role, antioxidant agents have been shown to be effective in reducing pathological consequences of the disease by preventing oxidative damage in SCD, i.e., by decreasing the oxidant formation or repairing the induced damage. An improved understanding of oxidative stress will lead to targeted antioxidant therapies that should prevent or delay the development of organ complications in this patient population.


Blood ◽  
1995 ◽  
Vol 85 (10) ◽  
pp. 2962-2966 ◽  
Author(s):  
R Oria ◽  
L Sanchez ◽  
T Houston ◽  
MW Hentze ◽  
FY Liew ◽  
...  

Nitric oxide (NO) is known to increase the affinity of the intracellular iron-regulatory protein (IRP) for iron-response elements (IREs) in transferrin receptor and ferritin mRNAs, suggesting that it may act as a regulator of cellular iron metabolism. In this study, exogenous NO produced by adding the NO-generator S-nitroso-N-acetyl penicillamine gave a dose-dependent upregulation of transferrin receptor expression by K562 erythroleukemia cells and increased levels of transferrin receptor mRNA. NO did not affect the affinity of transferrin binding by the transferrin receptor. NO alone did not alter intracellular ferritin levels, but it did abrogate the inhibitory effect of the iron chelator desferrioxamine and potentiated the stimulatory effect of additional iron. NO also caused some increase in ferritin mRNA levels, which might mask any IRP-/IRE-mediated inhibitory effect of NO on ferritin translation. Although NO did not affect net iron uptake, it increased release of iron from K562 cells pulsed previously with 59Fe, and subcellular fractionation showed that it also increased the proportion of intracellular iron bound to ferritin. These findings provide direct evidence that NO can affect cellular iron metabolism and suggest that NO produced in vivo by activated bone marrow macrophages might affect erythropoiesis.


2004 ◽  
Vol 286 (4) ◽  
pp. L705-L714 ◽  
Author(s):  
Kirkwood A. Pritchard ◽  
Jingsong Ou ◽  
Zhijun Ou ◽  
Yang Shi ◽  
James P. Franciosi ◽  
...  

Vaso-occlusive events are the major source of morbidity and mortality in sickle cell disease (SCD); however, the pathogenic mechanisms driving these events remain unclear. Using hypoxia to induce pulmonary injury, we investigated mechanisms by which sickle hemoglobin increases susceptibility to lung injury in a murine model of SCD, where mice either exclusively express the human α/sickle β-globin (hαβS) transgene (SCD mice) or are heterozygous for the normal murine β-globin gene and express the hαβStransgene (mβ+/-, hαβS+/-; heterozygote SCD mice). Under normoxia, lungs from the SCD mice contained higher levels of xanthine oxidase (XO), nitrotyrosine, and cGMP than controls (C57BL/6 mice). Hypoxia increased XO and nitrotyrosine and decreased cGMP content in the lungs of all mice. After hypoxia, vascular congestion was increased in lungs with a greater content of XO and nitrotyrosine. Under normoxia, the association of heat shock protein 90 (HSP90) with endothelial nitric oxide synthase (eNOS) in lungs of SCD and heterozygote SCD mice was decreased compared with the levels of association in lungs of controls. Hypoxia further decreased association of HSP90 with eNOS in lungs of SCD and heterozygote SCD mice, but not in the control lungs. Pretreatment of rat pulmonary microvascular endothelial cells in vitro with xanthine/XO decreased A-23187-stimulated nitrite + nitrate production and HSP90 interactions with eNOS. These data support the hypotheses that hypoxia increases XO release from ischemic tissues and that the local increase in XO-induced oxidative stress can then inhibit HSP90 interactions with eNOS, decreasing ·NO generation and predisposing the lung to vaso-occlusion.


2021 ◽  
Author(s):  
Moataz Dowaidar

Autologous transplantation of gene-modified HSCs might be used to treat Sickle Cell Disease (SCD) once and for all. Hematopoietic Stem Cell (HSC) gene therapy with lentiviral-globin gene addition was optimized by HSC collection, vector constructs, lentiviral transduction, and conditioning in the current gene therapy experiment for SCD, resulting in higher gene marking and phenotypic correction. Further advancements over the next decade should allow for a widely approved gene-addition therapy. Long-term engraftment is crucial for gene-corrected CD34+ HSCs, which might be addressed in the coming years, and gene repair of the SCD mutation in the-globin gene can be achieved in vitro using genome editing in CD34+ cells. Because of breakthroughs in efficacy, safety, and delivery strategies, in vivo gene addition and gene correction in BM HSCs is advancing. Overall, further research is needed, but HSC-targeted gene addition/gene editing therapy is a promising SCD therapy with curative potential that might be widely available soon.


Author(s):  
Akaba Kingsley ◽  
Ofem Enang ◽  
Ofonime Essien ◽  
Annette Legogie ◽  
Omini Cletus ◽  
...  

Background: Sickle cell disease (SCD) is the commonest genetic disorder worldwide with a global prevalence of 20-25 million. About 12-15 million affected persons are in Sub-Sahara Africa with Nigeria bearing the highest burden of people living with sickle cell disease. SCD is a disease characterized as an autosomal, recessive, heterogeneous, and a monogenetic disorder caused by an A-to-T point mutation in the β-globin gene responsible for the production of abnormal hemoglobin S (HbS), which polymerizes in the deoxygenated state and results in the sickling of erythrocytes.  Haemoglobin variants are mutant forms of haemoglobin in a population usually occurring as a result of genetic changes in specific genes, or globins that causes change on alterations in the amino acid. They could affect the structure, behavior, the production rate and the stability of the specific gene. Well-known haemoglobin variants such as sick-cell anaemia are responsible for diseases and are considered haemoglobinopathies. Other variants cause no detectable pathology and are thus considered as non-pathological variants. Aim: The study is aimed at evaluating the burden of sickle cell disease and other haemoglobin variants in Calabar, South-South Nigeria. Methods: This is a retrospective study done at the haematology laboratory of University of Calabar Teaching Hospital, Calabar. Cellulose acetate electrophoresis at alkaline pH was used for the evaluation of haemoglobinopathies. The data were entered into Microsoft Excel 2016 spreadsheet and analysed with the IBM SPSS Version 22. Data were summarized into percentage of different phenotypes. Results: Results of the total 3648 haemoglobin electrophoresis recorded, 1368 (37.50%) were male while the remaining 2280 (62.5%) females given a male to female ratio of 1:1.7. Five haemoglobin phenotypes were identified as HbAA, HbAS, HbAC, HbSC and HbSS. The overall average values of their prevalence were HbAA 64.78%, HbAS 32.62%, HbSS 2.14%, HbAC 0.33%, HbSC 0.14%. Thus, the prevalence of SCD (Prevalence of HbSS+HbSC) was 2.28%. The highest proportion of SCD was observed in 2011 with least in 2016 and 2017 respectively. Conclusion: The prevalence of SCD and other haemoglobin variants in Calabar is similar to that of the national prevalence rate. There is need for continuous enlightenment and premarital counselling on the pattern of inheritance of SCD most especially with the increased burden of sickle traits in the environment has reported in this study.


2016 ◽  
Vol 113 (38) ◽  
pp. 10661-10665 ◽  
Author(s):  
Lin Ye ◽  
Jiaming Wang ◽  
Yuting Tan ◽  
Ashley I. Beyer ◽  
Fei Xie ◽  
...  

Hereditary persistence of fetal hemoglobin (HPFH) is a condition in some individuals who have a high level of fetal hemoglobin throughout life. Individuals with compound heterozygous β-thalassemia or sickle cell disease (SCD) and HPFH have milder clinical manifestations. Using RNA-guided clustered regularly interspaced short palindromic repeats-associated Cas9 (CRISPR-Cas9) genome-editing technology, we deleted, in normal hematopoietic stem and progenitor cells (HSPCs), 13 kb of the β-globin locus to mimic the naturally occurring Sicilian HPFH mutation. The efficiency of targeting deletion reached 31% in cells with the delivery of both upstream and downstream breakpoint guide RNA (gRNA)-guided Staphylococcus aureus Cas9 nuclease (SaCas9). The erythroid colonies differentiated from HSPCs with HPFH deletion showed significantly higher γ-globin gene expression compared with the colonies without deletion. By T7 endonuclease 1 assay, we did not detect any off-target effects in the colonies with deletion. We propose that this strategy of using nonhomologous end joining (NHEJ) to modify the genome may provide an efficient approach toward the development of a safe autologous transplantation for patients with homozygous β-thalassemia and SCD.


2018 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Maddalena Martella ◽  
Giampietro Viola ◽  
Silvia Azzena ◽  
Sara Schiavon ◽  
Andrea Biondi ◽  
...  

A multicenter pilot program for universal newborn screening of Sickle cell disease (SCD) was conducted in two centres of Northern Italy (Padova and Monza). High Performance Liquid Chromatography (HPLC) was performed as the first test on samples collected on Guthrie cards and molecular analysis of the β-globin gene (HBB) was the confirmatory test performed on the HPLC-positive or indeterminate samples. 5466 samples of newborns were evaluated. Of these, 5439/5466 were submitted to HPLC analysis and the molecular analysis always confirmed in all the alteration detected in HPLC (62/5439 newborns); 4/5439 (0.07%) were SCD affected, 37/5439 (0.68%) were HbAS carriers and 21/5439 (0.40%) showed other hemoglobinopathies. Stored dried blood spots were adequate for HPLC and β-globin gene molecular analysis. Samples were suitable for analysis until sixteen months old. A cut-off of A1 percentage, in order to avoid false negative or unnecessary confirmation tests, was identified. Our experience showed that several technical issues need to be addressed and resolved while developing a multicenter NBS program for SCD in a country where there is no national neonatal screening (NBS) program for SCD and NBS programs occur on a regional basis.


Sign in / Sign up

Export Citation Format

Share Document