Whole Exome Sequencing from Nine Independent Sites of Extraosseous Disease in a Single Patient with Relapsed Multiple Myeloma Show That Extramedullary Disease Arise through a Combination of Branched and Parallel Evolution

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2090-2090
Author(s):  
Heather Landau ◽  
Jun Fan ◽  
Sergio A. Giralt ◽  
Jonathan U. Peled ◽  
Hani Hassoun ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is the second most common hematologic malignancy. Recent sequencing studies show evidence of massive genetic heterogeneity reflected in multiple parallel subclones already at diagnosis. Different subclones respond differently to given therapy. The role of treatment-driven subclonal skewing and intrinsic acquired mutations is poorly understood in the relapse setting. At relapse, the distribution of subclones throughout the bone marrow and at extramedullary sites is currently unknown. Methods: We performed a research autopsy on a single individual with IgG kappa MM who survived with multiple metastatic sites of disease for 10 years after diagnosis. Genomic DNA was extracted from histologically confirmed snap frozen normal tissue and nine independent sites of extraosseous disease. Whole exome sequencing (150X) was performed by the MSK Genomics Core. Data were filtered to remove germline polymorphisms and enrich for high quality somatic variants. Phylogenetics and subclonal analyses were performed using Treeomics and SCHISM. Results: The average on target coverage was 177X with 73% of bases covered a minimum of 100x. A total of 6348 somatic variants were initially identified. After filtering for high quality somatic variants, 1330 remained with 220 of these variants common to all MM samples and an average of 628 variants per sample. Annotation of high quality variants revealed potentially deleterious somatic mutations in NRAS, FAM46C, DYNC1, CREBBP, ATM, BIRC3, MGA, PPP6C and SMARCA4. Phylogenetics analyses (shown below) indicated the metastases arose through a combination of branched and parallel evolution, with the ATM mutation arising in one branch (one metastasis) that was distinct from a second clonal population containing the NRAS, FAM46C, BIRC3, CREBBP, DYNC1 and PPP6C mutations that were present in all eight other metastases. The MGA and SMARCA4 mutations further identified two additional subclones arising in from the NRAS/FAM46C mutant common ancestral clone. Clonality analyses independently supported this hierarchy by identifying NRAS and FAM46C as early clonal events and MGA and SMARCA4 as late events in the progression of this patient's disease. It also suggested a degree of subclonal mixing within each metastatic site. Conclusions: Using whole exome sequencing from nine independent sites of extraosseous disease in a single MM patient with relapse 10 years after initial diagnosis, we show that extramedullary disease arise through a combination of branched and parallel evolution. Two additional patients have also undergone research autopsy and results will be presented at the meeting. Figure Figure. Disclosures Landau: Prothena: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx/Amgen: Research Funding; Spectrum Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy. Hassoun:Binding Site: Research Funding; Novartis: Consultancy; Celgene: Research Funding; Takeda: Consultancy, Research Funding. Korde:Medscape: Honoraria. Landgren:Medscape Myeloma Program: Honoraria; Takeda: Honoraria; Amgen: Honoraria, Research Funding; BMS: Honoraria; Merck: Honoraria; Celgene: Honoraria, Research Funding.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1551-1551
Author(s):  
Vera Adema ◽  
Mar Mallo ◽  
Leonor Arenillas ◽  
María Díez-Campelo ◽  
Elisa Luño ◽  
...  

Abstract Introduction Myelodysplastic Syndromes (MDS) are a heterogeneous group of clonal myeloid stem cells disorders with high prevalence in the elderly characterized by inefficient hematopoiesis, peripheral blood (PB) cytopenias, and an increased risk of transformation to acute myeloid leukemia (AML). The karyotype is the clinical parameter with the strongest prognostic impact according the IPSS-R (Greenberg et al., 2012). The most frequent cytogenetic alteration is the chromosome 5q deletion (del[5q]) which as a single anomaly, confers a good prognosis and predicts an excellent response to lenalidomide. Whether other genetic abnormalities routinely cooperate with del(5q) is not known. Whole-exome sequencing (WES) is a powerful tool to identify somatic mutations in protein coding genes that might cooperate with del(5q). In order to better understand the genetic basis of MDS with del(5q), we performed whole-exome sequencing (assessing 334,378 exons) of tumor-normal paired samples from 21 MDS patients. Herein we describe the preliminary findings. The analysis is ongoing and the complete results will be presented in the meeting. Methods A total of 21 patients with MDS (16 with del(5q) as a sole abnormality, 3 with del(5q) and additional alterations and 2 with normal karyotype) were included in our study. We examined a total of 25 tumor samples (21 diagnostic bone marrow (BM) samples with matched CD3+ cells as a controls, additional BM samples from 3 patients during lenalidomide treatment and 1 bone marrow sample from a del(5q) patient after AML progression). DNA was extracted from BM samples and from isolated peripheral blood CD3+ cells (magnetic-activated cell sorting (MACS), MiltenyiBiotec GmbH, Germany). The purity of CD3+ cells was assessed by FC 500 flow cytometer (Beckman Coulter, Hialeah, Fl, USA). Only DNA that fulfilled quality controls required by WES were submitted. For each diagnostic sample, we performed Conventional G-banding cytogenetics and fluorescence in situ hybridization (FISH, to confirm or dismiss 5q deletions). Whole-exome targeted capture was carried out on 3 μg of genomic DNA, using the SureSelect Human Exome Kit 51Mb version 4 (Agilent Technologies, Inc., Santa Clara, CA, USA). The captured and amplified exome library was sequenced with 100 bp paired-end reads on an Illumina HiSeq2000. Whole-exome sequencing data were analyzed using an in-house bioinformatics pipeline as previously reported. Somatic mutations identified as alterations present in tumor but not in the matched CD3+ sample were validated by Sanger sequencing. Results In our preliminary analysis of WES from 12 patients (10 patients with 5q- and 2 patients with normal karyotype), a total of 249 non-silent somatic variant candidates were identified, of which 146 were confirmed as somatic mutations. Recurrent mutations were observed in three genes (ASXL1, NBPF10 and SF3B1) in 3 different patients. Seven genes (HRNR, JAK2, POTEG, MUC5B, PHLDA, TTN, ZNF717) were mutated in two patients. Mutations in several genes known to be mutated in MDS (ASXL1, JAK2, RUNX1, SF3B1, SRSF2 and TET2) were also identified. Patients with the 5q deletion had an average of 11 mutations whereas patients with normal karyotype had a higher mean (14.5). Mutated genes identified in both groups were HRNR, JAK2, MUC5B, NBPF10 and SF3B1. No mutations in TP53 were detected in this subset. Pathway analysis of the complete list of somatically mutated genes will be carried out once all 21 patients are analyzed. The four in-treatment samples will be examined from their matched diagnostic samples. Conclusions Whole-exome sequencing of largely del(5q) MDS patient samples identified both known and previously unreported somatic mutations. Analysis of additional samples will allow a more complete description of the genes and pathways that may cooperate with del(5q) in the development and progression of MDS. Acknowledgments Financial support: This work has been supported (in part) by a grant from Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo, Spain (PI 11/02010); by Red Temática de Investigación Cooperativa en Cáncer (RTICC, FEDER) (RD07/0020/2004; RD12/0036/0044); Acción COST BM0801: European Genomics and Epigenomics Study on MDS and AML; Sociedad Española de Hematología y Hemoterapia (SEHH) and MDS Celgene. Footnotes Rafael Bejar and Francesc Sole contributed equally. Disclosures: Díez-Campelo: Novartis and Celgene: Honoraria, Research Funding. Cañizo:Celgene Jansen-Cilag Arry Novartis: Membership on an entity’s Board of Directors or advisory committees, Research Funding. Sanchez:Celgene: Honoraria, Research Funding. Bejar:Genoptix: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity’s Board of Directors or advisory committees. Solé:Celgene: Consultancy, Membership on an entity’s Board of Directors or advisory committees, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4635-4635
Author(s):  
Vera Adema ◽  
Laura Palomo ◽  
María Díez-Campelo ◽  
Mar Mallo ◽  
Leonor Arenillas ◽  
...  

Abstract INTRODUCTION Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal myeloid stem cell disorders that are highly prevalent in elderly populations. MDS are characterized by inefficient hematopoiesis, peripheral blood (PB) cytopenias, and increased risk of transformation to acute myeloid leukemia (AML; 20–30% of patients with MDS). Around 50% of MDS patients carry at least one karyotypic aberration. The interstitial deletion of the long arm of chromosome 5 ([del(5q)] is the most common aberration, accounting for almost 30% of abnormal MDS karyotype. Various studies supports a favorable prognosis of MDS with isolated del(5q) with an excellent response to lenalidomide treatment. In order to describe the molecular events associated with MDS and del(5q) we performed whole-exome sequencing (WES)(assessing 334,378 exons) of tumor-normal paired samples from 20 MDS patients to unravel the genetic basis of MDS with del(5q). The analysis is ongoing and the complete results will be presented in the meeting. METHODS A total of 50 samples from 20 patients with MDS, with del(5q) were collected. For each diagnostic sample, we performed Conventional G-banding cytogenetics and fluorescence in situ hybridization (FISH, to confirm or dismiss del(5q)) and SNP arrays with Cytoscan HD (Affymetrix). These samples included: 20 tumor samples at diagnosis, 20 control samples and 10 samples after diagnosis, during lenalidomide treatment (5) or at the moment of relapse (5) in order to compare the genetic status before and during the treatment. Genomic DNA from tumor cells was obtained from bone marrow (BM) samples or from PB granulocytes. As a source of constitutional DNA we used CD3+T cells from each patient by isolating by magnetic-activated cell sorting. WES targeted capture was carried out on 7μg of genomic DNA, using the SureSelect Human Exome Kit 51Mb version 4.Libraries were sequenced on an Illumina HiSeq2000. Sequencing data will be analyzed using an in-house bioinformatics pipeline as previously reported. RESULTS Our preliminary analysis of these 20 new patients by WES confirmed our previous analyses with mutations in well described genes as ASXL1, JAK2 and TET2, but not in genes RUNX1, SF3B1 and SRSF2. In those patients we found two patients with missense mutation in TP53, one of the patients had an isolated del(5q) and is receiving lenalidomide treatment, and the other one had a complex karyotype. According to our prior analyses, in which 249 non-silent somatic variants were detected, we look forward to validate these mutations in this new series of patients. CONCLUSIONS We envision to validate these previous results with the new sequencing data of more patients with MDS and del(5q). We expect to measure somatic mutations that vary in abundance after lenalidomide treatment, potentially identifying mutations associated with resistance or relapse. ACKNOWLEDGEMENTS: This work has been supported (in part) by a grants from Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo, Spain (PI 11/02010); by Red Temática de Investigación Cooperativa en Cáncer (RTICC, FEDER) (RD07/0020/2004; RD12/0036/0044); 2014 SGR225 (GRE) Generalitat de Catalunya; Fundació Internacional Josep Carreras; Obra Social “la Caixa”; Sociedad Española de Hematología y Hemoterapia (SEHH)and Celgene Spain. FOOTNOTES Rafael Bejar and Francesc Sole contributed equally. Disclosures Díez-Campelo: Novartis, Celgene: Honoraria, Research Funding. Xicoy:Celgene: Honoraria. Cañizo:Celgene, Jansen-Cilag, Arry, Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. sanchez-Garcia:Celgene: Honoraria, Research Funding. Bejar:Celgene: Membership on an entity's Board of Directors or advisory committees; Genoptix Medical Laboratory: Consultancy, Honoraria, Licensed IP, no royalties Patents & Royalties, Membership on an entity's Board of Directors or advisory committees. Sole:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1816-1816
Author(s):  
Hervè Avet-Loiseau ◽  
Graham R Bignell ◽  
Cheng Li ◽  
Florence Magrangeas ◽  
Thierry Facon ◽  
...  

Abstract Abstract 1816 Multiple Myeloma (MM) is characterized by several recurrent chromosomal abnormalities, some of them driving the outcome of the patients, especially t(4;14), del(17p), and hyperdiploidy. On the other hand, recent data based on whole genome sequencing showed that MM is characterized by many gene mutations, some of them being recurrent. In order to try to reconcile these two types of genetic abnormalities, we performed whole exome sequencing (WES) in 53 newly-diagnosed patients characterized by high or low risk at the chromosomal level. We selected 16 patients with del(17p) in at least 60% of the clonal plasma cells, 5 patients with del(12p), including 3 with associated t(4;14), 2 patients with t(14;16), 1 patient with both del(17p), del 12p), and t(4;14), considered as the poor risk group (24 patients), 24 patients with hyperdiploidy (including chromosome 5 gain), and 2 patients with a normal SNParray profile, considered as the good risk group (26 patients, and 3 patients with hyperdiploidy and either del(17p) and/or del(12p), considered as the uncertain risk group. A total of 3621 non-silent mutations were observed through the 53 tumor genomes. The median number of mutations per patient was 79 (31–462). We did not observe differences in the number of mutations according to cytogenetic risk. Regarding specific gene mutations, 376 genes presented 2 mutations, and 128 genes presented at least 3 mutations (3–16). Comparison with recently published sequencing data (Chapman, Nature, 2011) revealed only a few common mutated genes (NRAS 26%, KRAS 23%, TP53 13%, BRAF 11%, and FAM46C 10%). In contrast, many recurrently mutated genes were identified in this series, but not in the published one. This could be related to the relatively low number of sequenced cases in both series. Very interestingly, quite a high number of strictly identical mutations involving many genes were observed in different patients (139 cases), suggesting that those mutations are more probably driver rather than passenger events. To conclude, in this large comprehensive study, we did not find any significant correlation between recurrent chromosomal changes and gene mutations, suggesting that these two events occur independently. We cannot address the issue of the prognostic value of the gene mutations because of the low number of patients sequenced so far. This question will definitely have to be addressed in future larger series on newly diagnosed patients with MM. Disclosures: Facon: Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Anderson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees; Merck: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Acetylon: Membership on an entity's Board of Directors or advisory committees. Munshi:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-5
Author(s):  
Ehsan Malek ◽  
E. Ricky Chan ◽  
Daniel Qu ◽  
Jane Reese ◽  
Robert Fox ◽  
...  

Introduction: Multiple myeloma (MM) is a plasma cell neoplasm associated with heterogeneous somatic alterations. Despite the development of novel anti-myeloma agents that have significantly prolonged patient survival, disease relapse remains a daunting problem. Our goal was to employ whole-exome sequencing (WES) to better describe the mutational landscape in MM beyond the tumor cell and identify genomic factors that might predict relapse. WES was performed using autograft samples obtained from MM patients that were then treated with high dose melphalan and autologous hematopoietic cell transplant (HCT). We identified a panel of genes that were most frequently mutated in all patients and then identified those genes mutated with greater frequency in patients that relapsed. A relapse burden signature was generated based upon the genes that were most frequently mutated genes in relapsed patients. Finally, the relapse burden signature was correlated with patient progression-free survival (PFS) and overall survival (OS) following autologous HCT. Methods. DNA was extracted from one ml of cryopreserved, mobilized hematopoietic cell product obtained from patients (N=93) that underwent HCT and was provided by the Case Comprehensive Cancer Center Hematopoietic Biorepository Core. Targeted sequencing was performed using the Tempus xE whole exome platform (Tempus, Chicago, IL). Variants were identified using a variant allele frequency (VAF) ≥0.1 for each sample. Variants were tabulated for each gene in each patient. Patients were grouped according to their relapse status; "No Relapse" (N=39) and "Relapse" (N=54) which corresponded to their post-HCT outcome. Relapse time was defined as time from transplant to event. Variants identified in each gene and patient group were counted and ranked. A relapse burden signature was defined and included twenty-two genes over-represented in the relapse group compared to the non-relapse group by > 10%. Genes in the relapse burden signature were subjected to gene set enrichment analysis (GSEA) and cross referenced against Gene Ontology (GO) categories. PFS and OS were defined as the time from transplant until the event of interest, with censoring at time of last follow up. Patients were regrouped according to their mutation burden in the relapse signature genes ("High burden" defined as >=six signature genes with variants) and their OS and PFS were analyzed with an R package (survival) to generate Kaplan-Meier curves and statistical significance based on a Chi-square test between low and high burden patients. Results: In total, 3,523 genes were identified as containing variants. Table 1 lists the top thirty genes that were identified and ranked based upon total number of mutations (mutational count) and most frequently mutated in relapsed and non-relapsed patients (sample count). We then identified those genes that were more frequently mutated by at least 10% in relapsed patients compared to non-relapsed patients (Fig. 1A). GSEA revealed that the relapse burden gene signature was associated with protein O-linked glycosylation, glycan processing, Golgi lumen and innate immune response activating cell surface receptor signaling pathways (Table 2). Interestingly, multiple mucin family members (Muc2, Muc3A, Muc12 and Muc19) were represented in the relapse burden signature. GO analysis indicated that the individual mucin genes were associated with the same signaling pathways that had been associated with the relapse burden signature by GSEA (Table 3). Importantly, a high relapse burden signature was correlated with a statistically significant reduction in both PFS and OS (Fig. 1B, C). Conclusion: Taken together, our results support the feasibility of WES to generate a relapse burden signature that predicts the risk of MM patients for relapse following HCT. Moreover, the mutational landscape associated with relapse, i.e. the specific genes mutated, has provided insights on the mechanisms of relapse. It is noteworthy that the relapse burden signature genes identified here were mutated at a much greater frequency than genes associated with clonal hematopoiesis of indeterminate potential (CHIP). The identification of patient subgroups at heightened risk of relapse can better guide treatment decisions. Future studies will be conducted to evaluate the effect of pathways identified here on myeloma cell survival and to validate actionable therapeutic targets. Disclosures Malek: Bluespark: Research Funding; Takeda: Other: Advisory board , Speakers Bureau; Medpacto: Research Funding; Janssen: Other: Advisory board, Speakers Bureau; Sanofi: Other: Advisory board; Clegene: Other: Advisory board , Speakers Bureau; Amgen: Honoraria; Cumberland: Research Funding. Caimi:Amgen: Other: Advisory Board; Bayer: Other: Advisory Board; Verastem: Other: Advisory Board; Kite pharmaceuticals: Other: Advisory Board; Celgene: Speakers Bureau; ADC therapeutics: Other: Advisory Board, Research Funding. de Lima:Celgene: Research Funding; BMS: Other: Personal Fees, advisory board; Incyte: Other: Personal Fees, advisory board; Kadmon: Other: Personal Fees, Advisory board; Pfizer: Other: Personal fees, advisory board, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1878-1878
Author(s):  
Adriana C Rossi ◽  
Tomer M Mark ◽  
Kevin Wood ◽  
Roger N Pearse ◽  
Faiza Zafar ◽  
...  

Abstract Background Conventional radiography remains the gold standard imaging modality for staging multiple myeloma (MM). Other imaging modalities have been evaluated in recent years, and been shown to provide additional information about disease burden and location. FDG-PET/CT has proven to be useful in the identification of extramedullary disease and in monitoring patients with non-secretory myeloma. In addition to diagnostic utility, FDG-PET/CT has also been shown to predict time to relapse in the setting of newly diagnosed MM. However, to our knowledge its utility as a prognostic indicator in relapsed or refractory disease has not been studied. Methods We conducted a retrospective analysis of 61 patients with relapsed or refractory multiple myeloma (RRMM) who underwent PET/CT imaging prior to receiving salvage chemotherapy on a therapeutic trial of ClaPD (clarithromycin, pomalidomide, dexamethasone). Patients were heavily pre-treated, having received a minimum of 3 prior lines of therapy (range 3-15). All imaging was performed on the same PET/CT system at a single institution. Each PET/CT was evaluated in blinded fashion by two independent nuclear medicine physicians, with attention to the number and type of lesion, maximum SUV, and presence or absence of extramedullary disease. Disease response evaluation was performed monthly, and measured according to the international uniform response criteria. Multivariate analysis was performed to assess relationships of the above variables to depth of response, progression free survival (PFS), and overall survival (OS). Results Of 61 evaluable patients, 23 (38%) had no lytic lesions, 12 (20%) had <5 lytic lesions, and 26 (42%) had >5 lytic lesions on FDG-PET/CT. It is worth noting that 10 patients (16%) were found to have extramedullary disease, 8 of whom had >5 lytic bone lesions. There was no correlation between FDG-PET/CT findings and depth of response or median PFS, however patients with >5 lytic lesions had a median OS of 5.8 months, while it has not yet been reached for the other groups. At a median follow up of 13.2 months, 17 patients (74%) with no lytic lesions and 7 (58%) of those with <5 lytic lesions are alive. Conclusions The presence of >5 lesions on PET/CT at time of relapse is associated with poor prognosis in our cohort of heavily pre-treated patients with relapsed or refractory multiple myeloma receiving salvage chemotherapy with ClaPD. The presence of extramedullary disease, seen mostly in patients with >5 lesions, may contribute to our findings. Further studies in patients with relapsed or refractory MM are needed to evaluate the prognostic utility of FDG-PET/CT in this setting, as well as to extend these findings to other salvage regimens. Disclosures: Rossi: Celgene: Speakers Bureau. Mark:Celgene: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millennium: Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; Onyx: Research Funding, Speakers Bureau. Zafar:Celgene: Speakers Bureau; Millennium: Speakers Bureau; Onyx: Speakers Bureau. Pekle:Celgene: Speakers Bureau; Millennium: Speakers Bureau. Niesvizky:Millennium: The Takeda Oncology Company: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Onyx: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4330-4330
Author(s):  
Maryam Saberi ◽  
Omid Delfi ◽  
Dona Wathsala Madola ◽  
Peter J. Browett ◽  
Purvi M Kakadia ◽  
...  

Abstract Background Acute Leukaemia (AL) is a genetically heterogeneous disorder caused by somatic mutations and acquired chromosomal translocations. Translocations can lead to the formation of fusion genes such as the MLL/AF9 fusion, which results from the t(9;11)(p22;q23). A better understanding the molecular pathophysiology of AML, of the mechanisms of treatment resistance, disease relapse can be achieved by developing animal models. The MLL/AF9 fusion is frequently used to model AML in mice. However, to date, no MLL/AF9 leukemia models in zebrafish have been reported. Aim Our aim was to establish a transgenic zebrafish leukemia model using the human MLL/AF9 fusion gene. Methods To generate transgenic fish, two constructs (pTol2-Runx1+23: MLL-AF9-IRES-EGFP-cmlc-GFP and pTol2-Runx1+23: MLL-AF9-IRES-mCherry-cmlc-GFP) were injected together with Tol2 transposase mRNA into one-cell stage zebrafish embryos. We used the murine Runx1+23 enhancer to direct MLL/AF9 expression to hematopoietic stem cells and EGFP or mCherry as fluorescent markers. We selected transgenic embryos 24 hours post-fertilization based on the heart marker expression (cmlc). Results 29% (100 of 340 embryos) of the transgenics reached adulthood (6 weeks). After 6 to 24 months, 77% (77) of them developed signs of sickness. They became less active with protruding eyes and hump formation on the nose. Some started bleeding from the gills and/or showed tumor formation around the abdomen and head. Sick fish were euthanized and dissected. The autopsies showed pale and dysmorphic kidneys, pale and enlarged spleens, and in some cases white granular spots on the spleen. Histological sections revealed increased kidney, spleen, and liver cellularity with massive cellular infiltration of cells in these organs. In flow cytometry, kidney marrow cells from the transgenic fish showed a different forward scatter (FSC) and side scatter (SSC) profile compared to that of the normal zebrafish kidney marrow cells. The transgenic F 0 zebrafish showed increased numbers of lymphoid cells (12 fish), precursor cells (9 fish), or myeloid cells (6 fish). Peripheral blood smears showed many intermediate-sized mononuclear cells with an increased nuclear-cytoplasmic ratio, with nuclei containing dipsersed chromatin and inconspicuous nucleoli resembling blasts. There were occasional myelocytes and no mature granulocytes. These data are consistent with the development of acute leukemia in our MLL/AF9 transgenic fish. Whole-mount in situ hybridization (WISH) was performed on F 1 embryos. RNA probes for early hematopoietic markers (gata1, scl, runx1, ikaros, cmyb, mpx, and lyz) were hybridized to 24 and 48 hpf F1 transgenic embryos. There were expression changes of these markers compared to age-matched wild-type larvae, including low expression of gata1, scl, cmyb and high expression of lyz, mpx and ikaros in the caudal hematopoietic organ. We also performed transplantation experiments with the kidney marrow cells from diseased fish to test whether the disease was transplantable. The disease was serially transplantable into secondary and tertiary recipient fish. Transplanted fish had a significantly shorter latency to disease development of only 2 to 6 weeks. The morphological evidence and the serial transplantability of the disease proves that we have in fact succeeded in establishing an MLL/AF9-driven acute leukemia model in zebrafish. The long latency and incomplete penetrance observed in our F 0 MA9 zebrafish, along with a shorter latency in the transplanted fish, suggests that additional somatic mutations are required for leukemogenesis in this model. We performed whole exome sequencing to find cooperating somatic mutations and RNASeq to identify differentially expressed genes in MA9 leukemia fish. Whole exome sequencing on six samples identified putative somatic mutations in genes such as Stat5, Cyp2j20, Ms4a17a.3, Tapbp.1 and Herc5.3, which have been reported to be mutated in human cancer. RNA-seq analysis on seven samples showed 67 differentially expressed genes with a q value &lt; 0.05 (e.g., cxcl32b.1, myof1, ctdsp2, egr3, il2rb) and nine enriched pathways with a P-value of &lt; 0.054 (e.g.: KRAS, TP53, MEK) in our transgenic leukemic MLL/AF9 fish. Conclusion Our MLL/AF9 zebrafish acute leukemia model will be a helpful tool to understand leukemia biology and enable testing of new therapeutic strategies. Disclosures Browett: AbbVie: Honoraria; Janssen: Membership on an entity's Board of Directors or advisory committees; MSD: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3175-3175
Author(s):  
Martina Zátopková ◽  
Tereza Sevcikova ◽  
Zuzana Kufova ◽  
Katerina Growkova ◽  
Jana Filipova ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is a plasma cell dyscrasia causing damage of multiple organs with fatal consequences for patients. Despite the success of modern therapies eliminating a vast bulk of the aberrant cells, surviving residual clones eventually lead to the relapse of the disease. Accumulation of genomic alterations during the stage of minimal residual disease (MRD) likely contributes to a selective grow advantage and survival under the drug pressure. Identification of specific mutations in MM patients with MRD can provide unique opportunities to target the residual plasma cell clones. Here we present the first whole exome sequencing (WES) analysis of 22 MM samples of patients with MRD that identified 814 mutated genes with 4% of genes previously implicated in the pathogenesis of MM. Methods: Aberrant plasma cells (A-PCs) and peripheral blood (PB) were collected from patients after signing informed consent form. Presence of MRD was assessed with EuroFlow protocol and A-PCs were sorted out from bone marrow according to their pathological immunophenotype based on the expression of antigens CD38, CD45, CD19 and CD56. DNA from A-PCs was isolated and amplified by Repli-g Single cell kit (QIAGEN). Sequencing libraries were prepared using SureSelect Human All Exon V6 Kit (Agilent Technologies) and sequenced by Macrogen Inc. on Illumina HiSeq 4000 platform with average coverage 50x and 2x 100bp read length. Sequencing data were processed using the Bcbio framework following the standard workflow for tumor-matched-normal studies. Specifically, reads were mapped to the human reference genome GRCh37, successively marking duplicates using Picard. Germline mutations were identified using GATK HaplotypeCaller, whereas somatic mutations were identified using MuTect2 reporting as significant variants observed in at least 5 reads and minimum allele frequency of 10%. Variants in homopolymer regions longer than 5 nucleotides were filtered out. The final set of calls were further characterised by assessing their functional impact using snpEff and by annotating each variant using data from 1000 Genomes Phase 3, ExAC, and ClinVar. We then used OncodriveCLUST to identify putative oncogenic genes, and later compared these results with a literature curated list of MM driver genes (Weaver & Tariman, 2017). Results: Our dataset comprises 22 samples from 21 patients (one patient was sampled in two time points) with MM MRD, who received bortezomib-based regimen (age 41-71, average 59 years, 11/22 males, 10/22 females). 8 patients reached complete response, 9 patients had very good partial response and 4 patients had partial response. In our analysis, we detected 1,014 tumour somatic variants (8-287 per sample, median 36), most of them being missense mutations (676/1014), splice site mutations (145/1014) and frameshift insertions (134/1014). The variants affected a total of 814 genes, 97 genes were shared in at least two samples. The most frequently mutated genes were KIAA1211 (11/22), the immunoglobulin gene IGLV3-1 (8/22), apoptotic chromatin condensation inducer ACIN1 (7/22) and CCR4-associated factor 3 CNOT3 (7/22). We also identified 32 genes known to be mutated in MM in 64% of our samples (14/22). We found mutations shared by at least 2 samples in KRAS (4/22), DIS3 (3/22), TRAF3 (3/22), NRAS (2/22), ANK2 (2/22), BRAF (2/22) and RBM15 (2/22). Further analysis with OncodriveCLUST identified 18 putative oncogenic genes (FDR < 0.1), including KRAS, DIS3, ACIN1. Conclusion: We presented the first whole exome study of MM MRD, providing a characterisation of the mutations observed in A-PCs. We overcame problem with low amount of A-PCs in this disease stage by using whole genome amplification and a highly customised bioinformatic analysis pipeline. Our study suggests that A-PCs are characterised by new MM MRD specific set of mutated genes, along with the presence of mutations in well-known multiple myeloma cancer driver genes. This offers a great potential for design of novel precise treatments targeting MRD after standard MM therapies. Supported by Ministry of Health of the Czech Republic (17-30089A, CZ-DRO-FNOs/2016) and Ministry of Education of the Czech Republic (SGS18/PřF/2017-2018) Disclosures Kryukov: JSC BIOCAD: Employment. Maisnar:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees. Hajek:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Research Funding; Novartis: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1183-1183
Author(s):  
Randal Joseph Westrick ◽  
Guojing Zhu ◽  
Jishu Xu ◽  
Audrey C.A. Cleuren ◽  
Angela Yang ◽  
...  

Abstract Abstract 1183 Only ∼10% of individuals carrying the common venous thrombosis risk factor, Factor V Leiden (FVL) will develop venous thrombosis in their lifetime. In order to identify potential FVL modifier genes, we performed a sensitized dominant ENU mutagenesis screen, based on the perinatal synthetic lethal thrombus previously observed in mice homozygous for FVL (FVQ/Q) and hemizygous for tissue factor pathway inhibitor deficiency (Tfpi+/−). The genome-wide ENU mutagenesis screen was performed by crossing ENU-treated male FVQ/Q mice with FVQ/+ Tfpi+/− females. Surviving G1 offspring were analyzed to identify survivors with the otherwise lethal FVQ/Q Tfpi+/− genotype. As proof of concept, we demonstrated that reduced tissue factor (Tf+/−) suppresses the lethal FVQ/Q Tfpi+/− phenotype, suggesting that mutations at Tf should be among the suppressor genes identified by our screen. Analysis of 7,128 G1 offspring (∼2X genome coverage) identified 98 FVQ/Q Tfpi+/− mice that survived to weaning. Fourteen FVQ/Q Tfpi+/− G1 mice exhibited successful transmission of a putative suppressor mutation to two or more FVQ/Q Tfpi+/− G2 offspring. Extensive genotyping of mice from an expanded genetic cross from one of these lines mapped a candidate suppressor locus to a chromosome 3 region encompassing the TF gene (LOD=4.93). With continued improvements in next generation sequencing technologies, we have now applied whole exome sequencing to analysis of 8 of the remaining 13 lines. The entire DNA coding region (the “exome”, totaling 49.6 Mb of DNA sequence) from a progeny-tested member of each line was captured using the Agilent SureSelect mouse exome capture system. Whole-exome sequencing using the Illumina HiSeq high-throughput sequencer yielded 12–15 gigabases of sequence data per sample, corresponding to an average of ∼200 fold sequencing coverage for each nucleotide position. Variant analysis using the Gene Analysis Toolkit revealed the presence of a small number of high confidence novel heterozygous (dominant) variants in each sample. Each of these heterozygous variants is a candidate suppressor mutation and these are presently being tested in remaining FVQ/Q Tfpi+/− mice from each respective line. Based on previous studies where ENU-induced mutations in mice have been identified, we anticipate the identification of putative exomic mutations in approximately 80% of tested suppressor lines. Identification of these mutations should provide candidate modifier genes for FVL and other human hemostatic disorders. Disclosures: Ginsburg: Portola Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Catalyst Biosciences: Membership on an entity's Board of Directors or advisory committees; Shire Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 237-237
Author(s):  
Karma Salem ◽  
Jihye Park ◽  
Claudia Freymond ◽  
Marzia Capelletti ◽  
Daisy Huynh ◽  
...  

Abstract Introduction: Recent data shows that multiple myeloma (MM) almost always arises from precursor states called Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM), but not all patients with MGUS or SMM develop MM. Risk factors of progression for SMM patients are largely based on tumor load as represented by an M-protein ≥ 3 g/dL, a free light chain (FLC) ratio outside the range of 0.125 to 8, and ≥ 10% plasma cells in the BM. However, the genetic lesions that underlie progression, the molecular factors that cause rapid versus slow progression, and the factors that distinguish the relatively indolent MGUS from SMM are not well known. Further, the genomic landscape of SMM is not well characterized. One potential factor is MYC overexpression. Bergsagel et al. have found that MYC levels increase when comparing MGUS, SMM and overt MM. Other frequently altered pathways in MM are NF-kB, MAPK and DNA damage. In addition, limited studies of paired SMM and MM samples show that in many cases, the aggressive subclones can already be detected, in small cell fractions, before overt MM develops. However, the cause of progression to MM is unclear, in large part because sequential genomic studies of MGUS/SMM progression have yet to be undertaken. To address these questions, in this study we examine clinically-annotated samples from patients with SMM. Methods: We performed whole exome sequencing (WES) (mean target coverage 50X/100X) on 49 germline-tumor matched samples from patients with SMM (DNA from bone marrow CD138+ plasma cells matched with germline DNA from peripheral blood mononuclear cells). Libraries were constructed using Agilent SureSelect XT2 library prep kit, and hybridized to Agilent's whole exome V5+UTR capture probes and then sequenced on HiSeq 2500 (Illumina). We also performed targeted deep sequencing using a custom enrichment bait set on 25 samples of progressor (n=12) and non-progressor (n=13) SMM samples. Libraries were also constructed with Agilent SureSelect XT2 library prep kit and enriched by hybridizing to an in-house designed customized target bait, then sequenced on HiSeq 2500. Sequencing data were analyzed using previously established analytic pipelines including MuTect, RecapSeg, GISTIC, MutSig, and ABSOLUTE. Results: The number of Somatic Single Nucleotide Variants (SSNVs) seen in SMM ranged from 1 to 98 nonsilent mutations with an average of 1.14 mutations/Mb, which is slightly lower than MM (1.6 mutations/Mb) from previous studies (p-value=0.05). This large and varying range of mutational load among samples suggests that SMM is likely a heterogenous entity where some patients are closer to MGUS and others closer to MM. We identified likely drivers in SMM in about ~32% of the samples, including mutations in MM candidate driver genes such as NRAS, KRAS and PTPN11(overall 36 events were present in COSMIC). SMM also had somatic CNAs in about ~50% of SMM samples, such as hyperdiploidy, gain of chromosome 1q, deletion of 13p and 17p, which match the hallmark chromosome changes seen in MM. Comparing deep targeted sequencing of 100 genes (mean target coverage 361X) in samples from 12 SMM patients who progressed to myeloma vs. 13 SMM patients who did not, we found non-synonymous mutations exclusive to progressors, suggesting that with more samples we may find genetic alterations that predict progression in SMM. Conclusion: This study demonstrates that WES and targeted sequencing of SMM patients can detect MM candidate driver genes as well as hallmark CNAs seen in MM patients. Further, there may be potential different mutational features between progressors and non-progressors. Thus, this approach can be used to identify genetic drivers of clonal progression from MGUS/SMM to MM that may present opportunities for early therapeutic intervention and prevention of disease progression. Disclosures Roccaro: Takeda Pharmaceutical Company Limited: Honoraria. Ghobrial:Takeda: Honoraria; Noxxon: Honoraria; Amgen: Honoraria; Novartis: Honoraria; BMS: Honoraria, Research Funding; Celgene: Honoraria, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 533-533
Author(s):  
Yuji Mishima ◽  
Jens Lohr ◽  
Yu-Tzu Tai ◽  
Ludmila Flores ◽  
Yosra Aljawai ◽  
...  

Abstract Background Clonal evolution involves simultaneous evolution of multiple co-existant subclones. Recent studies have suggested that clonal heterogeneity is critical during the progression of Multiple Myeloma (MM). Circulating tumor cells (CTCs) have been identified in many patients with solid tumors and hematological malignancies. Recent studies have suggested that CTCs can be identified in patients with Multiple Myeloma. The aims of this study were to identify the phenotypic characteristics of CTCs in patients with Mutliple Myeloma at different stages of the disease, to determine whether somatic mutations present in the bone marrow clones are also identified in CTCs or whether specific subclones are more prone to enter the systemic circulation. These subclones may have a higher likelihood of inducing dissemination into extramedullary sites and potential for drug resistance. Methods We analyzed the peripheral blood samples of 466 patients diagnosed with Multiple Myeloma at different stages of progression. Two plasma cell leukemia patients were included in the study. Freshly collected peripheral blood was processed to obtain white blood cell fractions. The cells were stained with eight antibodies including CD19, CD38, CD138, CD45, CD56, CD28, CD44, and CD183 and CTCs were purified by gating on CD19-/CD38+/CD138+ cells. Among them, ten of the CTC samples were selected to analyze somatic mutation using whole exome sequencing. Briefly, 1µg of genomic DNA was extracted form sorted cells followed by shearing, end repair, and ligation to barcoded adaptors. The DNA was size-selected, subjected to exonic hybrid capture and sequenced on Illumina HiSeq flow cells with an average depth of coverage of 100x. Results Of the 466 samples analyzed, the number of CTCs identified ranged from 0.01% to 61% of total WBC count. CTCs were detected in 61.4% of all samples analyzed. CTCs were detected in 64.5% of relapsed MM, 63.4% of newly diagnosed MM, 24.0% of smoldering MM, and 25.0% of MGUS patients. Significant differences of the surface markers including CD45, CD28, CD56, and CD44 were not observed in the different stages of MM disease progression. For further characterization of CTCs, we performed whole exome sequencing of CTCs in 10 MM samples, of which 5 had sequencing of their matched tumor cells collected from BM as well as matched normal germline cells to examine whether circulating tumor cells possess any distinctive somatic mutations. The sequence analysis revealed that both CTCS and marrow restricted tumor cells have substantial numbers of protein-coding mutations. CTCs and bone marrow cells shared 5-38% similar mutations, while interestingly the rest of the mutations were exclusively present in either the CTCs or bone marrow samples. We identified a total of 347 somatic mutations, which included 199 CTC specific mutations. Several known driver mutations were observed, i.e. BRaf V600E mutation present in the CTC samples but not in the matching bone marrow samples in one patient. Twelve of these CTC mutations were shared at least in two patients including ZNF721, NBPH10, F5, and PRDM15. Conclusion These data suggest subclonal out growth of CTCs from one of the parent clones with acquisition of additional mutation over time outside of the bone marrow microenvironment. Further validation of the unique mutations in CTCs may provide mechanistic insight into myeloma cell dissemination, and so potentially inform treatment strategies. Disclosures: Tai: Onyx: Consultancy. Anderson:celgene: Consultancy; onyx: Consultancy; gilead: Consultancy; sanofi aventis: Consultancy; oncopep: Equity Ownership; acetylon: Equity Ownership. Munshi:Celgene Corporation: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Millennium: The Takeda Oncology Company: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Novartis Pharmaceuticals Corporation: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Onyx Pharmaceuticals Inc: Membership on an entity’s Board of Directors or advisory committees. Ghobrial:Noxxon: Research Funding; BMS: Advisory board, Advisory board Other, Research Funding; Onyx: Advisoryboard Other; Sanofi: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document